]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/vc4/vc4_gem.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30
31 #include "uapi/drm/vc4_drm.h"
32 #include "vc4_drv.h"
33 #include "vc4_regs.h"
34 #include "vc4_trace.h"
35
36 static void
37 vc4_queue_hangcheck(struct drm_device *dev)
38 {
39 struct vc4_dev *vc4 = to_vc4_dev(dev);
40
41 mod_timer(&vc4->hangcheck.timer,
42 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43 }
44
45 struct vc4_hang_state {
46 struct drm_vc4_get_hang_state user_state;
47
48 u32 bo_count;
49 struct drm_gem_object **bo;
50 };
51
52 static void
53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54 {
55 unsigned int i;
56
57 for (i = 0; i < state->user_state.bo_count; i++)
58 drm_gem_object_put_unlocked(state->bo[i]);
59
60 kfree(state);
61 }
62
63 int
64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65 struct drm_file *file_priv)
66 {
67 struct drm_vc4_get_hang_state *get_state = data;
68 struct drm_vc4_get_hang_state_bo *bo_state;
69 struct vc4_hang_state *kernel_state;
70 struct drm_vc4_get_hang_state *state;
71 struct vc4_dev *vc4 = to_vc4_dev(dev);
72 unsigned long irqflags;
73 u32 i;
74 int ret = 0;
75
76 spin_lock_irqsave(&vc4->job_lock, irqflags);
77 kernel_state = vc4->hang_state;
78 if (!kernel_state) {
79 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80 return -ENOENT;
81 }
82 state = &kernel_state->user_state;
83
84 /* If the user's array isn't big enough, just return the
85 * required array size.
86 */
87 if (get_state->bo_count < state->bo_count) {
88 get_state->bo_count = state->bo_count;
89 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90 return 0;
91 }
92
93 vc4->hang_state = NULL;
94 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95
96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97 state->bo = get_state->bo;
98 memcpy(get_state, state, sizeof(*state));
99
100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101 if (!bo_state) {
102 ret = -ENOMEM;
103 goto err_free;
104 }
105
106 for (i = 0; i < state->bo_count; i++) {
107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108 u32 handle;
109
110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111 &handle);
112
113 if (ret) {
114 state->bo_count = i;
115 goto err_delete_handle;
116 }
117 bo_state[i].handle = handle;
118 bo_state[i].paddr = vc4_bo->base.paddr;
119 bo_state[i].size = vc4_bo->base.base.size;
120 }
121
122 if (copy_to_user(u64_to_user_ptr(get_state->bo),
123 bo_state,
124 state->bo_count * sizeof(*bo_state)))
125 ret = -EFAULT;
126
127 err_delete_handle:
128 if (ret) {
129 for (i = 0; i < state->bo_count; i++)
130 drm_gem_handle_delete(file_priv, bo_state[i].handle);
131 }
132
133 err_free:
134 vc4_free_hang_state(dev, kernel_state);
135 kfree(bo_state);
136
137 return ret;
138 }
139
140 static void
141 vc4_save_hang_state(struct drm_device *dev)
142 {
143 struct vc4_dev *vc4 = to_vc4_dev(dev);
144 struct drm_vc4_get_hang_state *state;
145 struct vc4_hang_state *kernel_state;
146 struct vc4_exec_info *exec[2];
147 struct vc4_bo *bo;
148 unsigned long irqflags;
149 unsigned int i, j, unref_list_count, prev_idx;
150
151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
152 if (!kernel_state)
153 return;
154
155 state = &kernel_state->user_state;
156
157 spin_lock_irqsave(&vc4->job_lock, irqflags);
158 exec[0] = vc4_first_bin_job(vc4);
159 exec[1] = vc4_first_render_job(vc4);
160 if (!exec[0] && !exec[1]) {
161 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
162 return;
163 }
164
165 /* Get the bos from both binner and renderer into hang state. */
166 state->bo_count = 0;
167 for (i = 0; i < 2; i++) {
168 if (!exec[i])
169 continue;
170
171 unref_list_count = 0;
172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
173 unref_list_count++;
174 state->bo_count += exec[i]->bo_count + unref_list_count;
175 }
176
177 kernel_state->bo = kcalloc(state->bo_count,
178 sizeof(*kernel_state->bo), GFP_ATOMIC);
179
180 if (!kernel_state->bo) {
181 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
182 return;
183 }
184
185 prev_idx = 0;
186 for (i = 0; i < 2; i++) {
187 if (!exec[i])
188 continue;
189
190 for (j = 0; j < exec[i]->bo_count; j++) {
191 bo = to_vc4_bo(&exec[i]->bo[j]->base);
192
193 /* Retain BOs just in case they were marked purgeable.
