]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/vc4/vc4_dsi.c
drm/vc4: Add DSI driver
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / vc4 / vc4_dsi.c
1 /*
2 * Copyright (C) 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 /**
18 * DOC: VC4 DSI0/DSI1 module
19 *
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22 * controller.
23 *
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
26 *
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
29 * hopefully present.
30 */
31
32 #include "drm_atomic_helper.h"
33 #include "drm_crtc_helper.h"
34 #include "drm_edid.h"
35 #include "drm_mipi_dsi.h"
36 #include "drm_panel.h"
37 #include "linux/clk.h"
38 #include "linux/clk-provider.h"
39 #include "linux/completion.h"
40 #include "linux/component.h"
41 #include "linux/dmaengine.h"
42 #include "linux/i2c.h"
43 #include "linux/of_address.h"
44 #include "linux/of_platform.h"
45 #include "linux/pm_runtime.h"
46 #include "vc4_drv.h"
47 #include "vc4_regs.h"
48
49 #define DSI_CMD_FIFO_DEPTH 16
50 #define DSI_PIX_FIFO_DEPTH 256
51 #define DSI_PIX_FIFO_WIDTH 4
52
53 #define DSI0_CTRL 0x00
54
55 /* Command packet control. */
56 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57 #define DSI1_TXPKT1C 0x04
58 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
62
63 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67 /* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
69 */
70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71 /* Secondary display where cmdfifo provides part of the payload and
72 * pixfifo the rest.
73 */
74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
75
76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
78
79 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81 /* Command only. Uses TXPKT1H and DISPLAY_NO */
82 # define DSI_TXPKT1C_CMD_CTRL_TX 0
83 /* Command with BTA for either ack or read data. */
84 # define DSI_TXPKT1C_CMD_CTRL_RX 1
85 /* Trigger according to TRIG_CMD */
86 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87 /* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
89 */
90 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
91
92 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95 # define DSI_TXPKT1C_CMD_EN BIT(0)
96
97 /* Command packet header. */
98 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99 #define DSI1_TXPKT1H 0x08
100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105 # define DSI_TXPKT1H_BC_DT_SHIFT 0
106
107 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108 #define DSI1_RXPKT1H 0x14
109 # define DSI_RXPKT1H_CRC_ERR BIT(31)
110 # define DSI_RXPKT1H_DET_ERR BIT(30)
111 # define DSI_RXPKT1H_ECC_ERR BIT(29)
112 # define DSI_RXPKT1H_COR_ERR BIT(28)
113 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
121 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
123 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
125
126 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127 #define DSI1_RXPKT2H 0x18
128 # define DSI_RXPKT1H_DET_ERR BIT(30)
129 # define DSI_RXPKT1H_ECC_ERR BIT(29)
130 # define DSI_RXPKT1H_COR_ERR BIT(28)
131 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135 # define DSI_RXPKT1H_DT_SHIFT 0
136
137 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138 #define DSI1_TXPKT_CMD_FIFO 0x1c
139
140 #define DSI0_DISP0_CTRL 0x18
141 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145 # define DSI_DISP0_LP_STOP_DISABLE 0
146 # define DSI_DISP0_LP_STOP_PERLINE 1
147 # define DSI_DISP0_LP_STOP_PERFRAME 2
148
149 /* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
151 */
152 # define DSI_DISP_HACTIVE_NULL BIT(10)
153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154 # define DSI_DISP_VBLP_CTRL BIT(9)
155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156 # define DSI_DISP_HFP_CTRL BIT(8)
157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HBP_CTRL BIT(7)
159 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160 # define DSI_DISP0_CHANNEL_SHIFT 5
161 /* Enables end events for HSYNC/VSYNC, not just start events. */
162 # define DSI_DISP0_ST_END BIT(4)
163 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164 # define DSI_DISP0_PFORMAT_SHIFT 2
165 # define DSI_PFORMAT_RGB565 0
166 # define DSI_PFORMAT_RGB666_PACKED 1
167 # define DSI_PFORMAT_RGB666 2
168 # define DSI_PFORMAT_RGB888 3
169 /* Default is VIDEO mode. */
170 # define DSI_DISP0_COMMAND_MODE BIT(1)
171 # define DSI_DISP0_ENABLE BIT(0)
172
173 #define DSI0_DISP1_CTRL 0x1c
174 #define DSI1_DISP1_CTRL 0x2c
175 /* Format of the data written to TXPKT_PIX_FIFO. */
176 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177 # define DSI_DISP1_PFORMAT_SHIFT 1
178 # define DSI_DISP1_PFORMAT_16BIT 0
179 # define DSI_DISP1_PFORMAT_24BIT 1
180 # define DSI_DISP1_PFORMAT_32BIT_LE 2
181 # define DSI_DISP1_PFORMAT_32BIT_BE 3
182
183 /* DISP1 is always command mode. */
184 # define DSI_DISP1_ENABLE BIT(0)
185
186 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
187
188 #define DSI0_INT_STAT 0x24
189 #define DSI0_INT_EN 0x28
190 # define DSI1_INT_PHY_D3_ULPS BIT(30)
191 # define DSI1_INT_PHY_D3_STOP BIT(29)
192 # define DSI1_INT_PHY_D2_ULPS BIT(28)
193 # define DSI1_INT_PHY_D2_STOP BIT(27)
194 # define DSI1_INT_PHY_D1_ULPS BIT(26)
195 # define DSI1_INT_PHY_D1_STOP BIT(25)
196 # define DSI1_INT_PHY_D0_ULPS BIT(24)
197 # define DSI1_INT_PHY_D0_STOP BIT(23)
198 # define DSI1_INT_FIFO_ERR BIT(22)
199 # define DSI1_INT_PHY_DIR_RTF BIT(21)
200 # define DSI1_INT_PHY_RXLPDT BIT(20)
201 # define DSI1_INT_PHY_RXTRIG BIT(19)
202 # define DSI1_INT_PHY_D0_LPDT BIT(18)
203 # define DSI1_INT_PHY_DIR_FTR BIT(17)
204
205 /* Signaled when the clock lane enters the given state. */
206 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
208 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
209
210 /* Signaled on timeouts */
211 # define DSI1_INT_PR_TO BIT(13)
212 # define DSI1_INT_TA_TO BIT(12)
213 # define DSI1_INT_LPRX_TO BIT(11)
214 # define DSI1_INT_HSTX_TO BIT(10)
215
216 /* Contention on a line when trying to drive the line low */
217 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
218 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
219
220 /* Control error: incorrect line state sequence on data lane 0. */
221 # define DSI1_INT_ERR_CONTROL BIT(7)
222 /* LPDT synchronization error (bits received not a multiple of 8. */
223
224 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
225 /* Signaled after receiving an error packet from the display in
226 * response to a read.
