]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/vc4/vc4_gem.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30
31 #include "uapi/drm/vc4_drm.h"
32 #include "vc4_drv.h"
33 #include "vc4_regs.h"
34 #include "vc4_trace.h"
35
36 static void
37 vc4_queue_hangcheck(struct drm_device *dev)
38 {
39 struct vc4_dev *vc4 = to_vc4_dev(dev);
40
41 mod_timer(&vc4->hangcheck.timer,
42 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43 }
44
45 struct vc4_hang_state {
46 struct drm_vc4_get_hang_state user_state;
47
48 u32 bo_count;
49 struct drm_gem_object **bo;
50 };
51
52 static void
53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54 {
55 unsigned int i;
56
57 for (i = 0; i < state->user_state.bo_count; i++)
58 drm_gem_object_unreference_unlocked(state->bo[i]);
59
60 kfree(state);
61 }
62
63 int
64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65 struct drm_file *file_priv)
66 {
67 struct drm_vc4_get_hang_state *get_state = data;
68 struct drm_vc4_get_hang_state_bo *bo_state;
69 struct vc4_hang_state *kernel_state;
70 struct drm_vc4_get_hang_state *state;
71 struct vc4_dev *vc4 = to_vc4_dev(dev);
72 unsigned long irqflags;
73 u32 i;
74 int ret = 0;
75
76 spin_lock_irqsave(&vc4->job_lock, irqflags);
77 kernel_state = vc4->hang_state;
78 if (!kernel_state) {
79 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80 return -ENOENT;
81 }
82 state = &kernel_state->user_state;
83
84 /* If the user's array isn't big enough, just return the
85 * required array size.
86 */
87 if (get_state->bo_count < state->bo_count) {
88 get_state->bo_count = state->bo_count;
89 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90 return 0;
91 }
92
93 vc4->hang_state = NULL;
94 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95
96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97 state->bo = get_state->bo;
98 memcpy(get_state, state, sizeof(*state));
99
100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101 if (!bo_state) {
102 ret = -ENOMEM;
103 goto err_free;
104 }
105
106 for (i = 0; i < state->bo_count; i++) {
107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108 u32 handle;
109
110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111 &handle);
112
113 if (ret) {
114 state->bo_count = i;
115 goto err_delete_handle;
116 }
117 bo_state[i].handle = handle;
118 bo_state[i].paddr = vc4_bo->base.paddr;
119 bo_state[i].size = vc4_bo->base.base.size;
120 }
121
122 if (copy_to_user((void __user *)(uintptr_t)get_state->bo,
123 bo_state,
124 state->bo_count * sizeof(*bo_state)))
125 ret = -EFAULT;
126
127 err_delete_handle:
128 if (ret) {
129 for (i = 0; i < state->bo_count; i++)
130 drm_gem_handle_delete(file_priv, bo_state[i].handle);
131 }
132
133 err_free:
134 vc4_free_hang_state(dev, kernel_state);
135 kfree(bo_state);
136
137 return ret;
138 }
139
140 static void
141 vc4_save_hang_state(struct drm_device *dev)
142 {
143 struct vc4_dev *vc4 = to_vc4_dev(dev);
144 struct drm_vc4_get_hang_state *state;
145 struct vc4_hang_state *kernel_state;
146 struct vc4_exec_info *exec[2];
147 struct vc4_bo *bo;
148 unsigned long irqflags;
149 unsigned int i, j, unref_list_count, prev_idx;
150
151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
152 if (!kernel_state)
153 return;
154
155 state = &kernel_state->user_state;
156
157 spin_lock_irqsave(&vc4->job_lock, irqflags);
158 exec[0] = vc4_first_bin_job(vc4);
159 exec[1] = vc4_first_render_job(vc4);
160 if (!exec[0] && !exec[1]) {
161 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
162 return;
163 }
164
165 /* Get the bos from both binner and renderer into hang state. */
166 state->bo_count = 0;
167 for (i = 0; i < 2; i++) {
168 if (!exec[i])
169 continue;
170
171 unref_list_count = 0;
172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