194 * This prevents the BO from being purged before
195 * someone had a chance to dump the hang state.
196 */
197 WARN_ON(!refcount_read(&bo->usecnt));
198 refcount_inc(&bo->usecnt);
199 drm_gem_object_get(&exec[i]->bo[j]->base);
200 kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base;
201 }
202
203 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
204 /* No need to retain BOs coming from the ->unref_list
205 * because they are naturally unpurgeable.
206 */
207 drm_gem_object_get(&bo->base.base);
208 kernel_state->bo[j + prev_idx] = &bo->base.base;
209 j++;
210 }
211 prev_idx = j + 1;
212 }
213
214 if (exec[0])
215 state->start_bin = exec[0]->ct0ca;
216 if (exec[1])
217 state->start_render = exec[1]->ct1ca;
218
219 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
220
221 state->ct0ca = V3D_READ(V3D_CTNCA(0));
222 state->ct0ea = V3D_READ(V3D_CTNEA(0));
223
224 state->ct1ca = V3D_READ(V3D_CTNCA(1));
225 state->ct1ea = V3D_READ(V3D_CTNEA(1));
226
227 state->ct0cs = V3D_READ(V3D_CTNCS(0));
228 state->ct1cs = V3D_READ(V3D_CTNCS(1));
229
230 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
231 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
232
233 state->bpca = V3D_READ(V3D_BPCA);
234 state->bpcs = V3D_READ(V3D_BPCS);
235 state->bpoa = V3D_READ(V3D_BPOA);
236 state->bpos = V3D_READ(V3D_BPOS);
237
238 state->vpmbase = V3D_READ(V3D_VPMBASE);
239
240 state->dbge = V3D_READ(V3D_DBGE);
241 state->fdbgo = V3D_READ(V3D_FDBGO);
242 state->fdbgb = V3D_READ(V3D_FDBGB);
243 state->fdbgr = V3D_READ(V3D_FDBGR);
244 state->fdbgs = V3D_READ(V3D_FDBGS);
245 state->errstat = V3D_READ(V3D_ERRSTAT);
246
247 /* We need to turn purgeable BOs into unpurgeable ones so that
248 * userspace has a chance to dump the hang state before the kernel
249 * decides to purge those BOs.
250 * Note that BO consistency at dump time cannot be guaranteed. For
251 * example, if the owner of these BOs decides to re-use them or mark
252 * them purgeable again there's nothing we can do to prevent it.
253 */
254 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
255 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
256
257 if (bo->madv == __VC4_MADV_NOTSUPP)
258 continue;
259
260 mutex_lock(&bo->madv_lock);
261 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
262 bo->madv = VC4_MADV_WILLNEED;
263 refcount_dec(&bo->usecnt);
264 mutex_unlock(&bo->madv_lock);
265 }
266
267 spin_lock_irqsave(&vc4->job_lock, irqflags);
268 if (vc4->hang_state) {
269 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
270 vc4_free_hang_state(dev, kernel_state);
271 } else {
272 vc4->hang_state = kernel_state;
273 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
274 }
275 }
276
277 static void
278 vc4_reset(struct drm_device *dev)
279 {
280 struct vc4_dev *vc4 = to_vc4_dev(dev);
281
282 DRM_INFO("Resetting GPU.\n");
283
284 mutex_lock(&vc4->power_lock);
285 if (vc4->power_refcount) {
286 /* Power the device off and back on the by dropping the
287 * reference on runtime PM.
288 */
289 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
290 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
291 }
292 mutex_unlock(&vc4->power_lock);
293
294 vc4_irq_reset(dev);
295
296 /* Rearm the hangcheck -- another job might have been waiting
297 * for our hung one to get kicked off, and vc4_irq_reset()
298 * would have started it.
