]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
ASoC: pcm512x: add missing MODULE_DESCRIPTION/AUTHOR/LICENSE
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 drm_plane_cleanup(&du->primary);
41 drm_plane_cleanup(&du->cursor);
42
43 drm_connector_unregister(&du->connector);
44 drm_crtc_cleanup(&du->crtc);
45 drm_encoder_cleanup(&du->encoder);
46 drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50 * Display Unit Cursor functions
51 */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 u32 *image, u32 width, u32 height,
55 u32 hotspotX, u32 hotspotY)
56 {
57 struct {
58 u32 cmd;
59 SVGAFifoCmdDefineAlphaCursor cursor;
60 } *cmd;
61 u32 image_size = width * height * 4;
62 u32 cmd_size = sizeof(*cmd) + image_size;
63
64 if (!image)
65 return -EINVAL;
66
67 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 if (unlikely(cmd == NULL)) {
69 DRM_ERROR("Fifo reserve failed.\n");
70 return -ENOMEM;
71 }
72
73 memset(cmd, 0, sizeof(*cmd));
74
75 memcpy(&cmd[1], image, image_size);
76
77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 cmd->cursor.id = 0;
79 cmd->cursor.width = width;
80 cmd->cursor.height = height;
81 cmd->cursor.hotspotX = hotspotX;
82 cmd->cursor.hotspotY = hotspotY;
83
84 vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86 return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 struct vmw_dma_buffer *dmabuf,
91 u32 width, u32 height,
92 u32 hotspotX, u32 hotspotY)
93 {
94 struct ttm_bo_kmap_obj map;
95 unsigned long kmap_offset;
96 unsigned long kmap_num;
97 void *virtual;
98 bool dummy;
99 int ret;
100
101 kmap_offset = 0;
102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 if (unlikely(ret != 0)) {
106 DRM_ERROR("reserve failed\n");
107 return -EINVAL;
108 }
109
110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 if (unlikely(ret != 0))
112 goto err_unreserve;
113
114 virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 hotspotX, hotspotY);
117
118 ttm_bo_kunmap(&map);
119 err_unreserve:
120 ttm_bo_unreserve(&dmabuf->base);
121
122 return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 bool show, int x, int y)
128 {
129 u32 *fifo_mem = dev_priv->mmio_virt;
130 uint32_t count;
131
132 spin_lock(&dev_priv->cursor_lock);
133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 struct ttm_object_file *tfile,
144 struct ttm_buffer_object *bo,
145 SVGA3dCmdHeader *header)
146 {
147 struct ttm_bo_kmap_obj map;
148 unsigned long kmap_offset;
149 unsigned long kmap_num;
150 SVGA3dCopyBox *box;
151 unsigned box_count;
152 void *virtual;
153 bool dummy;
154 struct vmw_dma_cmd {
155 SVGA3dCmdHeader header;
156 SVGA3dCmdSurfaceDMA dma;
157 } *cmd;
158 int i, ret;
159
160 cmd = container_of(header, struct vmw_dma_cmd, header);
161
162 /* No snooper installed */
163 if (!srf->snooper.image)
164 return;
165
166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 return;
169 }
170
171 if (cmd->header.size < 64) {
172 DRM_ERROR("at least one full copy box must be given\n");
173 return;
174 }
175
176 box = (SVGA3dCopyBox *)&cmd[1];
177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 sizeof(SVGA3dCopyBox);
179
180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 box->x != 0 || box->y != 0 || box->z != 0 ||
182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 box->d != 1 || box_count != 1) {
184 /* TODO handle none page aligned offsets */
185 /* TODO handle more dst & src != 0 */
186 /* TODO handle more then one copy */
187 DRM_ERROR("Cant snoop dma request for cursor!\n");
188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 box->srcx, box->srcy, box->srcz,
190 box->x, box->y, box->z,
191 box->w, box->h, box->d, box_count,
192 cmd->dma.guest.ptr.offset);
193 return;
194 }
195
196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199 ret = ttm_bo_reserve(bo, true, false, NULL);
200 if (unlikely(ret != 0)) {
201 DRM_ERROR("reserve failed\n");
202 return;
203 }
204
205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 if (unlikely(ret != 0))
207 goto err_unreserve;
208
209 virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 memcpy(srf->snooper.image, virtual, 64*64*4);
213 } else {
214 /* Image is unsigned pointer. */
215 for (i = 0; i < box->h; i++)
216 memcpy(srf->snooper.image + i * 64,
217 virtual + i * cmd->dma.guest.pitch,
218 box->w * 4);
219 }
220
221 srf->snooper.age++;
222
223 ttm_bo_kunmap(&map);
224 err_unreserve:
225 ttm_bo_unreserve(bo);
226 }
227
228 /**
229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230 *
231 * @dev_priv: Pointer to the device private struct.