173 unref_list_count++;
174 state->bo_count += exec[i]->bo_count + unref_list_count;
175 }
176
177 kernel_state->bo = kcalloc(state->bo_count,
178 sizeof(*kernel_state->bo), GFP_ATOMIC);
179
180 if (!kernel_state->bo) {
181 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
182 return;
183 }
184
185 prev_idx = 0;
186 for (i = 0; i < 2; i++) {
187 if (!exec[i])
188 continue;
189
190 for (j = 0; j < exec[i]->bo_count; j++) {
191 drm_gem_object_reference(&exec[i]->bo[j]->base);
192 kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base;
193 }
194
195 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
196 drm_gem_object_reference(&bo->base.base);
197 kernel_state->bo[j + prev_idx] = &bo->base.base;
198 j++;
199 }
200 prev_idx = j + 1;
201 }
202
203 if (exec[0])
204 state->start_bin = exec[0]->ct0ca;
205 if (exec[1])
206 state->start_render = exec[1]->ct1ca;
207
208 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
209
210 state->ct0ca = V3D_READ(V3D_CTNCA(0));
211 state->ct0ea = V3D_READ(V3D_CTNEA(0));
212
213 state->ct1ca = V3D_READ(V3D_CTNCA(1));
214 state->ct1ea = V3D_READ(V3D_CTNEA(1));
215
216 state->ct0cs = V3D_READ(V3D_CTNCS(0));
217 state->ct1cs = V3D_READ(V3D_CTNCS(1));
218
219 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
220 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
221
222 state->bpca = V3D_READ(V3D_BPCA);
223 state->bpcs = V3D_READ(V3D_BPCS);
224 state->bpoa = V3D_READ(V3D_BPOA);
225 state->bpos = V3D_READ(V3D_BPOS);
226
227 state->vpmbase = V3D_READ(V3D_VPMBASE);
228
229 state->dbge = V3D_READ(V3D_DBGE);
230 state->fdbgo = V3D_READ(V3D_FDBGO);
231 state->fdbgb = V3D_READ(V3D_FDBGB);
232 state->fdbgr = V3D_READ(V3D_FDBGR);
233 state->fdbgs = V3D_READ(V3D_FDBGS);
234 state->errstat = V3D_READ(V3D_ERRSTAT);
235
236 spin_lock_irqsave(&vc4->job_lock, irqflags);
237 if (vc4->hang_state) {
238 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
239 vc4_free_hang_state(dev, kernel_state);
240 } else {
241 vc4->hang_state = kernel_state;
242 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
243 }
244 }
245
246 static void
247 vc4_reset(struct drm_device *dev)
248 {
249 struct vc4_dev *vc4 = to_vc4_dev(dev);
250
251 DRM_INFO("Resetting GPU.\n");
252
253 mutex_lock(&vc4->power_lock);
254 if (vc4->power_refcount) {
255 /* Power the device off and back on the by dropping the
256 * reference on runtime PM.
257 */
258 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
259 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
260 }
261 mutex_unlock(&vc4->power_lock);
262
263 vc4_irq_reset(dev);
264
265 /* Rearm the hangcheck -- another job might have been waiting
266 * for our hung one to get kicked off, and vc4_irq_reset()
267 * would have started it.
268 */
269 vc4_queue_hangcheck(dev);
270 }
271
272 static void
273 vc4_reset_work(struct work_struct *work)
274 {
275 struct vc4_dev *vc4 =
276 container_of(work, struct vc4_dev, hangcheck.reset_work);
277
278 vc4_save_hang_state(vc4->dev);
279
280 vc4_reset(vc4->dev);
281 }
282
283 static void
284 vc4_hangcheck_elapsed(unsigned long data)
285 {
286 struct drm_device *dev = (struct drm_device *)data;
287 struct vc4_dev *vc4 = to_vc4_dev(dev);
288 uint32_t ct0ca, ct1ca;
289 unsigned long irqflags;
290 struct vc4_exec_info *bin_exec, *render_exec;
291
292 spin_lock_irqsave(&vc4->job_lock, irqflags);
293
294 bin_exec = vc4_first_bin_job(vc4);
295 render_exec = vc4_first_render_job(vc4);
296
297 /* If idle, we can stop watching for hangs. */
298 if (!bin_exec && !render_exec) {
299 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
300 return;
301 }
302
303 ct0ca = V3D_READ(V3D_CTNCA(0));
304 ct1ca = V3D_READ(V3D_CTNCA(1));
305
306 /* If we've made any progress in execution, rearm the timer
307 * and wait.