227 */
228 # define DSI1_INT_RXPKT2 BIT(5)
229 /* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
231 * RXPKT_FIFO.
232 */
233 # define DSI1_INT_RXPKT1 BIT(4)
234 # define DSI1_INT_TXPKT2_DONE BIT(3)
235 # define DSI1_INT_TXPKT2_END BIT(2)
236 /* Signaled after all repeats of TXPKT1 are transferred. */
237 # define DSI1_INT_TXPKT1_DONE BIT(1)
238 /* Signaled after each TXPKT1 repeat is scheduled. */
239 # define DSI1_INT_TXPKT1_END BIT(0)
240
241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
245 DSI1_INT_HSTX_TO | \
246 DSI1_INT_LPRX_TO | \
247 DSI1_INT_TA_TO | \
248 DSI1_INT_PR_TO)
249
250 #define DSI0_STAT 0x2c
251 #define DSI0_HSTX_TO_CNT 0x30
252 #define DSI0_LPRX_TO_CNT 0x34
253 #define DSI0_TA_TO_CNT 0x38
254 #define DSI0_PR_TO_CNT 0x3c
255 #define DSI0_PHYC 0x40
256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261 # define DSI1_PHYC_CLANE_ULPS BIT(17)
262 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
263 # define DSI_PHYC_DLANE3_ULPS BIT(13)
264 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
265 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266 # define DSI0_PHYC_CLANE_ULPS BIT(9)
267 # define DSI_PHYC_DLANE2_ULPS BIT(9)
268 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
269 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
270 # define DSI_PHYC_DLANE1_ULPS BIT(5)
271 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
272 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273 # define DSI_PHYC_DLANE0_ULPS BIT(1)
274 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
275
276 #define DSI0_HS_CLT0 0x44
277 #define DSI0_HS_CLT1 0x48
278 #define DSI0_HS_CLT2 0x4c
279 #define DSI0_HS_DLT3 0x50
280 #define DSI0_HS_DLT4 0x54
281 #define DSI0_HS_DLT5 0x58
282 #define DSI0_HS_DLT6 0x5c
283 #define DSI0_HS_DLT7 0x60
284
285 #define DSI0_PHY_AFEC0 0x64
286 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308 # define DSI1_PHY_AFEC0_RESET BIT(13)
309 # define DSI1_PHY_AFEC0_PD BIT(12)
310 # define DSI0_PHY_AFEC0_RESET BIT(11)
311 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
312 # define DSI0_PHY_AFEC0_PD BIT(10)
313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
315 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
322
323 #define DSI0_PHY_AFEC1 0x68
324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
330
331 #define DSI0_TST_SEL 0x6c
332 #define DSI0_TST_MON 0x70
333 #define DSI0_ID 0x74
334 # define DSI_ID_VALUE 0x00647369
335
336 #define DSI1_CTRL 0x00
337 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338 # define DSI_CTRL_HS_CLKC_SHIFT 14
339 # define DSI_CTRL_HS_CLKC_BYTE 0
340 # define DSI_CTRL_HS_CLKC_DDR2 1
341 # define DSI_CTRL_HS_CLKC_DDR 2
342
343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347 # define DSI_CTRL_CAL_BYTE BIT(9)
348 # define DSI_CTRL_INV_BYTE BIT(8)
349 # define DSI_CTRL_CLR_LDF BIT(7)
350 # define DSI0_CTRL_CLR_PBCF BIT(6)
351 # define DSI1_CTRL_CLR_RXF BIT(6)
352 # define DSI0_CTRL_CLR_CPBCF BIT(5)
353 # define DSI1_CTRL_CLR_PDF BIT(5)
354 # define DSI0_CTRL_CLR_PDF BIT(4)
355 # define DSI1_CTRL_CLR_CDF BIT(4)
356 # define DSI0_CTRL_CLR_CDF BIT(3)
357 # define DSI0_CTRL_CTRL2 BIT(2)
358 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359 # define DSI0_CTRL_CTRL1 BIT(1)
360 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361 # define DSI0_CTRL_CTRL0 BIT(0)
362 # define DSI1_CTRL_EN BIT(0)
363 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
367 DSI0_CTRL_CLR_CDF)
368 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
371 DSI1_CTRL_CLR_CDF)
372
373 #define DSI1_TXPKT2C 0x0c
374 #define DSI1_TXPKT2H 0x10
375 #define DSI1_TXPKT_PIX_FIFO 0x20
376 #define DSI1_RXPKT_FIFO 0x24
377 #define DSI1_DISP0_CTRL 0x28
378 #define DSI1_INT_STAT 0x30
379 #define DSI1_INT_EN 0x34
380 /* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
382 */
383 #define DSI1_STAT 0x38
384 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
385 # define DSI1_STAT_PHY_D3_STOP BIT(30)
386 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
387 # define DSI1_STAT_PHY_D2_STOP BIT(28)
388 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
389 # define DSI1_STAT_PHY_D1_STOP BIT(26)
390 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
391 # define DSI1_STAT_PHY_D0_STOP BIT(24)
392 # define DSI1_STAT_FIFO_ERR BIT(23)
393 # define DSI1_STAT_PHY_RXLPDT BIT(22)
394 # define DSI1_STAT_PHY_RXTRIG BIT(21)
395 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
396 /* Set when in forward direction */
397 # define DSI1_STAT_PHY_DIR BIT(19)
398 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401 # define DSI1_STAT_PR_TO BIT(15)
402 # define DSI1_STAT_TA_TO BIT(14)
403 # define DSI1_STAT_LPRX_TO BIT(13)
404 # define DSI1_STAT_HSTX_TO BIT(12)
405 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407 # define DSI1_STAT_ERR_CONTROL BIT(9)
408 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409 # define DSI1_STAT_RXPKT2 BIT(7)
410 # define DSI1_STAT_RXPKT1 BIT(6)
411 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
412 # define DSI1_STAT_TXPKT2_DONE BIT(4)
413 # define DSI1_STAT_TXPKT2_END BIT(3)
414 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
415 # define DSI1_STAT_TXPKT1_DONE BIT(1)
416 # define DSI1_STAT_TXPKT1_END BIT(0)
417
418 #define DSI1_HSTX_TO_CNT 0x3c
419 #define DSI1_LPRX_TO_CNT 0x40
420 #define DSI1_TA_TO_CNT 0x44
421 #define DSI1_PR_TO_CNT 0x48
422 #define DSI1_PHYC 0x4c
423
424 #define DSI1_HS_CLT0 0x50
425 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426 # define DSI_HS_CLT0_CZERO_SHIFT 18
427 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428 # define DSI_HS_CLT0_CPRE_SHIFT 9
429 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430 # define DSI_HS_CLT0_CPREP_SHIFT 0
431
432 #define DSI1_HS_CLT1 0x54
433 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
435 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436 # define DSI_HS_CLT1_CPOST_SHIFT 0
437
438 #define DSI1_HS_CLT2 0x58