299 */
300 vc4_queue_hangcheck(dev);
301 }
302
303 static void
304 vc4_reset_work(struct work_struct *work)
305 {
306 struct vc4_dev *vc4 =
307 container_of(work, struct vc4_dev, hangcheck.reset_work);
308
309 vc4_save_hang_state(vc4->dev);
310
311 vc4_reset(vc4->dev);
312 }
313
314 static void
315 vc4_hangcheck_elapsed(struct timer_list *t)
316 {
317 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
318 struct drm_device *dev = vc4->dev;
319 uint32_t ct0ca, ct1ca;
320 unsigned long irqflags;
321 struct vc4_exec_info *bin_exec, *render_exec;
322
323 spin_lock_irqsave(&vc4->job_lock, irqflags);
324
325 bin_exec = vc4_first_bin_job(vc4);
326 render_exec = vc4_first_render_job(vc4);
327
328 /* If idle, we can stop watching for hangs. */
329 if (!bin_exec && !render_exec) {
330 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
331 return;
332 }
333
334 ct0ca = V3D_READ(V3D_CTNCA(0));
335 ct1ca = V3D_READ(V3D_CTNCA(1));
336
337 /* If we've made any progress in execution, rearm the timer
338 * and wait.
339 */
340 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
341 (render_exec && ct1ca != render_exec->last_ct1ca)) {
342 if (bin_exec)
343 bin_exec->last_ct0ca = ct0ca;
344 if (render_exec)
345 render_exec->last_ct1ca = ct1ca;
346 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
347 vc4_queue_hangcheck(dev);
348 return;
349 }
350
351 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
352
353 /* We've gone too long with no progress, reset. This has to
354 * be done from a work struct, since resetting can sleep and
355 * this timer hook isn't allowed to.
356 */
357 schedule_work(&vc4->hangcheck.reset_work);
358 }
359
360 static void
361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
362 {
363 struct vc4_dev *vc4 = to_vc4_dev(dev);
364
365 /* Set the current and end address of the control list.
366 * Writing the end register is what starts the job.
367 */
368 V3D_WRITE(V3D_CTNCA(thread), start);
369 V3D_WRITE(V3D_CTNEA(thread), end);
370 }
371
372 int
373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
374 bool interruptible)
375 {
376 struct vc4_dev *vc4 = to_vc4_dev(dev);
377 int ret = 0;
378 unsigned long timeout_expire;
379 DEFINE_WAIT(wait);
380
381 if (vc4->finished_seqno >= seqno)
382 return 0;
383
384 if (timeout_ns == 0)
385 return -ETIME;
386
387 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
388
389 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
390 for (;;) {
391 prepare_to_wait(&vc4->job_wait_queue, &wait,
392 interruptible ? TASK_INTERRUPTIBLE :
393 TASK_UNINTERRUPTIBLE);
394
395 if (interruptible && signal_pending(current)) {
396 ret = -ERESTARTSYS;
397 break;
398 }
399
400 if (vc4->finished_seqno >= seqno)
401 break;
402
403 if (timeout_ns != ~0ull) {
404 if (time_after_eq(jiffies, timeout_expire)) {
405 ret = -ETIME;
406 break;
407 }
408 schedule_timeout(timeout_expire - jiffies);
409 } else {
410 schedule();
411 }
412 }
413
414 finish_wait(&vc4->job_wait_queue, &wait);
415 trace_vc4_wait_for_seqno_end(dev, seqno);
416
417 return ret;
418 }
419
420 static void
421 vc4_flush_caches(struct drm_device *dev)
422 {
423 struct vc4_dev *vc4 = to_vc4_dev(dev);
424
425 /* Flush the GPU L2 caches. These caches sit on top of system
426 * L3 (the 128kb or so shared with the CPU), and are
427 * non-allocating in the L3.
428 */
429 V3D_WRITE(V3D_L2CACTL,
430 V3D_L2CACTL_L2CCLR);
431
432 V3D_WRITE(V3D_SLCACTL,
433 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
435 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
436 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
437 }
438
439 /* Sets the registers for the next job to be actually be executed in
440 * the hardware.
441 *
442 * The job_lock should be held during this.
443 */
444 void
445 vc4_submit_next_bin_job(struct drm_device *dev)
446 {
447 struct vc4_dev *vc4 = to_vc4_dev(dev);
448 struct vc4_exec_info *exec;
449
450 again:
451 exec = vc4_first_bin_job(vc4);
452 if (!exec)
453 return;
454
455 vc4_flush_caches(dev);
456
457 /* Either put the job in the binner if it uses the binner, or
458 * immediately move it to the to-be-rendered queue.