232 *
233 * Clears all legacy hotspots.
234 */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 struct drm_device *dev = dev_priv->dev;
238 struct vmw_display_unit *du;
239 struct drm_crtc *crtc;
240
241 drm_modeset_lock_all(dev);
242 drm_for_each_crtc(crtc, dev) {
243 du = vmw_crtc_to_du(crtc);
244
245 du->hotspot_x = 0;
246 du->hotspot_y = 0;
247 }
248 drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 struct drm_device *dev = dev_priv->dev;
254 struct vmw_display_unit *du;
255 struct drm_crtc *crtc;
256
257 mutex_lock(&dev->mode_config.mutex);
258
259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 du = vmw_crtc_to_du(crtc);
261 if (!du->cursor_surface ||
262 du->cursor_age == du->cursor_surface->snooper.age)
263 continue;
264
265 du->cursor_age = du->cursor_surface->snooper.age;
266 vmw_cursor_update_image(dev_priv,
267 du->cursor_surface->snooper.image,
268 64, 64,
269 du->hotspot_x + du->core_hotspot_x,
270 du->hotspot_y + du->core_hotspot_y);
271 }
272
273 mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280
281 drm_plane_cleanup(plane);
282 }
283
284
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 drm_plane_cleanup(plane);
288
289 /* Planes are static in our case so we don't free it */
290 }
291
292
293 /**
294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295 *
296 * @vps: plane state associated with the display surface
297 * @unreference: true if we also want to unreference the display.
298 */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 bool unreference)
301 {
302 if (vps->surf) {
303 if (vps->pinned) {
304 vmw_resource_unpin(&vps->surf->res);
305 vps->pinned--;
306 }
307
308 if (unreference) {
309 if (vps->pinned)
310 DRM_ERROR("Surface still pinned\n");
311 vmw_surface_unreference(&vps->surf);
312 }
313 }
314 }
315
316
317 /**
318 * vmw_du_plane_cleanup_fb - Unpins the cursor
319 *
320 * @plane: display plane
321 * @old_state: Contains the FB to clean up
322 *
323 * Unpins the framebuffer surface
324 *
325 * Returns 0 on success
326 */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 struct drm_plane_state *old_state)
330 {
331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332
333 vmw_du_plane_unpin_surf(vps, false);
334 }
335
336
337 /**
338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339 *
340 * @plane: display plane
341 * @new_state: info on the new plane state, including the FB
342 *
343 * Returns 0 on success
344 */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 struct drm_plane_state *new_state)
348 {
349 struct drm_framebuffer *fb = new_state->fb;
350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351
352
353 if (vps->surf)
354 vmw_surface_unreference(&vps->surf);
355
356 if (vps->dmabuf)
357 vmw_dmabuf_unreference(&vps->dmabuf);
358
359 if (fb) {
360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 vmw_dmabuf_reference(vps->dmabuf);
363 } else {
364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 vmw_surface_reference(vps->surf);
366 }
367 }
368
369 return 0;
370 }
371
372
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 struct drm_plane_state *old_state)
376 {
377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 s32 hotspot_x, hotspot_y;
382 int ret = 0;
383
384
385 hotspot_x = du->hotspot_x;
386 hotspot_y = du->hotspot_y;
387
388 if (plane->fb) {
389 hotspot_x += plane->fb->hot_x;
390 hotspot_y += plane->fb->hot_y;
391 }
392
393 du->cursor_surface = vps->surf;
394 du->cursor_dmabuf = vps->dmabuf;
395
396 /* setup new image */
397 if (vps->surf) {
398 du->cursor_age = du->cursor_surface->snooper.age;
399
400 ret = vmw_cursor_update_image(dev_priv,
401 vps->surf->snooper.image,
402 64, 64, hotspot_x, hotspot_y);
403 } else if (vps->dmabuf) {
404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405 plane->state->crtc_w,
406 plane->state->crtc_h,
407 hotspot_x, hotspot_y);
408 } else {
409 vmw_cursor_update_position(dev_priv, false, 0, 0);
410 return;
411 }
412
413 if (!ret) {
414 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416
417 vmw_cursor_update_position(dev_priv, true,
418 du->cursor_x + hotspot_x,
419 du->cursor_y + hotspot_y);
420
421 du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 } else {
424 DRM_ERROR("Failed to update cursor image\n");
425 }
426 }
427
428
429 /**
430 * vmw_du_primary_plane_atomic_check - check if the new state is okay
431 *
432 * @plane: display plane
433 * @state: info on the new plane state, including the FB
434 *
435 * Check if the new state is settable given the current state. Other
436 * than what the atomic helper checks, we care about crtc fitting
437 * the FB and maintaining one active framebuffer.