308 */
309 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
310 (render_exec && ct1ca != render_exec->last_ct1ca)) {
311 if (bin_exec)
312 bin_exec->last_ct0ca = ct0ca;
313 if (render_exec)
314 render_exec->last_ct1ca = ct1ca;
315 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
316 vc4_queue_hangcheck(dev);
317 return;
318 }
319
320 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
321
322 /* We've gone too long with no progress, reset. This has to
323 * be done from a work struct, since resetting can sleep and
324 * this timer hook isn't allowed to.
325 */
326 schedule_work(&vc4->hangcheck.reset_work);
327 }
328
329 static void
330 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
331 {
332 struct vc4_dev *vc4 = to_vc4_dev(dev);
333
334 /* Set the current and end address of the control list.
335 * Writing the end register is what starts the job.
336 */
337 V3D_WRITE(V3D_CTNCA(thread), start);
338 V3D_WRITE(V3D_CTNEA(thread), end);
339 }
340
341 int
342 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
343 bool interruptible)
344 {
345 struct vc4_dev *vc4 = to_vc4_dev(dev);
346 int ret = 0;
347 unsigned long timeout_expire;
348 DEFINE_WAIT(wait);
349
350 if (vc4->finished_seqno >= seqno)
351 return 0;
352
353 if (timeout_ns == 0)
354 return -ETIME;
355
356 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
357
358 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
359 for (;;) {
360 prepare_to_wait(&vc4->job_wait_queue, &wait,
361 interruptible ? TASK_INTERRUPTIBLE :
362 TASK_UNINTERRUPTIBLE);
363
364 if (interruptible && signal_pending(current)) {
365 ret = -ERESTARTSYS;
366 break;
367 }
368
369 if (vc4->finished_seqno >= seqno)
370 break;
371
372 if (timeout_ns != ~0ull) {
373 if (time_after_eq(jiffies, timeout_expire)) {
374 ret = -ETIME;
375 break;
376 }
377 schedule_timeout(timeout_expire - jiffies);
378 } else {
379 schedule();
380 }
381 }
382
383 finish_wait(&vc4->job_wait_queue, &wait);
384 trace_vc4_wait_for_seqno_end(dev, seqno);
385
386 return ret;
387 }
388
389 static void
390 vc4_flush_caches(struct drm_device *dev)
391 {
392 struct vc4_dev *vc4 = to_vc4_dev(dev);
393
394 /* Flush the GPU L2 caches. These caches sit on top of system
395 * L3 (the 128kb or so shared with the CPU), and are
396 * non-allocating in the L3.
397 */
398 V3D_WRITE(V3D_L2CACTL,
399 V3D_L2CACTL_L2CCLR);
400
401 V3D_WRITE(V3D_SLCACTL,
402 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
403 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
404 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
405 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
406 }
407
408 /* Sets the registers for the next job to be actually be executed in
409 * the hardware.
410 *
411 * The job_lock should be held during this.
412 */
413 void
414 vc4_submit_next_bin_job(struct drm_device *dev)
415 {
416 struct vc4_dev *vc4 = to_vc4_dev(dev);
417 struct vc4_exec_info *exec;
418
419 again:
420 exec = vc4_first_bin_job(vc4);
421 if (!exec)
422 return;
423
424 vc4_flush_caches(dev);
425
426 /* Either put the job in the binner if it uses the binner, or
427 * immediately move it to the to-be-rendered queue.