459 */
460 if (exec->ct0ca != exec->ct0ea) {
461 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
462 } else {
463 vc4_move_job_to_render(dev, exec);
464 goto again;
465 }
466 }
467
468 void
469 vc4_submit_next_render_job(struct drm_device *dev)
470 {
471 struct vc4_dev *vc4 = to_vc4_dev(dev);
472 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
473
474 if (!exec)
475 return;
476
477 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
478 }
479
480 void
481 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
482 {
483 struct vc4_dev *vc4 = to_vc4_dev(dev);
484 bool was_empty = list_empty(&vc4->render_job_list);
485
486 list_move_tail(&exec->head, &vc4->render_job_list);
487 if (was_empty)
488 vc4_submit_next_render_job(dev);
489 }
490
491 static void
492 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
493 {
494 struct vc4_bo *bo;
495 unsigned i;
496
497 for (i = 0; i < exec->bo_count; i++) {
498 bo = to_vc4_bo(&exec->bo[i]->base);
499 bo->seqno = seqno;
500
501 reservation_object_add_shared_fence(bo->resv, exec->fence);
502 }
503
504 list_for_each_entry(bo, &exec->unref_list, unref_head) {
505 bo->seqno = seqno;
506 }
507
508 for (i = 0; i < exec->rcl_write_bo_count; i++) {
509 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
510 bo->write_seqno = seqno;
511
512 reservation_object_add_excl_fence(bo->resv, exec->fence);
513 }
514 }
515
516 static void
517 vc4_unlock_bo_reservations(struct drm_device *dev,
518 struct vc4_exec_info *exec,
519 struct ww_acquire_ctx *acquire_ctx)
520 {
521 int i;
522
523 for (i = 0; i < exec->bo_count; i++) {
524 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
525
526 ww_mutex_unlock(&bo->resv->lock);
527 }
528
529 ww_acquire_fini(acquire_ctx);
530 }
531
532 /* Takes the reservation lock on all the BOs being referenced, so that
533 * at queue submit time we can update the reservations.
534 *
535 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
536 * (all of which are on exec->unref_list). They're entirely private
537 * to vc4, so we don't attach dma-buf fences to them.
538 */
539 static int
540 vc4_lock_bo_reservations(struct drm_device *dev,
541 struct vc4_exec_info *exec,
542 struct ww_acquire_ctx *acquire_ctx)
543 {
544 int contended_lock = -1;
545 int i, ret;
546 struct vc4_bo *bo;
547
548 ww_acquire_init(acquire_ctx, &reservation_ww_class);
549
550 retry:
551 if (contended_lock != -1) {
552 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
553 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
554 acquire_ctx);
555 if (ret) {
556 ww_acquire_done(acquire_ctx);
557 return ret;
558 }
559 }
560
561 for (i = 0; i < exec->bo_count; i++) {
562 if (i == contended_lock)
563 continue;
564
565 bo = to_vc4_bo(&exec->bo[i]->base);
566
567 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
568 if (ret) {
569 int j;
570
571 for (j = 0; j < i; j++) {
572 bo = to_vc4_bo(&exec->bo[j]->base);
573 ww_mutex_unlock(&bo->resv->lock);
574 }
575
576 if (contended_lock != -1 && contended_lock >= i) {
577 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
578
579 ww_mutex_unlock(&bo->resv->lock);
580 }
581
582 if (ret == -EDEADLK) {
583 contended_lock = i;
584 goto retry;
585 }
586
587 ww_acquire_done(acquire_ctx);
588 return ret;
589 }
590 }
591
592 ww_acquire_done(acquire_ctx);
593
594 /* Reserve space for our shared (read-only) fence references,
595 * before we commit the CL to the hardware.
596 */
597 for (i = 0; i < exec->bo_count; i++) {
598 bo = to_vc4_bo(&exec->bo[i]->base);
599
600 ret = reservation_object_reserve_shared(bo->resv);
601 if (ret) {
602 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
603 return ret;
604 }
605 }
606
607 return 0;
608 }
609
610 /* Queues a struct vc4_exec_info for execution. If no job is
611 * currently executing, then submits it.
612 *
613 * Unlike most GPUs, our hardware only handles one command list at a
614 * time. To queue multiple jobs at once, we'd need to edit the
615 * previous command list to have a jump to the new one at the end, and
616 * then bump the end address. That's a change for a later date,
617 * though.
618 */
619 static int
620 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
621 struct ww_acquire_ctx *acquire_ctx)
622 {
623 struct vc4_dev *vc4 = to_vc4_dev(dev);
624 uint64_t seqno;
625 unsigned long irqflags;
626 struct vc4_fence *fence;
627
628 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
629 if (!fence)
630 return -ENOMEM;
631 fence->dev = dev;
632
633 spin_lock_irqsave(&vc4->job_lock, irqflags);
634
635 seqno = ++vc4->emit_seqno;
636 exec->seqno = seqno;
637
638 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
639 vc4->dma_fence_context, exec->seqno);
640 fence->seqno = exec->seqno;
641 exec->fence = &fence->base;
642
643 vc4_update_bo_seqnos(exec, seqno);
644
645 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
646
647 list_add_tail(&exec->head, &vc4->bin_job_list);
648
649 /* If no job was executing, kick ours off. Otherwise, it'll
650 * get started when the previous job's flush done interrupt
651 * occurs.