438 *
439 * Returns 0 on success
440 */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 struct drm_plane_state *state)
443 {
444 struct drm_framebuffer *new_fb = state->fb;
445 bool visible;
446
447 struct drm_rect src = {
448 .x1 = state->src_x,
449 .y1 = state->src_y,
450 .x2 = state->src_x + state->src_w,
451 .y2 = state->src_y + state->src_h,
452 };
453 struct drm_rect dest = {
454 .x1 = state->crtc_x,
455 .y1 = state->crtc_y,
456 .x2 = state->crtc_x + state->crtc_w,
457 .y2 = state->crtc_y + state->crtc_h,
458 };
459 struct drm_rect clip = dest;
460 int ret;
461
462 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
463 &src, &dest, &clip,
464 DRM_MODE_ROTATE_0,
465 DRM_PLANE_HELPER_NO_SCALING,
466 DRM_PLANE_HELPER_NO_SCALING,
467 false, true, &visible);
468
469
470 if (!ret && new_fb) {
471 struct drm_crtc *crtc = state->crtc;
472 struct vmw_connector_state *vcs;
473 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
474 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
475 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
476
477 vcs = vmw_connector_state_to_vcs(du->connector.state);
478
479 if ((dest.x2 > new_fb->width ||
480 dest.y2 > new_fb->height)) {
481 DRM_ERROR("CRTC area outside of framebuffer\n");
482 return -EINVAL;
483 }
484
485 /* Only one active implicit framebuffer at a time. */
486 mutex_lock(&dev_priv->global_kms_state_mutex);
487 if (vcs->is_implicit && dev_priv->implicit_fb &&
488 !(dev_priv->num_implicit == 1 && du->active_implicit)
489 && dev_priv->implicit_fb != vfb) {
490 DRM_ERROR("Multiple implicit framebuffers "
491 "not supported.\n");
492 ret = -EINVAL;
493 }
494 mutex_unlock(&dev_priv->global_kms_state_mutex);
495 }
496
497
498 return ret;
499 }
500
501
502 /**
503 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
504 *
505 * @plane: cursor plane
506 * @state: info on the new plane state
507 *
508 * This is a chance to fail if the new cursor state does not fit
509 * our requirements.
510 *
511 * Returns 0 on success
512 */
513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
514 struct drm_plane_state *new_state)
515 {
516 int ret = 0;
517 struct vmw_surface *surface = NULL;
518 struct drm_framebuffer *fb = new_state->fb;
519
520
521 /* Turning off */
522 if (!fb)
523 return ret;
524
525 /* A lot of the code assumes this */
526 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
527 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
528 new_state->crtc_w, new_state->crtc_h);
529 ret = -EINVAL;
530 }
531
532 if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
533 surface = vmw_framebuffer_to_vfbs(fb)->surface;
534
535 if (surface && !surface->snooper.image) {
536 DRM_ERROR("surface not suitable for cursor\n");
537 ret = -EINVAL;
538 }
539
540 return ret;
541 }
542
543
544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
545 struct drm_crtc_state *new_state)
546 {
547 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
548 int connector_mask = 1 << drm_connector_index(&du->connector);
549 bool has_primary = new_state->plane_mask &
550 BIT(drm_plane_index(crtc->primary));
551
552 /* We always want to have an active plane with an active CRTC */
553 if (has_primary != new_state->enable)
554 return -EINVAL;
555
556
557 if (new_state->connector_mask != connector_mask &&
558 new_state->connector_mask != 0) {
559 DRM_ERROR("Invalid connectors configuration\n");
560 return -EINVAL;
561 }
562
563 /*
564 * Our virtual device does not have a dot clock, so use the logical
565 * clock value as the dot clock.
566 */
567 if (new_state->mode.crtc_clock == 0)
568 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
569
570 return 0;
571 }
572
573
574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
575 struct drm_crtc_state *old_crtc_state)
576 {
577 }
578
579
580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
581 struct drm_crtc_state *old_crtc_state)
582 {
583 struct drm_pending_vblank_event *event = crtc->state->event;
584
585 if (event) {
586 crtc->state->event = NULL;
587
588 spin_lock_irq(&crtc->dev->event_lock);
589 if (drm_crtc_vblank_get(crtc) == 0)
590 drm_crtc_arm_vblank_event(crtc, event);
591 else
592 drm_crtc_send_vblank_event(crtc, event);
593 spin_unlock_irq(&crtc->dev->event_lock);
594 }
595
596 }
597
598
599 /**
600 * vmw_du_crtc_duplicate_state - duplicate crtc state
601 * @crtc: DRM crtc
602 *
603 * Allocates and returns a copy of the crtc state (both common and
604 * vmw-specific) for the specified crtc.