439 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440 # define DSI_HS_CLT2_WUP_SHIFT 0
441
442 #define DSI1_HS_DLT3 0x5c
443 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444 # define DSI_HS_DLT3_EXIT_SHIFT 18
445 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446 # define DSI_HS_DLT3_ZERO_SHIFT 9
447 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448 # define DSI_HS_DLT3_PRE_SHIFT 0
449
450 #define DSI1_HS_DLT4 0x60
451 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452 # define DSI_HS_DLT4_ANLAT_SHIFT 18
453 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454 # define DSI_HS_DLT4_TRAIL_SHIFT 9
455 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456 # define DSI_HS_DLT4_LPX_SHIFT 0
457
458 #define DSI1_HS_DLT5 0x64
459 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460 # define DSI_HS_DLT5_INIT_SHIFT 0
461
462 #define DSI1_HS_DLT6 0x68
463 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464 # define DSI_HS_DLT6_TA_GET_SHIFT 24
465 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
467 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468 # define DSI_HS_DLT6_TA_GO_SHIFT 8
469 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
471
472 #define DSI1_HS_DLT7 0x6c
473 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
475
476 #define DSI1_PHY_AFEC0 0x70
477
478 #define DSI1_PHY_AFEC1 0x74
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
489
490 #define DSI1_TST_SEL 0x78
491 #define DSI1_TST_MON 0x7c
492 #define DSI1_PHY_TST1 0x80
493 #define DSI1_PHY_TST2 0x84
494 #define DSI1_PHY_FIFO_STAT 0x88
495 /* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
497 */
498 #define DSI1_ID 0x8c
499
500 /* General DSI hardware state. */
501 struct vc4_dsi {
502 struct platform_device *pdev;
503
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
506 struct drm_connector *connector;
507 struct drm_panel *panel;
508
509 void __iomem *regs;
510
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
513 u32 *reg_dma_mem;
514 dma_addr_t reg_paddr;
515
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
517 int port;
518
519 /* DSI channel for the panel we're connected to. */
520 u32 channel;
521 u32 lanes;
522 enum mipi_dsi_pixel_format format;
523 u32 mode_flags;
524
525 /* Input clock from CPRMAN to the digital PHY, for the DSI
526 * escape clock.
527 */
528 struct clk *escape_clock;
529
530 /* Input clock to the analog PHY, used to generate the DSI bit
531 * clock.
532 */
533 struct clk *pll_phy_clock;
534
535 /* HS Clocks generated within the DSI analog PHY. */
536 struct clk_fixed_factor phy_clocks[3];
537
538 struct clk_onecell_data clk_onecell;
539
540 /* Pixel clock output to the pixelvalve, generated from the HS
541 * clock.
542 */
543 struct clk *pixel_clock;
544
545 struct completion xfer_completion;
546 int xfer_result;
547 };
548
549 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
550
551 static inline void
552 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
553 {
554 struct dma_chan *chan = dsi->reg_dma_chan;
555 struct dma_async_tx_descriptor *tx;
556 dma_cookie_t cookie;
557 int ret;
558
559 /* DSI0 should be able to write normally. */
560 if (!chan) {
561 writel(val, dsi->regs + offset);
562 return;
563 }
564
565 *dsi->reg_dma_mem = val;
566
567 tx = chan->device->device_prep_dma_memcpy(chan,
568 dsi->reg_paddr + offset,
569 dsi->reg_dma_paddr,
570 4, 0);
571 if (!tx) {
572 DRM_ERROR("Failed to set up DMA register write\n");
573 return;
574 }
575
576 cookie = tx->tx_submit(tx);
577 ret = dma_submit_error(cookie);
578 if (ret) {
579 DRM_ERROR("Failed to submit DMA: %d\n", ret);
580 return;
581 }
582 ret = dma_sync_wait(chan, cookie);
583 if (ret)
584 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
585 }
586
587 #define DSI_READ(offset) readl(dsi->regs + (offset))
588 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
589 #define DSI_PORT_READ(offset) \
590 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
591 #define DSI_PORT_WRITE(offset, val) \
592 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
593 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
594
595 /* VC4 DSI encoder KMS struct */
596 struct vc4_dsi_encoder {
597 struct vc4_encoder base;
598 struct vc4_dsi *dsi;
599 };
600
601 static inline struct vc4_dsi_encoder *
602 to_vc4_dsi_encoder(struct drm_encoder *encoder)
603 {
604 return container_of(encoder, struct vc4_dsi_encoder, base.base);
605 }
606
607 /* VC4 DSI connector KMS struct */
608 struct vc4_dsi_connector {
609 struct drm_connector base;
610 struct vc4_dsi *dsi;
611 };
612
613 static inline struct vc4_dsi_connector *
614 to_vc4_dsi_connector(struct drm_connector *connector)
615 {
616 return container_of(connector, struct vc4_dsi_connector, base);
617 }
618
619 #define DSI_REG(reg) { reg, #reg }
620 static const struct {
621 u32 reg;
622 const char *name;
623 } dsi0_regs[] = {
624 DSI_REG(DSI0_CTRL),
625 DSI_REG(DSI0_STAT),
626 DSI_REG(DSI0_HSTX_TO_CNT),
627 DSI_REG(DSI0_LPRX_TO_CNT),
628 DSI_REG(DSI0_TA_TO_CNT),
629 DSI_REG(DSI0_PR_TO_CNT),
630 DSI_REG(DSI0_DISP0_CTRL),
631 DSI_REG(DSI0_DISP1_CTRL),
632 DSI_REG(DSI0_INT_STAT),
633 DSI_REG(DSI0_INT_EN),
634 DSI_REG(DSI0_PHYC),
635 DSI_REG(DSI0_HS_CLT0),
636 DSI_REG(DSI0_HS_CLT1),
637 DSI_REG(DSI0_HS_CLT2),
638 DSI_REG(DSI0_HS_DLT3),
639 DSI_REG(DSI0_HS_DLT4),
640 DSI_REG(DSI0_HS_DLT5),
641 DSI_REG(DSI0_HS_DLT6),
642 DSI_REG(DSI0_HS_DLT7),
643 DSI_REG(DSI0_PHY_AFEC0),
644 DSI_REG(DSI0_PHY_AFEC1),
645 DSI_REG(DSI0_ID),
646 };
647
648 static const struct {
649 u32 reg;
650 const char *name;
651 } dsi1_regs[] = {
652 DSI_REG(DSI1_CTRL),
653 DSI_REG(DSI1_STAT),
654 DSI_REG(DSI1_HSTX_TO_CNT),
655 DSI_REG(DSI1_LPRX_TO_CNT),
656 DSI_REG(DSI1_TA_TO_CNT),
657 DSI_REG(DSI1_PR_TO_CNT),
658 DSI_REG(DSI1_DISP0_CTRL),
659 DSI_REG(DSI1_DISP1_CTRL),
660 DSI_REG(DSI1_INT_STAT),
661 DSI_REG(DSI1_INT_EN),
662 DSI_REG(DSI1_PHYC),
663 DSI_REG(DSI1_HS_CLT0),
664 DSI_REG(DSI1_HS_CLT1),