652 */
653 if (vc4_first_bin_job(vc4) == exec) {
654 vc4_submit_next_bin_job(dev);
655 vc4_queue_hangcheck(dev);
656 }
657
658 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
659
660 return 0;
661 }
662
663 /**
664 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
665 * referenced by the job.
666 * @dev: DRM device
667 * @file_priv: DRM file for this fd
668 * @exec: V3D job being set up
669 *
670 * The command validator needs to reference BOs by their index within
671 * the submitted job's BO list. This does the validation of the job's
672 * BO list and reference counting for the lifetime of the job.
673 */
674 static int
675 vc4_cl_lookup_bos(struct drm_device *dev,
676 struct drm_file *file_priv,
677 struct vc4_exec_info *exec)
678 {
679 struct drm_vc4_submit_cl *args = exec->args;
680 uint32_t *handles;
681 int ret = 0;
682 int i;
683
684 exec->bo_count = args->bo_handle_count;
685
686 if (!exec->bo_count) {
687 /* See comment on bo_index for why we have to check
688 * this.
689 */
690 DRM_DEBUG("Rendering requires BOs to validate\n");
691 return -EINVAL;
692 }
693
694 exec->bo = kvmalloc_array(exec->bo_count,
695 sizeof(struct drm_gem_cma_object *),
696 GFP_KERNEL | __GFP_ZERO);
697 if (!exec->bo) {
698 DRM_ERROR("Failed to allocate validated BO pointers\n");
699 return -ENOMEM;
700 }
701
702 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
703 if (!handles) {
704 ret = -ENOMEM;
705 DRM_ERROR("Failed to allocate incoming GEM handles\n");
706 goto fail;
707 }
708
709 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
710 exec->bo_count * sizeof(uint32_t))) {
711 ret = -EFAULT;
712 DRM_ERROR("Failed to copy in GEM handles\n");
713 goto fail;
714 }
715
716 spin_lock(&file_priv->table_lock);
717 for (i = 0; i < exec->bo_count; i++) {
718 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
719 handles[i]);
720 if (!bo) {
721 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
722 i, handles[i]);
723 ret = -EINVAL;
724 break;
725 }
726
727 drm_gem_object_get(bo);
728 exec->bo[i] = (struct drm_gem_cma_object *)bo;
729 }
730 spin_unlock(&file_priv->table_lock);
731
732 if (ret)
733 goto fail_put_bo;
734
735 for (i = 0; i < exec->bo_count; i++) {
736 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
737 if (ret)
738 goto fail_dec_usecnt;
739 }
740
741 kvfree(handles);
742 return 0;
743
744 fail_dec_usecnt:
745 /* Decrease usecnt on acquired objects.
746 * We cannot rely on vc4_complete_exec() to release resources here,
747 * because vc4_complete_exec() has no information about which BO has
748 * had its ->usecnt incremented.
749 * To make things easier we just free everything explicitly and set
750 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
751 * step.
752 */
753 for (i-- ; i >= 0; i--)
754 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
755
756 fail_put_bo:
757 /* Release any reference to acquired objects. */
758 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
759 drm_gem_object_put_unlocked(&exec->bo[i]->base);
760
761 fail:
762 kvfree(handles);
763 kvfree(exec->bo);
764 exec->bo = NULL;
765 return ret;
766 }
767
768 static int
769 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
770 {
771 struct drm_vc4_submit_cl *args = exec->args;
772 void *temp = NULL;
773 void *bin;
774 int ret = 0;
775 uint32_t bin_offset = 0;
776 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
777 16);
778 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
779 uint32_t exec_size = uniforms_offset + args->uniforms_size;
780 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
781 args->shader_rec_count);
782 struct vc4_bo *bo;
783
784 if (shader_rec_offset < args->bin_cl_size ||
785 uniforms_offset < shader_rec_offset ||
786 exec_size < uniforms_offset ||
787 args->shader_rec_count >= (UINT_MAX /
788 sizeof(struct vc4_shader_state)) ||
789 temp_size < exec_size) {
790 DRM_DEBUG("overflow in exec arguments\n");
791 ret = -EINVAL;
792 goto fail;
793 }
794
795 /* Allocate space where we'll store the copied in user command lists
796 * and shader records.