605 *
606 * Returns: The newly allocated crtc state, or NULL on failure.
607 */
608 struct drm_crtc_state *
609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
610 {
611 struct drm_crtc_state *state;
612 struct vmw_crtc_state *vcs;
613
614 if (WARN_ON(!crtc->state))
615 return NULL;
616
617 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
618
619 if (!vcs)
620 return NULL;
621
622 state = &vcs->base;
623
624 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
625
626 return state;
627 }
628
629
630 /**
631 * vmw_du_crtc_reset - creates a blank vmw crtc state
632 * @crtc: DRM crtc
633 *
634 * Resets the atomic state for @crtc by freeing the state pointer (which
635 * might be NULL, e.g. at driver load time) and allocating a new empty state
636 * object.
637 */
638 void vmw_du_crtc_reset(struct drm_crtc *crtc)
639 {
640 struct vmw_crtc_state *vcs;
641
642
643 if (crtc->state) {
644 __drm_atomic_helper_crtc_destroy_state(crtc->state);
645
646 kfree(vmw_crtc_state_to_vcs(crtc->state));
647 }
648
649 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
650
651 if (!vcs) {
652 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
653 return;
654 }
655
656 crtc->state = &vcs->base;
657 crtc->state->crtc = crtc;
658 }
659
660
661 /**
662 * vmw_du_crtc_destroy_state - destroy crtc state
663 * @crtc: DRM crtc
664 * @state: state object to destroy
665 *
666 * Destroys the crtc state (both common and vmw-specific) for the
667 * specified plane.
668 */
669 void
670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
671 struct drm_crtc_state *state)
672 {
673 drm_atomic_helper_crtc_destroy_state(crtc, state);
674 }
675
676
677 /**
678 * vmw_du_plane_duplicate_state - duplicate plane state
679 * @plane: drm plane
680 *
681 * Allocates and returns a copy of the plane state (both common and
682 * vmw-specific) for the specified plane.
683 *
684 * Returns: The newly allocated plane state, or NULL on failure.
685 */
686 struct drm_plane_state *
687 vmw_du_plane_duplicate_state(struct drm_plane *plane)
688 {
689 struct drm_plane_state *state;
690 struct vmw_plane_state *vps;
691
692 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
693
694 if (!vps)
695 return NULL;
696
697 vps->pinned = 0;
698
699 /* Mapping is managed by prepare_fb/cleanup_fb */
700 memset(&vps->guest_map, 0, sizeof(vps->guest_map));
701 memset(&vps->host_map, 0, sizeof(vps->host_map));
702 vps->cpp = 0;
703
704 /* Each ref counted resource needs to be acquired again */
705 if (vps->surf)
706 (void) vmw_surface_reference(vps->surf);
707
708 if (vps->dmabuf)
709 (void) vmw_dmabuf_reference(vps->dmabuf);
710
711 state = &vps->base;
712
713 __drm_atomic_helper_plane_duplicate_state(plane, state);
714
715 return state;
716 }
717
718
719 /**
720 * vmw_du_plane_reset - creates a blank vmw plane state
721 * @plane: drm plane
722 *
723 * Resets the atomic state for @plane by freeing the state pointer (which might
724 * be NULL, e.g. at driver load time) and allocating a new empty state object.
725 */
726 void vmw_du_plane_reset(struct drm_plane *plane)
727 {
728 struct vmw_plane_state *vps;
729
730
731 if (plane->state)
732 vmw_du_plane_destroy_state(plane, plane->state);
733
734 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
735
736 if (!vps) {
737 DRM_ERROR("Cannot allocate vmw_plane_state\n");
738 return;
739 }
740
741 plane->state = &vps->base;
742 plane->state->plane = plane;
743 plane->state->rotation = DRM_MODE_ROTATE_0;
744 }
745
746
747 /**
748 * vmw_du_plane_destroy_state - destroy plane state
749 * @plane: DRM plane
750 * @state: state object to destroy
751 *
752 * Destroys the plane state (both common and vmw-specific) for the
753 * specified plane.