665 DSI_REG(DSI1_HS_CLT2),
666 DSI_REG(DSI1_HS_DLT3),
667 DSI_REG(DSI1_HS_DLT4),
668 DSI_REG(DSI1_HS_DLT5),
669 DSI_REG(DSI1_HS_DLT6),
670 DSI_REG(DSI1_HS_DLT7),
671 DSI_REG(DSI1_PHY_AFEC0),
672 DSI_REG(DSI1_PHY_AFEC1),
673 DSI_REG(DSI1_ID),
674 };
675
676 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
677 {
678 int i;
679
680 if (dsi->port == 0) {
681 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
682 DRM_INFO("0x%04x (%s): 0x%08x\n",
683 dsi0_regs[i].reg, dsi0_regs[i].name,
684 DSI_READ(dsi0_regs[i].reg));
685 }
686 } else {
687 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
688 DRM_INFO("0x%04x (%s): 0x%08x\n",
689 dsi1_regs[i].reg, dsi1_regs[i].name,
690 DSI_READ(dsi1_regs[i].reg));
691 }
692 }
693 }
694
695 #ifdef CONFIG_DEBUG_FS
696 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
697 {
698 struct drm_info_node *node = (struct drm_info_node *)m->private;
699 struct drm_device *drm = node->minor->dev;
700 struct vc4_dev *vc4 = to_vc4_dev(drm);
701 int dsi_index = (uintptr_t)node->info_ent->data;
702 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
703 int i;
704
705 if (!dsi)
706 return 0;
707
708 if (dsi->port == 0) {
709 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
710 seq_printf(m, "0x%04x (%s): 0x%08x\n",
711 dsi0_regs[i].reg, dsi0_regs[i].name,
712 DSI_READ(dsi0_regs[i].reg));
713 }
714 } else {
715 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
716 seq_printf(m, "0x%04x (%s): 0x%08x\n",
717 dsi1_regs[i].reg, dsi1_regs[i].name,
718 DSI_READ(dsi1_regs[i].reg));
719 }
720 }
721
722 return 0;
723 }
724 #endif
725
726 static enum drm_connector_status
727 vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
728 {
729 struct vc4_dsi_connector *vc4_connector =
730 to_vc4_dsi_connector(connector);
731 struct vc4_dsi *dsi = vc4_connector->dsi;
732
733 if (dsi->panel)
734 return connector_status_connected;
735 else
736 return connector_status_disconnected;
737 }
738
739 static void vc4_dsi_connector_destroy(struct drm_connector *connector)
740 {
741 drm_connector_unregister(connector);
742 drm_connector_cleanup(connector);
743 }
744
745 static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
746 {
747 struct vc4_dsi_connector *vc4_connector =
748 to_vc4_dsi_connector(connector);
749 struct vc4_dsi *dsi = vc4_connector->dsi;
750
751 if (dsi->panel)
752 return drm_panel_get_modes(dsi->panel);
753
754 return 0;
755 }
756
757 static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
758 .dpms = drm_atomic_helper_connector_dpms,
759 .detect = vc4_dsi_connector_detect,
760 .fill_modes = drm_helper_probe_single_connector_modes,
761 .destroy = vc4_dsi_connector_destroy,
762 .reset = drm_atomic_helper_connector_reset,
763 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
764 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
765 };
766
767 static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
768 .get_modes = vc4_dsi_connector_get_modes,
769 };
770
771 static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
772 struct vc4_dsi *dsi)
773 {
774 struct drm_connector *connector = NULL;
775 struct vc4_dsi_connector *dsi_connector;
776 int ret = 0;
777
778 dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
779 GFP_KERNEL);
780 if (!dsi_connector) {
781 ret = -ENOMEM;
782 goto fail;
783 }
784 connector = &dsi_connector->base;
785
786 dsi_connector->dsi = dsi;
787
788 drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
789 DRM_MODE_CONNECTOR_DSI);
790 drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
791
792 connector->polled = 0;
793 connector->interlace_allowed = 0;
794 connector->doublescan_allowed = 0;
795
796 drm_mode_connector_attach_encoder(connector, dsi->encoder);
797
798 return connector;
799
800 fail:
801 if (connector)
802 vc4_dsi_connector_destroy(connector);
803
804 return ERR_PTR(ret);
805 }
806
807 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
808 {
809 drm_encoder_cleanup(encoder);
810 }
811
812 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
813 .destroy = vc4_dsi_encoder_destroy,
814 };
815
816 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
817 {
818 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
819
820 if (latch)
821 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
822 else
823 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
824
825 DSI_PORT_WRITE(PHY_AFEC0, afec0);
826 }
827
828 /* Enters or exits Ultra Low Power State. */
829 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
830 {
831 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
832 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
833 DSI_PHYC_DLANE0_ULPS |
834 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
835 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
836 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
837 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
838 DSI1_STAT_PHY_D0_ULPS |
839 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
840 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
841 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
842 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
843 DSI1_STAT_PHY_D0_STOP |
844 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
845 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
846 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
847 int ret;
848
849 DSI_PORT_WRITE(STAT, stat_ulps);
850 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
851 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
852 if (ret) {
853 dev_warn(&dsi->pdev->dev,
854 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
855 DSI_PORT_READ(STAT));
856 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
857 vc4_dsi_latch_ulps(dsi, false);
858 return;
859 }
860
861 /* The DSI module can't be disabled while the module is
862 * generating ULPS state. So, to be able to disable the
863 * module, we have the AFE latch the ULPS state and continue
864 * on to having the module enter STOP.