797 *
798 * We don't just copy directly into the BOs because we need to
799 * read the contents back for validation, and I think the
800 * bo->vaddr is uncached access.
801 */
802 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
803 if (!temp) {
804 DRM_ERROR("Failed to allocate storage for copying "
805 "in bin/render CLs.\n");
806 ret = -ENOMEM;
807 goto fail;
808 }
809 bin = temp + bin_offset;
810 exec->shader_rec_u = temp + shader_rec_offset;
811 exec->uniforms_u = temp + uniforms_offset;
812 exec->shader_state = temp + exec_size;
813 exec->shader_state_size = args->shader_rec_count;
814
815 if (copy_from_user(bin,
816 u64_to_user_ptr(args->bin_cl),
817 args->bin_cl_size)) {
818 ret = -EFAULT;
819 goto fail;
820 }
821
822 if (copy_from_user(exec->shader_rec_u,
823 u64_to_user_ptr(args->shader_rec),
824 args->shader_rec_size)) {
825 ret = -EFAULT;
826 goto fail;
827 }
828
829 if (copy_from_user(exec->uniforms_u,
830 u64_to_user_ptr(args->uniforms),
831 args->uniforms_size)) {
832 ret = -EFAULT;
833 goto fail;
834 }
835
836 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
837 if (IS_ERR(bo)) {
838 DRM_ERROR("Couldn't allocate BO for binning\n");
839 ret = PTR_ERR(bo);
840 goto fail;
841 }
842 exec->exec_bo = &bo->base;
843
844 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
845 &exec->unref_list);
846
847 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
848
849 exec->bin_u = bin;
850
851 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
852 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
853 exec->shader_rec_size = args->shader_rec_size;
854
855 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
856 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
857 exec->uniforms_size = args->uniforms_size;
858
859 ret = vc4_validate_bin_cl(dev,
860 exec->exec_bo->vaddr + bin_offset,
861 bin,
862 exec);
863 if (ret)
864 goto fail;
865
866 ret = vc4_validate_shader_recs(dev, exec);
867 if (ret)
868 goto fail;
869
870 /* Block waiting on any previous rendering into the CS's VBO,
871 * IB, or textures, so that pixels are actually written by the
872 * time we try to read them.
873 */
874 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
875
876 fail:
877 kvfree(temp);
878 return ret;
879 }
880
881 static void
882 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
883 {
884 struct vc4_dev *vc4 = to_vc4_dev(dev);
885 unsigned long irqflags;
886 unsigned i;
887
888 /* If we got force-completed because of GPU reset rather than
889 * through our IRQ handler, signal the fence now.
890 */
891 if (exec->fence)
892 dma_fence_signal(exec->fence);
893
894 if (exec->bo) {
895 for (i = 0; i < exec->bo_count; i++) {
896 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
897
898 vc4_bo_dec_usecnt(bo);
899 drm_gem_object_put_unlocked(&exec->bo[i]->base);
900 }
901 kvfree(exec->bo);
902 }
903
904 while (!list_empty(&exec->unref_list)) {
905 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
906 struct vc4_bo, unref_head);
907 list_del(&bo->unref_head);
908 drm_gem_object_put_unlocked(&bo->base.base);
909 }
910
911 /* Free up the allocation of any bin slots we used. */
912 spin_lock_irqsave(&vc4->job_lock, irqflags);
913 vc4->bin_alloc_used &= ~exec->bin_slots;
914 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
915
916 mutex_lock(&vc4->power_lock);
917 if (--vc4->power_refcount == 0) {
918 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
919 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
920 }
921 mutex_unlock(&vc4->power_lock);
922
923 kfree(exec);
924 }
925
926 void
927 vc4_job_handle_completed(struct vc4_dev *vc4)
928 {
929 unsigned long irqflags;
930 struct vc4_seqno_cb *cb, *cb_temp;
931
932 spin_lock_irqsave(&vc4->job_lock, irqflags);
933 while (!list_empty(&vc4->job_done_list)) {
934 struct vc4_exec_info *exec =
935 list_first_entry(&vc4->job_done_list,
936 struct vc4_exec_info, head);
937 list_del(&exec->head);
938
939 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
940 vc4_complete_exec(vc4->dev, exec);
941 spin_lock_irqsave(&vc4->job_lock, irqflags);
942 }
943
944 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
945 if (cb->seqno <= vc4->finished_seqno) {
946 list_del_init(&cb->work.entry);
947 schedule_work(&cb->work);
948 }
949 }
950
951 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
952 }
953
954 static void vc4_seqno_cb_work(struct work_struct *work)
955 {
956 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
957
958 cb->func(cb);
959 }
960
961 int vc4_queue_seqno_cb(struct drm_device *dev,
962 struct vc4_seqno_cb *cb, uint64_t seqno,
963 void (*func)(struct vc4_seqno_cb *cb))
964 {
965 struct vc4_dev *vc4 = to_vc4_dev(dev);
966 int ret = 0;
967 unsigned long irqflags;
968
969 cb->func = func;
970 INIT_WORK(&cb->work, vc4_seqno_cb_work);
971
972 spin_lock_irqsave(&vc4->job_lock, irqflags);
973 if (seqno > vc4->finished_seqno) {
974 cb->seqno = seqno;
975 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
976 } else {
977 schedule_work(&cb->work);
978 }
979 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
980
981 return ret;
982 }
983
984 /* Scheduled when any job has been completed, this walks the list of
985 * jobs that had completed and unrefs their BOs and frees their exec
986 * structs.