754 */
755 void
756 vmw_du_plane_destroy_state(struct drm_plane *plane,
757 struct drm_plane_state *state)
758 {
759 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
760
761
762 /* Should have been freed by cleanup_fb */
763 if (vps->guest_map.virtual) {
764 DRM_ERROR("Guest mapping not freed\n");
765 ttm_bo_kunmap(&vps->guest_map);
766 }
767
768 if (vps->host_map.virtual) {
769 DRM_ERROR("Host mapping not freed\n");
770 ttm_bo_kunmap(&vps->host_map);
771 }
772
773 if (vps->surf)
774 vmw_surface_unreference(&vps->surf);
775
776 if (vps->dmabuf)
777 vmw_dmabuf_unreference(&vps->dmabuf);
778
779 drm_atomic_helper_plane_destroy_state(plane, state);
780 }
781
782
783 /**
784 * vmw_du_connector_duplicate_state - duplicate connector state
785 * @connector: DRM connector
786 *
787 * Allocates and returns a copy of the connector state (both common and
788 * vmw-specific) for the specified connector.
789 *
790 * Returns: The newly allocated connector state, or NULL on failure.
791 */
792 struct drm_connector_state *
793 vmw_du_connector_duplicate_state(struct drm_connector *connector)
794 {
795 struct drm_connector_state *state;
796 struct vmw_connector_state *vcs;
797
798 if (WARN_ON(!connector->state))
799 return NULL;
800
801 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
802
803 if (!vcs)
804 return NULL;
805
806 state = &vcs->base;
807
808 __drm_atomic_helper_connector_duplicate_state(connector, state);
809
810 return state;
811 }
812
813
814 /**
815 * vmw_du_connector_reset - creates a blank vmw connector state
816 * @connector: DRM connector
817 *
818 * Resets the atomic state for @connector by freeing the state pointer (which
819 * might be NULL, e.g. at driver load time) and allocating a new empty state
820 * object.
821 */
822 void vmw_du_connector_reset(struct drm_connector *connector)
823 {
824 struct vmw_connector_state *vcs;
825
826
827 if (connector->state) {
828 __drm_atomic_helper_connector_destroy_state(connector->state);
829
830 kfree(vmw_connector_state_to_vcs(connector->state));
831 }
832
833 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
834
835 if (!vcs) {
836 DRM_ERROR("Cannot allocate vmw_connector_state\n");
837 return;
838 }
839
840 __drm_atomic_helper_connector_reset(connector, &vcs->base);
841 }
842
843
844 /**
845 * vmw_du_connector_destroy_state - destroy connector state
846 * @connector: DRM connector
847 * @state: state object to destroy
848 *
849 * Destroys the connector state (both common and vmw-specific) for the
850 * specified plane.
851 */
852 void
853 vmw_du_connector_destroy_state(struct drm_connector *connector,
854 struct drm_connector_state *state)
855 {
856 drm_atomic_helper_connector_destroy_state(connector, state);
857 }
858 /*
859 * Generic framebuffer code
860 */
861
862 /*
863 * Surface framebuffer code
864 */
865
866 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
867 {
868 struct vmw_framebuffer_surface *vfbs =
869 vmw_framebuffer_to_vfbs(framebuffer);
870
871 drm_framebuffer_cleanup(framebuffer);
872 vmw_surface_unreference(&vfbs->surface);
873 if (vfbs->base.user_obj)
874 ttm_base_object_unref(&vfbs->base.user_obj);
875
876 kfree(vfbs);
877 }
878
879 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
880 struct drm_file *file_priv,
881 unsigned flags, unsigned color,
882 struct drm_clip_rect *clips,
883 unsigned num_clips)
884 {
885 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
886 struct vmw_framebuffer_surface *vfbs =
887 vmw_framebuffer_to_vfbs(framebuffer);
888 struct drm_clip_rect norect;
889 int ret, inc = 1;
890
891 /* Legacy Display Unit does not support 3D */
892 if (dev_priv->active_display_unit == vmw_du_legacy)
893 return -EINVAL;
894
895 drm_modeset_lock_all(dev_priv->dev);
896
897 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
898 if (unlikely(ret != 0)) {
899 drm_modeset_unlock_all(dev_priv->dev);
900 return ret;
901 }
902
903 if (!num_clips) {
904 num_clips = 1;
905 clips = &norect;
906 norect.x1 = norect.y1 = 0;
907 norect.x2 = framebuffer->width;
908 norect.y2 = framebuffer->height;
909 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
910 num_clips /= 2;
911 inc = 2; /* skip source rects */
912 }
913
914 if (dev_priv->active_display_unit == vmw_du_screen_object)
915 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
916 clips, NULL, NULL, 0, 0,
917 num_clips, inc, NULL);
918 else
919 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
920 clips, NULL, NULL, 0, 0,
921 num_clips, inc, NULL);
922
923 vmw_fifo_flush(dev_priv, false);
924 ttm_read_unlock(&dev_priv->reservation_sem);
925
926 drm_modeset_unlock_all(dev_priv->dev);
927
928 return 0;
929 }
930
931 /**
932 * vmw_kms_readback - Perform a readback from the screen system to
933 * a dma-buffer backed framebuffer.