865 */
866 vc4_dsi_latch_ulps(dsi, ulps);
867
868 DSI_PORT_WRITE(STAT, stat_stop);
869 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
870 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
871 if (ret) {
872 dev_warn(&dsi->pdev->dev,
873 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
874 DSI_PORT_READ(STAT));
875 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
876 return;
877 }
878 }
879
880 static u32
881 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
882 {
883 /* The HS timings have to be rounded up to a multiple of 8
884 * because we're using the byte clock.
885 */
886 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
887 }
888
889 /* ESC always runs at 100Mhz. */
890 #define ESC_TIME_NS 10
891
892 static u32
893 dsi_esc_timing(u32 ns)
894 {
895 return DIV_ROUND_UP(ns, ESC_TIME_NS);
896 }
897
898 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
899 {
900 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
901 struct vc4_dsi *dsi = vc4_encoder->dsi;
902 struct device *dev = &dsi->pdev->dev;
903
904 drm_panel_disable(dsi->panel);
905
906 vc4_dsi_ulps(dsi, true);
907
908 drm_panel_unprepare(dsi->panel);
909
910 clk_disable_unprepare(dsi->pll_phy_clock);
911 clk_disable_unprepare(dsi->escape_clock);
912 clk_disable_unprepare(dsi->pixel_clock);
913
914 pm_runtime_put(dev);
915 }
916
917 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
918 {
919 struct drm_display_mode *mode = &encoder->crtc->mode;
920 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
921 struct vc4_dsi *dsi = vc4_encoder->dsi;
922 struct device *dev = &dsi->pdev->dev;
923 u32 format = 0, divider = 0;
924 bool debug_dump_regs = false;
925 unsigned long hs_clock;
926 u32 ui_ns;
927 /* Minimum LP state duration in escape clock cycles. */
928 u32 lpx = dsi_esc_timing(60);
929 unsigned long pixel_clock_hz = mode->clock * 1000;
930 unsigned long dsip_clock;
931 unsigned long phy_clock;
932 int ret;
933
934 ret = pm_runtime_get_sync(dev);
935 if (ret) {
936 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
937 return;
938 }
939
940 ret = drm_panel_prepare(dsi->panel);
941 if (ret) {
942 DRM_ERROR("Panel failed to prepare\n");
943 return;
944 }
945
946 if (debug_dump_regs) {
947 DRM_INFO("DSI regs before:\n");
948 vc4_dsi_dump_regs(dsi);
949 }
950
951 switch (dsi->format) {
952 case MIPI_DSI_FMT_RGB888:
953 format = DSI_PFORMAT_RGB888;
954 divider = 24 / dsi->lanes;
955 break;
956 case MIPI_DSI_FMT_RGB666:
957 format = DSI_PFORMAT_RGB666;
958 divider = 24 / dsi->lanes;
959 break;
960 case MIPI_DSI_FMT_RGB666_PACKED:
961 format = DSI_PFORMAT_RGB666_PACKED;
962 divider = 18 / dsi->lanes;
963 break;
964 case MIPI_DSI_FMT_RGB565:
965 format = DSI_PFORMAT_RGB565;
966 divider = 16 / dsi->lanes;
967 break;
968 }
969
970 phy_clock = pixel_clock_hz * divider;
971 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
972 if (ret) {
973 dev_err(&dsi->pdev->dev,
974 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
975 }
976
977 /* Reset the DSI and all its fifos. */
978 DSI_PORT_WRITE(CTRL,
979 DSI_CTRL_SOFT_RESET_CFG |
980 DSI_PORT_BIT(CTRL_RESET_FIFOS));
981
982 DSI_PORT_WRITE(CTRL,
983 DSI_CTRL_HSDT_EOT_DISABLE |
984 DSI_CTRL_RX_LPDT_EOT_DISABLE);
985
986 /* Clear all stat bits so we see what has happened during enable. */
987 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
988
989 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
990 if (dsi->port == 0) {
991 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
992 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
993
994 if (dsi->lanes < 2)
995 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
996
997 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
998 afec0 |= DSI0_PHY_AFEC0_RESET;
999
1000 DSI_PORT_WRITE(PHY_AFEC0, afec0);
1001
1002 DSI_PORT_WRITE(PHY_AFEC1,
1003 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
1004 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
1005 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
1006 } else {
1007 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
1008 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
1009 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
1010 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
1011 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
1012 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
1013 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
1014
1015 if (dsi->lanes < 4)
1016 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
1017 if (dsi->lanes < 3)
1018 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
1019 if (dsi->lanes < 2)
1020 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
1021
1022 afec0 |= DSI1_PHY_AFEC0_RESET;
1023
1024 DSI_PORT_WRITE(PHY_AFEC0, afec0);
1025
1026 DSI_PORT_WRITE(PHY_AFEC1, 0);
1027
1028 /* AFEC reset hold time */
1029 mdelay(1);
1030 }
1031
1032 ret = clk_prepare_enable(dsi->escape_clock);
1033 if (ret) {
1034 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
1035 return;
1036 }
1037
1038 ret = clk_prepare_enable(dsi->pll_phy_clock);
1039 if (ret) {
1040 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
1041 return;
1042 }
1043
1044 hs_clock = clk_get_rate(dsi->pll_phy_clock);
1045
1046 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1047 * not the pixel clock rate. DSIxP take from the APHY's byte,
1048 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1049 * that rate. Separately, a value derived from PIX_CLK_DIV
1050 * and HS_CLKC is fed into the PV to divide down to the actual
1051 * pixel clock for pushing pixels into DSI.
1052 */
1053 dsip_clock = phy_clock / 8;
1054 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1055 if (ret) {
1056 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1057 dsip_clock, ret);
1058 }
1059
1060 ret = clk_prepare_enable(dsi->pixel_clock);
1061 if (ret) {
1062 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1063 return;
1064 }
1065
1066 /* How many ns one DSI unit interval is. Note that the clock
1067 * is DDR, so there's an extra divide by 2.