987 */
988 static void
989 vc4_job_done_work(struct work_struct *work)
990 {
991 struct vc4_dev *vc4 =
992 container_of(work, struct vc4_dev, job_done_work);
993
994 vc4_job_handle_completed(vc4);
995 }
996
997 static int
998 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
999 uint64_t seqno,
1000 uint64_t *timeout_ns)
1001 {
1002 unsigned long start = jiffies;
1003 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1004
1005 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1006 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1007
1008 if (*timeout_ns >= delta)
1009 *timeout_ns -= delta;
1010 }
1011
1012 return ret;
1013 }
1014
1015 int
1016 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1017 struct drm_file *file_priv)
1018 {
1019 struct drm_vc4_wait_seqno *args = data;
1020
1021 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1022 &args->timeout_ns);
1023 }
1024
1025 int
1026 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1027 struct drm_file *file_priv)
1028 {
1029 int ret;
1030 struct drm_vc4_wait_bo *args = data;
1031 struct drm_gem_object *gem_obj;
1032 struct vc4_bo *bo;
1033
1034 if (args->pad != 0)
1035 return -EINVAL;
1036
1037 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1038 if (!gem_obj) {
1039 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1040 return -EINVAL;
1041 }
1042 bo = to_vc4_bo(gem_obj);
1043
1044 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1045 &args->timeout_ns);
1046
1047 drm_gem_object_put_unlocked(gem_obj);
1048 return ret;
1049 }
1050
1051 /**
1052 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1053 * @dev: DRM device
1054 * @data: ioctl argument
1055 * @file_priv: DRM file for this fd
1056 *
1057 * This is the main entrypoint for userspace to submit a 3D frame to
1058 * the GPU. Userspace provides the binner command list (if
1059 * applicable), and the kernel sets up the render command list to draw
1060 * to the framebuffer described in the ioctl, using the command lists
1061 * that the 3D engine's binner will produce.
1062 */
1063 int
1064 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1065 struct drm_file *file_priv)
1066 {
1067 struct vc4_dev *vc4 = to_vc4_dev(dev);
1068 struct drm_vc4_submit_cl *args = data;
1069 struct vc4_exec_info *exec;
1070 struct ww_acquire_ctx acquire_ctx;
1071 int ret = 0;
1072
1073 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1074 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1075 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1076 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1077 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1078 return -EINVAL;
1079 }
1080
1081 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1082 if (!exec) {
1083 DRM_ERROR("malloc failure on exec struct\n");
1084 return -ENOMEM;
1085 }
1086
1087 mutex_lock(&vc4->power_lock);
1088 if (vc4->power_refcount++ == 0) {
1089 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1090 if (ret < 0) {
1091 mutex_unlock(&vc4->power_lock);
1092 vc4->power_refcount--;
1093 kfree(exec);
1094 return ret;
1095 }
1096 }
1097 mutex_unlock(&vc4->power_lock);
1098
1099 exec->args = args;
1100 INIT_LIST_HEAD(&exec->unref_list);
1101
1102 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1103 if (ret)
1104 goto fail;
1105
1106 if (exec->args->bin_cl_size != 0) {
1107 ret = vc4_get_bcl(dev, exec);
1108 if (ret)
1109 goto fail;
1110 } else {
1111 exec->ct0ca = 0;
1112 exec->ct0ea = 0;
1113 }
1114
1115 ret = vc4_get_rcl(dev, exec);
1116 if (ret)
1117 goto fail;
1118
1119 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1120 if (ret)
1121 goto fail;
1122
1123 /* Clear this out of the struct we'll be putting in the queue,
1124 * since it's part of our stack.