428 */
429 if (exec->ct0ca != exec->ct0ea) {
430 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
431 } else {
432 vc4_move_job_to_render(dev, exec);
433 goto again;
434 }
435 }
436
437 void
438 vc4_submit_next_render_job(struct drm_device *dev)
439 {
440 struct vc4_dev *vc4 = to_vc4_dev(dev);
441 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
442
443 if (!exec)
444 return;
445
446 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
447 }
448
449 void
450 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
451 {
452 struct vc4_dev *vc4 = to_vc4_dev(dev);
453 bool was_empty = list_empty(&vc4->render_job_list);
454
455 list_move_tail(&exec->head, &vc4->render_job_list);
456 if (was_empty)
457 vc4_submit_next_render_job(dev);
458 }
459
460 static void
461 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
462 {
463 struct vc4_bo *bo;
464 unsigned i;
465
466 for (i = 0; i < exec->bo_count; i++) {
467 bo = to_vc4_bo(&exec->bo[i]->base);
468 bo->seqno = seqno;
469
470 reservation_object_add_shared_fence(bo->resv, exec->fence);
471 }
472
473 list_for_each_entry(bo, &exec->unref_list, unref_head) {
474 bo->seqno = seqno;
475 }
476
477 for (i = 0; i < exec->rcl_write_bo_count; i++) {
478 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
479 bo->write_seqno = seqno;
480
481 reservation_object_add_excl_fence(bo->resv, exec->fence);
482 }
483 }
484
485 static void
486 vc4_unlock_bo_reservations(struct drm_device *dev,
487 struct vc4_exec_info *exec,
488 struct ww_acquire_ctx *acquire_ctx)
489 {
490 int i;
491
492 for (i = 0; i < exec->bo_count; i++) {
493 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
494
495 ww_mutex_unlock(&bo->resv->lock);
496 }
497
498 ww_acquire_fini(acquire_ctx);
499 }
500
501 /* Takes the reservation lock on all the BOs being referenced, so that
502 * at queue submit time we can update the reservations.
503 *
504 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
505 * (all of which are on exec->unref_list). They're entirely private
506 * to vc4, so we don't attach dma-buf fences to them.
507 */
508 static int
509 vc4_lock_bo_reservations(struct drm_device *dev,
510 struct vc4_exec_info *exec,
511 struct ww_acquire_ctx *acquire_ctx)
512 {
513 int contended_lock = -1;
514 int i, ret;
515 struct vc4_bo *bo;
516
517 ww_acquire_init(acquire_ctx, &reservation_ww_class);
518
519 retry:
520 if (contended_lock != -1) {
521 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
522 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
523 acquire_ctx);
524 if (ret) {
525 ww_acquire_done(acquire_ctx);
526 return ret;
527 }
528 }
529
530 for (i = 0; i < exec->bo_count; i++) {
531 if (i == contended_lock)
532 continue;
533
534 bo = to_vc4_bo(&exec->bo[i]->base);
535
536 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
537 if (ret) {
538 int j;
539
540 for (j = 0; j < i; j++) {
541 bo = to_vc4_bo(&exec->bo[j]->base);
542 ww_mutex_unlock(&bo->resv->lock);
543 }
544
545 if (contended_lock != -1 && contended_lock >= i) {
546 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
547
548 ww_mutex_unlock(&bo->resv->lock);
549 }
550
551 if (ret == -EDEADLK) {
552 contended_lock = i;
553 goto retry;
554 }
555
556 ww_acquire_done(acquire_ctx);
557 return ret;
558 }
559 }
560
561 ww_acquire_done(acquire_ctx);
562
563 /* Reserve space for our shared (read-only) fence references,
564 * before we commit the CL to the hardware.
565 */
566 for (i = 0; i < exec->bo_count; i++) {
567 bo = to_vc4_bo(&exec->bo[i]->base);
568
569 ret = reservation_object_reserve_shared(bo->resv);
570 if (ret) {
571 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
572 return ret;
573 }
574 }
575
576 return 0;
577 }
578
579 /* Queues a struct vc4_exec_info for execution. If no job is
580 * currently executing, then submits it.