1068 */
1069 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1070
1071 DSI_PORT_WRITE(HS_CLT0,
1072 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1073 DSI_HS_CLT0_CZERO) |
1074 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1075 DSI_HS_CLT0_CPRE) |
1076 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1077 DSI_HS_CLT0_CPREP));
1078
1079 DSI_PORT_WRITE(HS_CLT1,
1080 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1081 DSI_HS_CLT1_CTRAIL) |
1082 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1083 DSI_HS_CLT1_CPOST));
1084
1085 DSI_PORT_WRITE(HS_CLT2,
1086 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1087 DSI_HS_CLT2_WUP));
1088
1089 DSI_PORT_WRITE(HS_DLT3,
1090 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1091 DSI_HS_DLT3_EXIT) |
1092 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1093 DSI_HS_DLT3_ZERO) |
1094 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1095 DSI_HS_DLT3_PRE));
1096
1097 DSI_PORT_WRITE(HS_DLT4,
1098 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1099 DSI_HS_DLT4_LPX) |
1100 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1101 dsi_hs_timing(ui_ns, 60, 4)),
1102 DSI_HS_DLT4_TRAIL) |
1103 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1104
1105 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1106 DSI_HS_DLT5_INIT));
1107
1108 DSI_PORT_WRITE(HS_DLT6,
1109 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1110 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1111 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1112 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1113
1114 DSI_PORT_WRITE(HS_DLT7,
1115 VC4_SET_FIELD(dsi_esc_timing(1000000),
1116 DSI_HS_DLT7_LP_WUP));
1117
1118 DSI_PORT_WRITE(PHYC,
1119 DSI_PHYC_DLANE0_ENABLE |
1120 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1121 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1122 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1123 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1124 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1125 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1126 (dsi->port == 0 ?
1127 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1128 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1129
1130 DSI_PORT_WRITE(CTRL,
1131 DSI_PORT_READ(CTRL) |
1132 DSI_CTRL_CAL_BYTE);
1133
1134 /* HS timeout in HS clock cycles: disabled. */
1135 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1136 /* LP receive timeout in HS clocks. */
1137 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1138 /* Bus turnaround timeout */
1139 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1140 /* Display reset sequence timeout */
1141 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1142
1143 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1144 DSI_PORT_WRITE(DISP0_CTRL,
1145 VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) |
1146 VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) |
1147 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1148 DSI_DISP0_LP_STOP_CTRL) |
1149 DSI_DISP0_ST_END |
1150 DSI_DISP0_ENABLE);
1151 } else {
1152 DSI_PORT_WRITE(DISP0_CTRL,
1153 DSI_DISP0_COMMAND_MODE |
1154 DSI_DISP0_ENABLE);
1155 }
1156
1157 /* Set up DISP1 for transferring long command payloads through
1158 * the pixfifo.
1159 */
1160 DSI_PORT_WRITE(DISP1_CTRL,
1161 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1162 DSI_DISP1_PFORMAT) |
1163 DSI_DISP1_ENABLE);
1164
1165 /* Ungate the block. */
1166 if (dsi->port == 0)
1167 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1168 else
1169 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1170
1171 /* Bring AFE out of reset. */
1172 if (dsi->port == 0) {
1173 } else {
1174 DSI_PORT_WRITE(PHY_AFEC0,
1175 DSI_PORT_READ(PHY_AFEC0) &
1176 ~DSI1_PHY_AFEC0_RESET);
1177 }
1178
1179 vc4_dsi_ulps(dsi, false);
1180
1181 if (debug_dump_regs) {
1182 DRM_INFO("DSI regs after:\n");
1183 vc4_dsi_dump_regs(dsi);
1184 }
1185
1186 ret = drm_panel_enable(dsi->panel);
1187 if (ret) {
1188 DRM_ERROR("Panel failed to enable\n");
1189 drm_panel_unprepare(dsi->panel);
1190 return;
1191 }
1192 }
1193
1194 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1195 const struct mipi_dsi_msg *msg)
1196 {
1197 struct vc4_dsi *dsi = host_to_dsi(host);
1198 struct mipi_dsi_packet packet;
1199 u32 pkth = 0, pktc = 0;
1200 int i, ret;
1201 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1202 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1203
1204 mipi_dsi_create_packet(&packet, msg);
1205
1206 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1207 pkth |= VC4_SET_FIELD(packet.header[1] |
1208 (packet.header[2] << 8),
1209 DSI_TXPKT1H_BC_PARAM);
1210 if (is_long) {
1211 /* Divide data across the various FIFOs we have available.
1212 * The command FIFO takes byte-oriented data, but is of
1213 * limited size. The pixel FIFO (never actually used for
1214 * pixel data in reality) is word oriented, and substantially
1215 * larger. So, we use the pixel FIFO for most of the data,
1216 * sending the residual bytes in the command FIFO at the start.
1217 *
1218 * With this arrangement, the command FIFO will never get full.
1219 */
1220 if (packet.payload_length <= 16) {
1221 cmd_fifo_len = packet.payload_length;
1222 pix_fifo_len = 0;
1223 } else {
1224 cmd_fifo_len = (packet.payload_length %
1225 DSI_PIX_FIFO_WIDTH);
1226 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1227 DSI_PIX_FIFO_WIDTH);
1228 }
1229
1230 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1231
1232 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1233 }
1234
1235 if (msg->rx_len) {
1236 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1237 DSI_TXPKT1C_CMD_CTRL);
1238 } else {
1239 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1240 DSI_TXPKT1C_CMD_CTRL);
1241 }
1242
1243 for (i = 0; i < cmd_fifo_len; i++)
1244 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1245 for (i = 0; i < pix_fifo_len; i++) {
1246 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1247
1248 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1249 pix[0] |
1250 pix[1] << 8 |
1251 pix[2] << 16 |
1252 pix[3] << 24);
1253 }
1254
1255 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1256 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1257 if (is_long)
1258 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1259
1260 /* Send one copy of the packet. Larger repeats are used for pixel
1261 * data in command mode.