934 *
935 * @dev_priv: Pointer to the device private structure.
936 * @file_priv: Pointer to a struct drm_file identifying the caller.
937 * Must be set to NULL if @user_fence_rep is NULL.
938 * @vfb: Pointer to the dma-buffer backed framebuffer.
939 * @user_fence_rep: User-space provided structure for fence information.
940 * Must be set to non-NULL if @file_priv is non-NULL.
941 * @vclips: Array of clip rects.
942 * @num_clips: Number of clip rects in @vclips.
943 *
944 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
945 * interrupted.
946 */
947 int vmw_kms_readback(struct vmw_private *dev_priv,
948 struct drm_file *file_priv,
949 struct vmw_framebuffer *vfb,
950 struct drm_vmw_fence_rep __user *user_fence_rep,
951 struct drm_vmw_rect *vclips,
952 uint32_t num_clips)
953 {
954 switch (dev_priv->active_display_unit) {
955 case vmw_du_screen_object:
956 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
957 user_fence_rep, vclips, num_clips);
958 case vmw_du_screen_target:
959 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
960 user_fence_rep, NULL, vclips, num_clips,
961 1, false, true);
962 default:
963 WARN_ONCE(true,
964 "Readback called with invalid display system.\n");
965 }
966
967 return -ENOSYS;
968 }
969
970
971 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
972 .destroy = vmw_framebuffer_surface_destroy,
973 .dirty = vmw_framebuffer_surface_dirty,
974 };
975
976 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
977 struct vmw_surface *surface,
978 struct vmw_framebuffer **out,
979 const struct drm_mode_fb_cmd2
980 *mode_cmd,
981 bool is_dmabuf_proxy)
982
983 {
984 struct drm_device *dev = dev_priv->dev;
985 struct vmw_framebuffer_surface *vfbs;
986 enum SVGA3dSurfaceFormat format;
987 int ret;
988 struct drm_format_name_buf format_name;
989
990 /* 3D is only supported on HWv8 and newer hosts */
991 if (dev_priv->active_display_unit == vmw_du_legacy)
992 return -ENOSYS;
993
994 /*
995 * Sanity checks.
996 */
997
998 /* Surface must be marked as a scanout. */
999 if (unlikely(!surface->scanout))
1000 return -EINVAL;
1001
1002 if (unlikely(surface->mip_levels[0] != 1 ||
1003 surface->num_sizes != 1 ||
1004 surface->base_size.width < mode_cmd->width ||
1005 surface->base_size.height < mode_cmd->height ||
1006 surface->base_size.depth != 1)) {
1007 DRM_ERROR("Incompatible surface dimensions "
1008 "for requested mode.\n");
1009 return -EINVAL;
1010 }
1011
1012 switch (mode_cmd->pixel_format) {
1013 case DRM_FORMAT_ARGB8888:
1014 format = SVGA3D_A8R8G8B8;
1015 break;
1016 case DRM_FORMAT_XRGB8888:
1017 format = SVGA3D_X8R8G8B8;
1018 break;
1019 case DRM_FORMAT_RGB565:
1020 format = SVGA3D_R5G6B5;
1021 break;
1022 case DRM_FORMAT_XRGB1555:
1023 format = SVGA3D_A1R5G5B5;
1024 break;
1025 default:
1026 DRM_ERROR("Invalid pixel format: %s\n",
1027 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1028 return -EINVAL;
1029 }
1030
1031 /*
1032 * For DX, surface format validation is done when surface->scanout
1033 * is set.