581 *
582 * Unlike most GPUs, our hardware only handles one command list at a
583 * time. To queue multiple jobs at once, we'd need to edit the
584 * previous command list to have a jump to the new one at the end, and
585 * then bump the end address. That's a change for a later date,
586 * though.
587 */
588 static int
589 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
590 struct ww_acquire_ctx *acquire_ctx)
591 {
592 struct vc4_dev *vc4 = to_vc4_dev(dev);
593 uint64_t seqno;
594 unsigned long irqflags;
595 struct vc4_fence *fence;
596
597 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
598 if (!fence)
599 return -ENOMEM;
600 fence->dev = dev;
601
602 spin_lock_irqsave(&vc4->job_lock, irqflags);
603
604 seqno = ++vc4->emit_seqno;
605 exec->seqno = seqno;
606
607 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
608 vc4->dma_fence_context, exec->seqno);
609 fence->seqno = exec->seqno;
610 exec->fence = &fence->base;
611
612 vc4_update_bo_seqnos(exec, seqno);
613
614 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
615
616 list_add_tail(&exec->head, &vc4->bin_job_list);
617
618 /* If no job was executing, kick ours off. Otherwise, it'll
619 * get started when the previous job's flush done interrupt
620 * occurs.
621 */
622 if (vc4_first_bin_job(vc4) == exec) {
623 vc4_submit_next_bin_job(dev);
624 vc4_queue_hangcheck(dev);
625 }
626
627 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
628
629 return 0;
630 }
631
632 /**
633 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
634 * referenced by the job.
635 * @dev: DRM device
636 * @file_priv: DRM file for this fd
637 * @exec: V3D job being set up
638 *
639 * The command validator needs to reference BOs by their index within
640 * the submitted job's BO list. This does the validation of the job's
641 * BO list and reference counting for the lifetime of the job.
642 *
643 * Note that this function doesn't need to unreference the BOs on
644 * failure, because that will happen at vc4_complete_exec() time.
645 */
646 static int
647 vc4_cl_lookup_bos(struct drm_device *dev,
648 struct drm_file *file_priv,
649 struct vc4_exec_info *exec)
650 {
651 struct drm_vc4_submit_cl *args = exec->args;
652 uint32_t *handles;
653 int ret = 0;
654 int i;
655
656 exec->bo_count = args->bo_handle_count;
657
658 if (!exec->bo_count) {
659 /* See comment on bo_index for why we have to check
660 * this.
661 */
662 DRM_ERROR("Rendering requires BOs to validate\n");
663 return -EINVAL;
664 }
665
666 exec->bo = kvmalloc_array(exec->bo_count,
667 sizeof(struct drm_gem_cma_object *),
668 GFP_KERNEL | __GFP_ZERO);
669 if (!exec->bo) {
670 DRM_ERROR("Failed to allocate validated BO pointers\n");
671 return -ENOMEM;
672 }
673
674 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
675 if (!handles) {
676 ret = -ENOMEM;
677 DRM_ERROR("Failed to allocate incoming GEM handles\n");
678 goto fail;
679 }
680
681 if (copy_from_user(handles,
682 (void __user *)(uintptr_t)args->bo_handles,
683 exec->bo_count * sizeof(uint32_t))) {
684 ret = -EFAULT;
685 DRM_ERROR("Failed to copy in GEM handles\n");
686 goto fail;
687 }
688
689 spin_lock(&file_priv->table_lock);
690 for (i = 0; i < exec->bo_count; i++) {
691 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
692 handles[i]);
693 if (!bo) {
694 DRM_ERROR("Failed to look up GEM BO %d: %d\n",
695 i, handles[i]);
696 ret = -EINVAL;
697 spin_unlock(&file_priv->table_lock);
698 goto fail;
699 }
700 drm_gem_object_reference(bo);
701 exec->bo[i] = (struct drm_gem_cma_object *)bo;
702 }
703 spin_unlock(&file_priv->table_lock);
704
705 fail:
706 kvfree(handles);
707 return ret;
708 }
709
710 static int
711 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
712 {
713 struct drm_vc4_submit_cl *args = exec->args;
714 void *temp = NULL;
715 void *bin;
716 int ret = 0;
717 uint32_t bin_offset = 0;
718 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
719 16);
720 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
721 uint32_t exec_size = uniforms_offset + args->uniforms_size;
722 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
723 args->shader_rec_count);
724 struct vc4_bo *bo;
725
726 if (shader_rec_offset < args->bin_cl_size ||
727 uniforms_offset < shader_rec_offset ||
728 exec_size < uniforms_offset ||
729 args->shader_rec_count >= (UINT_MAX /
730 sizeof(struct vc4_shader_state)) ||
731 temp_size < exec_size) {
732 DRM_ERROR("overflow in exec arguments\n");
733 ret = -EINVAL;
734 goto fail;
735 }
736
737 /* Allocate space where we'll store the copied in user command lists
738 * and shader records.