1262 */
1263 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1264
1265 pktc |= DSI_TXPKT1C_CMD_EN;
1266 if (pix_fifo_len) {
1267 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1268 DSI_TXPKT1C_DISPLAY_NO);
1269 } else {
1270 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1271 DSI_TXPKT1C_DISPLAY_NO);
1272 }
1273
1274 /* Enable the appropriate interrupt for the transfer completion. */
1275 dsi->xfer_result = 0;
1276 reinit_completion(&dsi->xfer_completion);
1277 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1278 if (msg->rx_len) {
1279 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1280 DSI1_INT_PHY_DIR_RTF));
1281 } else {
1282 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1283 DSI1_INT_TXPKT1_DONE));
1284 }
1285
1286 /* Send the packet. */
1287 DSI_PORT_WRITE(TXPKT1H, pkth);
1288 DSI_PORT_WRITE(TXPKT1C, pktc);
1289
1290 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1291 msecs_to_jiffies(1000))) {
1292 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1293 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1294 DSI_PORT_READ(INT_STAT));
1295 ret = -ETIMEDOUT;
1296 } else {
1297 ret = dsi->xfer_result;
1298 }
1299
1300 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1301
1302 if (ret)
1303 goto reset_fifo_and_return;
1304
1305 if (ret == 0 && msg->rx_len) {
1306 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1307 u8 *msg_rx = msg->rx_buf;
1308
1309 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1310 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1311 DSI_RXPKT1H_BC_PARAM);
1312
1313 if (rxlen != msg->rx_len) {
1314 DRM_ERROR("DSI returned %db, expecting %db\n",
1315 rxlen, (int)msg->rx_len);
1316 ret = -ENXIO;
1317 goto reset_fifo_and_return;
1318 }
1319
1320 for (i = 0; i < msg->rx_len; i++)
1321 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1322 } else {
1323 /* FINISHME: Handle AWER */
1324
1325 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1326 DSI_RXPKT1H_SHORT_0);
1327 if (msg->rx_len > 1) {
1328 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1329 DSI_RXPKT1H_SHORT_1);
1330 }
1331 }
1332 }
1333
1334 return ret;
1335
1336 reset_fifo_and_return:
1337 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1338
1339 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1340 udelay(1);
1341 DSI_PORT_WRITE(CTRL,
1342 DSI_PORT_READ(CTRL) |
1343 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1344
1345 DSI_PORT_WRITE(TXPKT1C, 0);
1346 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1347 return ret;
1348 }
1349
1350 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1351 struct mipi_dsi_device *device)
1352 {
1353 struct vc4_dsi *dsi = host_to_dsi(host);
1354 int ret = 0;
1355
1356 dsi->lanes = device->lanes;
1357 dsi->channel = device->channel;
1358 dsi->format = device->format;
1359 dsi->mode_flags = device->mode_flags;
1360
1361 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1362 dev_err(&dsi->pdev->dev,
1363 "Only VIDEO mode panels supported currently.\n");
1364 return 0;
1365 }
1366
1367 dsi->panel = of_drm_find_panel(device->dev.of_node);
1368 if (!dsi->panel)
1369 return 0;
1370
1371 ret = drm_panel_attach(dsi->panel, dsi->connector);
1372 if (ret != 0)
1373 return ret;
1374
1375 drm_helper_hpd_irq_event(dsi->connector->dev);
1376
1377 return 0;
1378 }
1379
1380 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1381 struct mipi_dsi_device *device)
1382 {
1383 struct vc4_dsi *dsi = host_to_dsi(host);
1384
1385 if (dsi->panel) {
1386 int ret = drm_panel_detach(dsi->panel);
1387
1388 if (ret)
1389 return ret;
1390
1391 dsi->panel = NULL;
1392
1393 drm_helper_hpd_irq_event(dsi->connector->dev);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1400 .attach = vc4_dsi_host_attach,
1401 .detach = vc4_dsi_host_detach,
1402 .transfer = vc4_dsi_host_transfer,
1403 };
1404
1405 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1406 .disable = vc4_dsi_encoder_disable,
1407 .enable = vc4_dsi_encoder_enable,
1408 };
1409
1410 static const struct of_device_id vc4_dsi_dt_match[] = {
1411 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1412 {}
1413 };
1414
1415 static void dsi_handle_error(struct vc4_dsi *dsi,
1416 irqreturn_t *ret, u32 stat, u32 bit,
1417 const char *type)
1418 {
1419 if (!(stat & bit))
1420 return;
1421
1422 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1423 *ret = IRQ_HANDLED;
1424 }
1425
1426 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1427 {
1428 struct vc4_dsi *dsi = data;
1429 u32 stat = DSI_PORT_READ(INT_STAT);
1430 irqreturn_t ret = IRQ_NONE;
1431
1432 DSI_PORT_WRITE(INT_STAT, stat);
1433
1434 dsi_handle_error(dsi, &ret, stat,
1435 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1436 dsi_handle_error(dsi, &ret, stat,
1437 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1438 dsi_handle_error(dsi, &ret, stat,
1439 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1440 dsi_handle_error(dsi, &ret, stat,
1441 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1442 dsi_handle_error(dsi, &ret, stat,
1443 DSI1_INT_HSTX_TO, "HSTX timeout");
1444 dsi_handle_error(dsi, &ret, stat,
1445 DSI1_INT_LPRX_TO, "LPRX timeout");
1446 dsi_handle_error(dsi, &ret, stat,
1447 DSI1_INT_TA_TO, "turnaround timeout");
1448 dsi_handle_error(dsi, &ret, stat,
1449 DSI1_INT_PR_TO, "peripheral reset timeout");
1450
1451 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1452 complete(&dsi->xfer_completion);
1453 ret = IRQ_HANDLED;
1454 } else if (stat & DSI1_INT_HSTX_TO) {
1455 complete(&dsi->xfer_completion);
1456 dsi->xfer_result = -ETIMEDOUT;
1457 ret = IRQ_HANDLED;
1458 }
1459
1460 return ret;
1461 }
1462
1463 /**
1464 * Exposes clocks generated by the analog PHY that are consumed by
1465 * CPRMAN (clk-bcm2835.c).
1466 */
1467 static int
1468 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1469 {
1470 struct device *dev = &dsi->pdev->dev;
1471 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1472 static const struct {
1473 const char *dsi0_name, *dsi1_name;
1474 int div;
1475 } phy_clocks[] = {
1476 { "dsi0_byte", "dsi1_byte", 8 },
1477 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1478 { "dsi0_ddr", "dsi1_ddr", 2 },
1479 };
1480 int i;
1481
1482 dsi->clk_onecell.clk_num = ARRAY_SIZE(phy_clocks);
1483 dsi->clk_onecell.clks = devm_kcalloc(dev,
1484 dsi->clk_onecell.clk_num,
1485 sizeof(*dsi->clk_onecell.clks),
1486 GFP_KERNEL);
1487 if (!dsi->clk_onecell.clks)
1488 return -ENOMEM;
1489
1490 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1491 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1492 struct clk_init_data init;
1493 struct clk *clk;
1494
1495 /* We just use core fixed factor clock ops for the PHY
1496 * clocks. The clocks are actually gated by the
1497 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1498 * setting if we use the DDR/DDR2 clocks. However,
1499 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1500 * setting both our parent DSI PLL's rate and this
1501 * clock's rate, so it knows if DDR/DDR2 are going to
1502 * be used and could enable the gates itself.