1034 */
1035 if (!dev_priv->has_dx && format != surface->format) {
1036 DRM_ERROR("Invalid surface format for requested mode.\n");
1037 return -EINVAL;
1038 }
1039
1040 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1041 if (!vfbs) {
1042 ret = -ENOMEM;
1043 goto out_err1;
1044 }
1045
1046 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1047 vfbs->surface = vmw_surface_reference(surface);
1048 vfbs->base.user_handle = mode_cmd->handles[0];
1049 vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1050
1051 *out = &vfbs->base;
1052
1053 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1054 &vmw_framebuffer_surface_funcs);
1055 if (ret)
1056 goto out_err2;
1057
1058 return 0;
1059
1060 out_err2:
1061 vmw_surface_unreference(&surface);
1062 kfree(vfbs);
1063 out_err1:
1064 return ret;
1065 }
1066
1067 /*
1068 * Dmabuf framebuffer code
1069 */
1070
1071 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1072 {
1073 struct vmw_framebuffer_dmabuf *vfbd =
1074 vmw_framebuffer_to_vfbd(framebuffer);
1075
1076 drm_framebuffer_cleanup(framebuffer);
1077 vmw_dmabuf_unreference(&vfbd->buffer);
1078 if (vfbd->base.user_obj)
1079 ttm_base_object_unref(&vfbd->base.user_obj);
1080
1081 kfree(vfbd);
1082 }
1083
1084 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1085 struct drm_file *file_priv,
1086 unsigned flags, unsigned color,
1087 struct drm_clip_rect *clips,
1088 unsigned num_clips)
1089 {
1090 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1091 struct vmw_framebuffer_dmabuf *vfbd =
1092 vmw_framebuffer_to_vfbd(framebuffer);
1093 struct drm_clip_rect norect;
1094 int ret, increment = 1;
1095
1096 drm_modeset_lock_all(dev_priv->dev);
1097
1098 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1099 if (unlikely(ret != 0)) {
1100 drm_modeset_unlock_all(dev_priv->dev);
1101 return ret;
1102 }
1103
1104 if (!num_clips) {
1105 num_clips = 1;
1106 clips = &norect;
1107 norect.x1 = norect.y1 = 0;
1108 norect.x2 = framebuffer->width;
1109 norect.y2 = framebuffer->height;
1110 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1111 num_clips /= 2;
1112 increment = 2;
1113 }
1114
1115 switch (dev_priv->active_display_unit) {
1116 case vmw_du_screen_target:
1117 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1118 clips, NULL, num_clips, increment,
1119 true, true);
1120 break;
1121 case vmw_du_screen_object:
1122 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1123 clips, NULL, num_clips,
1124 increment, true, NULL);
1125 break;
1126 case vmw_du_legacy:
1127 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1128 clips, num_clips, increment);
1129 break;
1130 default:
1131 ret = -EINVAL;
1132 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1133 break;
1134 }
1135
1136 vmw_fifo_flush(dev_priv, false);
1137 ttm_read_unlock(&dev_priv->reservation_sem);
1138
1139 drm_modeset_unlock_all(dev_priv->dev);
1140
1141 return ret;
1142 }
1143
1144 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1145 .destroy = vmw_framebuffer_dmabuf_destroy,
1146 .dirty = vmw_framebuffer_dmabuf_dirty,
1147 };
1148
1149 /**
1150 * Pin the dmabuffer to the start of vram.
1151 */
1152 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1153 {
1154 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1155 struct vmw_dma_buffer *buf;
1156 int ret;
1157
1158 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1159 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1160
1161 if (!buf)
1162 return 0;
1163
1164 switch (dev_priv->active_display_unit) {
1165 case vmw_du_legacy:
1166 vmw_overlay_pause_all(dev_priv);
1167 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1168 vmw_overlay_resume_all(dev_priv);
1169 break;
1170 case vmw_du_screen_object:
1171 case vmw_du_screen_target:
1172 if (vfb->dmabuf)
1173 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1174 false);
1175
1176 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1177 &vmw_mob_placement, false);
1178 default:
1179 return -EINVAL;
1180 }
1181
1182 return ret;
1183 }
1184
1185 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1186 {
1187 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1188 struct vmw_dma_buffer *buf;
1189
1190 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1191 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1192
1193 if (WARN_ON(!buf))
1194 return 0;
1195
1196 return vmw_dmabuf_unpin(dev_priv, buf, false);
1197 }
1198
1199 /**
1200 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1201 *
1202 * @dev: DRM device
1203 * @mode_cmd: parameters for the new surface
1204 * @dmabuf_mob: MOB backing the DMA buf
1205 * @srf_out: newly created surface
1206 *
1207 * When the content FB is a DMA buf, we create a surface as a proxy to the
1208 * same buffer. This way we can do a surface copy rather than a surface DMA.