739 *
740 * We don't just copy directly into the BOs because we need to
741 * read the contents back for validation, and I think the
742 * bo->vaddr is uncached access.
743 */
744 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
745 if (!temp) {
746 DRM_ERROR("Failed to allocate storage for copying "
747 "in bin/render CLs.\n");
748 ret = -ENOMEM;
749 goto fail;
750 }
751 bin = temp + bin_offset;
752 exec->shader_rec_u = temp + shader_rec_offset;
753 exec->uniforms_u = temp + uniforms_offset;
754 exec->shader_state = temp + exec_size;
755 exec->shader_state_size = args->shader_rec_count;
756
757 if (copy_from_user(bin,
758 (void __user *)(uintptr_t)args->bin_cl,
759 args->bin_cl_size)) {
760 ret = -EFAULT;
761 goto fail;
762 }
763
764 if (copy_from_user(exec->shader_rec_u,
765 (void __user *)(uintptr_t)args->shader_rec,
766 args->shader_rec_size)) {
767 ret = -EFAULT;
768 goto fail;
769 }
770
771 if (copy_from_user(exec->uniforms_u,
772 (void __user *)(uintptr_t)args->uniforms,
773 args->uniforms_size)) {
774 ret = -EFAULT;
775 goto fail;
776 }
777
778 bo = vc4_bo_create(dev, exec_size, true);
779 if (IS_ERR(bo)) {
780 DRM_ERROR("Couldn't allocate BO for binning\n");
781 ret = PTR_ERR(bo);
782 goto fail;
783 }
784 exec->exec_bo = &bo->base;
785
786 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
787 &exec->unref_list);
788
789 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
790
791 exec->bin_u = bin;
792
793 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
794 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
795 exec->shader_rec_size = args->shader_rec_size;
796
797 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
798 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
799 exec->uniforms_size = args->uniforms_size;
800
801 ret = vc4_validate_bin_cl(dev,
802 exec->exec_bo->vaddr + bin_offset,
803 bin,
804 exec);
805 if (ret)
806 goto fail;
807
808 ret = vc4_validate_shader_recs(dev, exec);
809 if (ret)
810 goto fail;
811
812 /* Block waiting on any previous rendering into the CS's VBO,
813 * IB, or textures, so that pixels are actually written by the
814 * time we try to read them.
815 */
816 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
817
818 fail:
819 kvfree(temp);
820 return ret;
821 }
822
823 static void
824 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
825 {
826 struct vc4_dev *vc4 = to_vc4_dev(dev);
827 unsigned long irqflags;
828 unsigned i;
829
830 /* If we got force-completed because of GPU reset rather than
831 * through our IRQ handler, signal the fence now.