1503 */
1504 fix->mult = 1;
1505 fix->div = phy_clocks[i].div;
1506 fix->hw.init = &init;
1507
1508 memset(&init, 0, sizeof(init));
1509 init.parent_names = &parent_name;
1510 init.num_parents = 1;
1511 if (dsi->port == 1)
1512 init.name = phy_clocks[i].dsi1_name;
1513 else
1514 init.name = phy_clocks[i].dsi0_name;
1515 init.ops = &clk_fixed_factor_ops;
1516 init.flags = CLK_IS_BASIC;
1517
1518 clk = devm_clk_register(dev, &fix->hw);
1519 if (IS_ERR(clk))
1520 return PTR_ERR(clk);
1521
1522 dsi->clk_onecell.clks[i] = clk;
1523 }
1524
1525 return of_clk_add_provider(dev->of_node,
1526 of_clk_src_onecell_get,
1527 &dsi->clk_onecell);
1528 }
1529
1530 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1531 {
1532 struct platform_device *pdev = to_platform_device(dev);
1533 struct drm_device *drm = dev_get_drvdata(master);
1534 struct vc4_dev *vc4 = to_vc4_dev(drm);
1535 struct vc4_dsi *dsi;
1536 struct vc4_dsi_encoder *vc4_dsi_encoder;
1537 const struct of_device_id *match;
1538 dma_cap_mask_t dma_mask;
1539 int ret;
1540
1541 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1542 if (!dsi)
1543 return -ENOMEM;
1544
1545 match = of_match_device(vc4_dsi_dt_match, dev);
1546 if (!match)
1547 return -ENODEV;
1548
1549 dsi->port = (uintptr_t)match->data;
1550
1551 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1552 GFP_KERNEL);
1553 if (!vc4_dsi_encoder)
1554 return -ENOMEM;
1555 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1556 vc4_dsi_encoder->dsi = dsi;
1557 dsi->encoder = &vc4_dsi_encoder->base.base;
1558
1559 dsi->pdev = pdev;
1560 dsi->regs = vc4_ioremap_regs(pdev, 0);
1561 if (IS_ERR(dsi->regs))
1562 return PTR_ERR(dsi->regs);
1563
1564 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1565 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1566 DSI_PORT_READ(ID), DSI_ID_VALUE);
1567 return -ENODEV;
1568 }
1569
1570 /* DSI1 has a broken AXI slave that doesn't respond to writes
1571 * from the ARM. It does handle writes from the DMA engine,
1572 * so set up a channel for talking to it.
1573 */
1574 if (dsi->port == 1) {
1575 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1576 &dsi->reg_dma_paddr,
1577 GFP_KERNEL);
1578 if (!dsi->reg_dma_mem) {
1579 DRM_ERROR("Failed to get DMA memory\n");
1580 return -ENOMEM;
1581 }
1582
1583 dma_cap_zero(dma_mask);
1584 dma_cap_set(DMA_MEMCPY, dma_mask);
1585 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1586 if (IS_ERR(dsi->reg_dma_chan)) {
1587 ret = PTR_ERR(dsi->reg_dma_chan);
1588 if (ret != -EPROBE_DEFER)
1589 DRM_ERROR("Failed to get DMA channel: %d\n",
1590 ret);
1591 return ret;
1592 }
1593
1594 /* Get the physical address of the device's registers. The
1595 * struct resource for the regs gives us the bus address
1596 * instead.
1597 */
1598 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1599 0, NULL, NULL));
1600 }
1601
1602 init_completion(&dsi->xfer_completion);
1603 /* At startup enable error-reporting interrupts and nothing else. */
1604 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1605 /* Clear any existing interrupt state. */
1606 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1607
1608 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1609 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1610 if (ret) {
1611 if (ret != -EPROBE_DEFER)
1612 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1613 return ret;
1614 }
1615
1616 dsi->escape_clock = devm_clk_get(dev, "escape");
1617 if (IS_ERR(dsi->escape_clock)) {
1618 ret = PTR_ERR(dsi->escape_clock);
1619 if (ret != -EPROBE_DEFER)
1620 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1621 return ret;
1622 }
1623
1624 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1625 if (IS_ERR(dsi->pll_phy_clock)) {
1626 ret = PTR_ERR(dsi->pll_phy_clock);
1627 if (ret != -EPROBE_DEFER)
1628 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1629 return ret;
1630 }
1631
1632 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1633 if (IS_ERR(dsi->pixel_clock)) {
1634 ret = PTR_ERR(dsi->pixel_clock);
1635 if (ret != -EPROBE_DEFER)
1636 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1637 return ret;
1638 }
1639
1640 /* The esc clock rate is supposed to always be 100Mhz. */
1641 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1642 if (ret) {
1643 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1644 return ret;
1645 }
1646
1647 ret = vc4_dsi_init_phy_clocks(dsi);
1648 if (ret)
1649 return ret;
1650
1651 if (dsi->port == 1)
1652 vc4->dsi1 = dsi;
1653
1654 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1655 DRM_MODE_ENCODER_DSI, NULL);
1656 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1657
1658 dsi->connector = vc4_dsi_connector_init(drm, dsi);
1659 if (IS_ERR(dsi->connector)) {
1660 ret = PTR_ERR(dsi->connector);
1661 goto err_destroy_encoder;
1662 }
1663
1664 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1665 dsi->dsi_host.dev = dev;
1666
1667 mipi_dsi_host_register(&dsi->dsi_host);
1668
1669 dev_set_drvdata(dev, dsi);
1670
1671 pm_runtime_enable(dev);
1672
1673 return 0;
1674
1675 err_destroy_encoder:
1676 vc4_dsi_encoder_destroy(dsi->encoder);
1677
1678 return ret;
1679 }
1680
1681 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1682 void *data)
1683 {
1684 struct drm_device *drm = dev_get_drvdata(master);
1685 struct vc4_dev *vc4 = to_vc4_dev(drm);
1686 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1687
1688 pm_runtime_disable(dev);
1689
1690 vc4_dsi_connector_destroy(dsi->connector);
1691 vc4_dsi_encoder_destroy(dsi->encoder);
1692
1693 mipi_dsi_host_unregister(&dsi->dsi_host);
1694
1695 clk_disable_unprepare(dsi->pll_phy_clock);
1696 clk_disable_unprepare(dsi->escape_clock);
1697
1698 if (dsi->port == 1)
1699 vc4->dsi1 = NULL;
1700 }
1701
1702 static const struct component_ops vc4_dsi_ops = {
1703 .bind = vc4_dsi_bind,
1704 .unbind = vc4_dsi_unbind,
1705 };
1706
1707 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1708 {
1709 return component_add(&pdev->dev, &vc4_dsi_ops);
1710 }
1711
1712 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1713 {
1714 component_del(&pdev->dev, &vc4_dsi_ops);
1715 return 0;
1716 }
1717
1718 struct platform_driver vc4_dsi_driver = {
1719 .probe = vc4_dsi_dev_probe,
1720 .remove = vc4_dsi_dev_remove,
1721 .driver = {
1722 .name = "vc4_dsi",
1723 .of_match_table = vc4_dsi_dt_match,
1724 },
1725 };