1125 */
1126 exec->args = NULL;
1127
1128 ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1129 if (ret)
1130 goto fail;
1131
1132 /* Return the seqno for our job. */
1133 args->seqno = vc4->emit_seqno;
1134
1135 return 0;
1136
1137 fail:
1138 vc4_complete_exec(vc4->dev, exec);
1139
1140 return ret;
1141 }
1142
1143 void
1144 vc4_gem_init(struct drm_device *dev)
1145 {
1146 struct vc4_dev *vc4 = to_vc4_dev(dev);
1147
1148 vc4->dma_fence_context = dma_fence_context_alloc(1);
1149
1150 INIT_LIST_HEAD(&vc4->bin_job_list);
1151 INIT_LIST_HEAD(&vc4->render_job_list);
1152 INIT_LIST_HEAD(&vc4->job_done_list);
1153 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1154 spin_lock_init(&vc4->job_lock);
1155
1156 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1157 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1158
1159 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1160
1161 mutex_init(&vc4->power_lock);
1162
1163 INIT_LIST_HEAD(&vc4->purgeable.list);
1164 mutex_init(&vc4->purgeable.lock);
1165 }
1166
1167 void
1168 vc4_gem_destroy(struct drm_device *dev)
1169 {
1170 struct vc4_dev *vc4 = to_vc4_dev(dev);
1171
1172 /* Waiting for exec to finish would need to be done before
1173 * unregistering V3D.
1174 */
1175 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1176
1177 /* V3D should already have disabled its interrupt and cleared
1178 * the overflow allocation registers. Now free the object.
1179 */
1180 if (vc4->bin_bo) {
1181 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1182 vc4->bin_bo = NULL;
1183 }
1184
1185 if (vc4->hang_state)
1186 vc4_free_hang_state(dev, vc4->hang_state);
1187 }
1188
1189 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1190 struct drm_file *file_priv)
1191 {
1192 struct drm_vc4_gem_madvise *args = data;
1193 struct drm_gem_object *gem_obj;
1194 struct vc4_bo *bo;
1195 int ret;
1196
1197 switch (args->madv) {
1198 case VC4_MADV_DONTNEED:
1199 case VC4_MADV_WILLNEED:
1200 break;
1201 default:
1202 return -EINVAL;
1203 }
1204
1205 if (args->pad != 0)
1206 return -EINVAL;
1207
1208 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1209 if (!gem_obj) {
1210 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1211 return -ENOENT;
1212 }
1213
1214 bo = to_vc4_bo(gem_obj);
1215
1216 /* Only BOs exposed to userspace can be purged. */
1217 if (bo->madv == __VC4_MADV_NOTSUPP) {
1218 DRM_DEBUG("madvise not supported on this BO\n");
1219 ret = -EINVAL;
1220 goto out_put_gem;
1221 }
1222
1223 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1224 * not until proven otherwise.
1225 */
1226 if (gem_obj->import_attach) {
1227 DRM_DEBUG("madvise not supported on imported BOs\n");
1228 ret = -EINVAL;
1229 goto out_put_gem;
1230 }
1231
1232 mutex_lock(&bo->madv_lock);
1233
1234 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1235 !refcount_read(&bo->usecnt)) {
1236 /* If the BO is about to be marked as purgeable, is not used
1237 * and is not already purgeable or purged, add it to the
1238 * purgeable list.
1239 */
1240 vc4_bo_add_to_purgeable_pool(bo);
1241 } else if (args->madv == VC4_MADV_WILLNEED &&
1242 bo->madv == VC4_MADV_DONTNEED &&
1243 !refcount_read(&bo->usecnt)) {
1244 /* The BO has not been purged yet, just remove it from
1245 * the purgeable list.
1246 */
1247 vc4_bo_remove_from_purgeable_pool(bo);
1248 }
1249
1250 /* Save the purged state. */
1251 args->retained = bo->madv != __VC4_MADV_PURGED;
1252
1253 /* Update internal madv state only if the bo was not purged. */
1254 if (bo->madv != __VC4_MADV_PURGED)
1255 bo->madv = args->madv;
1256
1257 mutex_unlock(&bo->madv_lock);
1258
1259 ret = 0;
1260
1261 out_put_gem:
1262 drm_gem_object_put_unlocked(gem_obj);
1263
1264 return ret;
1265 }