832 */
833 if (exec->fence)
834 dma_fence_signal(exec->fence);
835
836 if (exec->bo) {
837 for (i = 0; i < exec->bo_count; i++)
838 drm_gem_object_unreference_unlocked(&exec->bo[i]->base);
839 kvfree(exec->bo);
840 }
841
842 while (!list_empty(&exec->unref_list)) {
843 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
844 struct vc4_bo, unref_head);
845 list_del(&bo->unref_head);
846 drm_gem_object_unreference_unlocked(&bo->base.base);
847 }
848
849 /* Free up the allocation of any bin slots we used. */
850 spin_lock_irqsave(&vc4->job_lock, irqflags);
851 vc4->bin_alloc_used &= ~exec->bin_slots;
852 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
853
854 mutex_lock(&vc4->power_lock);
855 if (--vc4->power_refcount == 0) {
856 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
857 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
858 }
859 mutex_unlock(&vc4->power_lock);
860
861 kfree(exec);
862 }
863
864 void
865 vc4_job_handle_completed(struct vc4_dev *vc4)
866 {
867 unsigned long irqflags;
868 struct vc4_seqno_cb *cb, *cb_temp;
869
870 spin_lock_irqsave(&vc4->job_lock, irqflags);
871 while (!list_empty(&vc4->job_done_list)) {
872 struct vc4_exec_info *exec =
873 list_first_entry(&vc4->job_done_list,
874 struct vc4_exec_info, head);
875 list_del(&exec->head);
876
877 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
878 vc4_complete_exec(vc4->dev, exec);
879 spin_lock_irqsave(&vc4->job_lock, irqflags);
880 }
881
882 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
883 if (cb->seqno <= vc4->finished_seqno) {
884 list_del_init(&cb->work.entry);
885 schedule_work(&cb->work);
886 }
887 }
888
889 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
890 }
891
892 static void vc4_seqno_cb_work(struct work_struct *work)
893 {
894 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
895
896 cb->func(cb);
897 }
898
899 int vc4_queue_seqno_cb(struct drm_device *dev,
900 struct vc4_seqno_cb *cb, uint64_t seqno,
901 void (*func)(struct vc4_seqno_cb *cb))
902 {
903 struct vc4_dev *vc4 = to_vc4_dev(dev);
904 int ret = 0;
905 unsigned long irqflags;
906
907 cb->func = func;
908 INIT_WORK(&cb->work, vc4_seqno_cb_work);
909
910 spin_lock_irqsave(&vc4->job_lock, irqflags);
911 if (seqno > vc4->finished_seqno) {
912 cb->seqno = seqno;
913 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
914 } else {
915 schedule_work(&cb->work);
916 }
917 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
918
919 return ret;
920 }
921
922 /* Scheduled when any job has been completed, this walks the list of
923 * jobs that had completed and unrefs their BOs and frees their exec
924 * structs.
925 */
926 static void
927 vc4_job_done_work(struct work_struct *work)
928 {
929 struct vc4_dev *vc4 =
930 container_of(work, struct vc4_dev, job_done_work);
931
932 vc4_job_handle_completed(vc4);
933 }
934
935 static int
936 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
937 uint64_t seqno,
938 uint64_t *timeout_ns)
939 {
940 unsigned long start = jiffies;
941 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
942
943 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
944 uint64_t delta = jiffies_to_nsecs(jiffies - start);
945
946 if (*timeout_ns >= delta)
947 *timeout_ns -= delta;
948 }
949
950 return ret;
951 }
952
953 int
954 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
955 struct drm_file *file_priv)
956 {
957 struct drm_vc4_wait_seqno *args = data;
958
959 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
960 &args->timeout_ns);
961 }
962
963 int
964 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
965 struct drm_file *file_priv)
966 {
967 int ret;
968 struct drm_vc4_wait_bo *args = data;
969 struct drm_gem_object *gem_obj;
970 struct vc4_bo *bo;
971
972 if (args->pad != 0)
973 return -EINVAL;
974
975 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
976 if (!gem_obj) {
977 DRM_ERROR("Failed to look up GEM BO %d\n", args->handle);
978 return -EINVAL;
979 }
980 bo = to_vc4_bo(gem_obj);
981
982 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
983 &args->timeout_ns);
984
985 drm_gem_object_unreference_unlocked(gem_obj);
986 return ret;
987 }
988
989 /**
990 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
991 * @dev: DRM device
992 * @data: ioctl argument
993 * @file_priv: DRM file for this fd
994 *
995 * This is the main entrypoint for userspace to submit a 3D frame to
996 * the GPU. Userspace provides the binner command list (if
997 * applicable), and the kernel sets up the render command list to draw
998 * to the framebuffer described in the ioctl, using the command lists
999 * that the 3D engine's binner will produce.
1000 */
1001 int
1002 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1003 struct drm_file *file_priv)
1004 {
1005 struct vc4_dev *vc4 = to_vc4_dev(dev);
1006 struct drm_vc4_submit_cl *args = data;
1007 struct vc4_exec_info *exec;
1008 struct ww_acquire_ctx acquire_ctx;
1009 int ret = 0;
1010
1011 if ((args->flags & ~VC4_SUBMIT_CL_USE_CLEAR_COLOR) != 0) {
1012 DRM_ERROR("Unknown flags: 0x%02x\n", args->flags);
1013 return -EINVAL;
1014 }
1015
1016 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1017 if (!exec) {
1018 DRM_ERROR("malloc failure on exec struct\n");
1019 return -ENOMEM;
1020 }
1021
1022 mutex_lock(&vc4->power_lock);
1023 if (vc4->power_refcount++ == 0) {
1024 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1025 if (ret < 0) {
1026 mutex_unlock(&vc4->power_lock);
1027 vc4->power_refcount--;
1028 kfree(exec);
1029 return ret;
1030 }
1031 }
1032 mutex_unlock(&vc4->power_lock);
1033
1034 exec->args = args;
1035 INIT_LIST_HEAD(&exec->unref_list);
1036
1037 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1038 if (ret)
1039 goto fail;
1040
1041 if (exec->args->bin_cl_size != 0) {
1042 ret = vc4_get_bcl(dev, exec);
1043 if (ret)
1044 goto fail;
1045 } else {
1046 exec->ct0ca = 0;
1047 exec->ct0ea = 0;
1048 }
1049
1050 ret = vc4_get_rcl(dev, exec);
1051 if (ret)
1052 goto fail;
1053
1054 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1055 if (ret)
1056 goto fail;
1057
1058 /* Clear this out of the struct we'll be putting in the queue,
1059 * since it's part of our stack.
1060 */
1061 exec->args = NULL;
1062
1063 ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1064 if (ret)
1065 goto fail;
1066
1067 /* Return the seqno for our job. */
1068 args->seqno = vc4->emit_seqno;
1069
1070 return 0;
1071
1072 fail:
1073 vc4_complete_exec(vc4->dev, exec);
1074
1075 return ret;
1076 }
1077
1078 void
1079 vc4_gem_init(struct drm_device *dev)
1080 {
1081 struct vc4_dev *vc4 = to_vc4_dev(dev);
1082
1083 vc4->dma_fence_context = dma_fence_context_alloc(1);
1084
1085 INIT_LIST_HEAD(&vc4->bin_job_list);
1086 INIT_LIST_HEAD(&vc4->render_job_list);
1087 INIT_LIST_HEAD(&vc4->job_done_list);
1088 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1089 spin_lock_init(&vc4->job_lock);
1090
1091 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1092 setup_timer(&vc4->hangcheck.timer,
1093 vc4_hangcheck_elapsed,
1094 (unsigned long)dev);
1095
1096 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1097
1098 mutex_init(&vc4->power_lock);
1099 }
1100
1101 void
1102 vc4_gem_destroy(struct drm_device *dev)
1103 {
1104 struct vc4_dev *vc4 = to_vc4_dev(dev);
1105
1106 /* Waiting for exec to finish would need to be done before
1107 * unregistering V3D.
1108 */
1109 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1110
1111 /* V3D should already have disabled its interrupt and cleared
1112 * the overflow allocation registers. Now free the object.
1113 */
1114 if (vc4->bin_bo) {
1115 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1116 vc4->bin_bo = NULL;
1117 }
1118
1119 if (vc4->hang_state)
1120 vc4_free_hang_state(dev, vc4->hang_state);
1121
1122 vc4_bo_cache_destroy(dev);
1123 }