1209 * This is a more efficient approach
1210 *
1211 * RETURNS:
1212 * 0 on success, error code otherwise
1213 */
1214 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1215 const struct drm_mode_fb_cmd2 *mode_cmd,
1216 struct vmw_dma_buffer *dmabuf_mob,
1217 struct vmw_surface **srf_out)
1218 {
1219 uint32_t format;
1220 struct drm_vmw_size content_base_size = {0};
1221 struct vmw_resource *res;
1222 unsigned int bytes_pp;
1223 struct drm_format_name_buf format_name;
1224 int ret;
1225
1226 switch (mode_cmd->pixel_format) {
1227 case DRM_FORMAT_ARGB8888:
1228 case DRM_FORMAT_XRGB8888:
1229 format = SVGA3D_X8R8G8B8;
1230 bytes_pp = 4;
1231 break;
1232
1233 case DRM_FORMAT_RGB565:
1234 case DRM_FORMAT_XRGB1555:
1235 format = SVGA3D_R5G6B5;
1236 bytes_pp = 2;
1237 break;
1238
1239 case 8:
1240 format = SVGA3D_P8;
1241 bytes_pp = 1;
1242 break;
1243
1244 default:
1245 DRM_ERROR("Invalid framebuffer format %s\n",
1246 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1247 return -EINVAL;
1248 }
1249
1250 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1251 content_base_size.height = mode_cmd->height;
1252 content_base_size.depth = 1;
1253
1254 ret = vmw_surface_gb_priv_define(dev,
1255 0, /* kernel visible only */
1256 0, /* flags */
1257 format,
1258 true, /* can be a scanout buffer */
1259 1, /* num of mip levels */
1260 0,
1261 0,
1262 content_base_size,
1263 srf_out);
1264 if (ret) {
1265 DRM_ERROR("Failed to allocate proxy content buffer\n");
1266 return ret;
1267 }
1268
1269 res = &(*srf_out)->res;
1270
1271 /* Reserve and switch the backing mob. */
1272 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1273 (void) vmw_resource_reserve(res, false, true);
1274 vmw_dmabuf_unreference(&res->backup);
1275 res->backup = vmw_dmabuf_reference(dmabuf_mob);
1276 res->backup_offset = 0;
1277 vmw_resource_unreserve(res, false, NULL, 0);
1278 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1279
1280 return 0;
1281 }
1282
1283
1284
1285 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1286 struct vmw_dma_buffer *dmabuf,
1287 struct vmw_framebuffer **out,
1288 const struct drm_mode_fb_cmd2
1289 *mode_cmd)
1290
1291 {
1292 struct drm_device *dev = dev_priv->dev;
1293 struct vmw_framebuffer_dmabuf *vfbd;
1294 unsigned int requested_size;
1295 struct drm_format_name_buf format_name;
1296 int ret;
1297
1298 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1299 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1300 DRM_ERROR("Screen buffer object size is too small "
1301 "for requested mode.\n");
1302 return -EINVAL;
1303 }
1304
1305 /* Limited framebuffer color depth support for screen objects */
1306 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1307 switch (mode_cmd->pixel_format) {
1308 case DRM_FORMAT_XRGB8888:
1309 case DRM_FORMAT_ARGB8888:
1310 break;
1311 case DRM_FORMAT_XRGB1555:
1312 case DRM_FORMAT_RGB565:
1313 break;
1314 default:
1315 DRM_ERROR("Invalid pixel format: %s\n",
1316 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1317 return -EINVAL;
1318 }
1319 }
1320
1321 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1322 if (!vfbd) {
1323 ret = -ENOMEM;
1324 goto out_err1;
1325 }
1326
1327 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1328 vfbd->base.dmabuf = true;
1329 vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1330 vfbd->base.user_handle = mode_cmd->handles[0];
1331 *out = &vfbd->base;
1332
1333 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1334 &vmw_framebuffer_dmabuf_funcs);
1335 if (ret)
1336 goto out_err2;
1337
1338 return 0;
1339
1340 out_err2:
1341 vmw_dmabuf_unreference(&dmabuf);
1342 kfree(vfbd);
1343 out_err1:
1344 return ret;
1345 }
1346
1347
1348 /**
1349 * vmw_kms_srf_ok - check if a surface can be created
1350 *
1351 * @width: requested width
1352 * @height: requested height
1353 *
1354 * Surfaces need to be less than texture size
1355 */
1356 static bool
1357 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1358 {
1359 if (width > dev_priv->texture_max_width ||
1360 height > dev_priv->texture_max_height)
1361 return false;
1362
1363 return true;
1364 }
1365
1366 /**
1367 * vmw_kms_new_framebuffer - Create a new framebuffer.
1368 *
1369 * @dev_priv: Pointer to device private struct.
1370 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1371 * Either @dmabuf or @surface must be NULL.
1372 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1373 * Either @dmabuf or @surface must be NULL.
1374 * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1375 * Helps the code to do some important optimizations.
1376 * @mode_cmd: Frame-buffer metadata.
1377 */
1378 struct vmw_framebuffer *
1379 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1380 struct vmw_dma_buffer *dmabuf,
1381 struct vmw_surface *surface,
1382 bool only_2d,
1383 const struct drm_mode_fb_cmd2 *mode_cmd)
1384 {
1385 struct vmw_framebuffer *vfb = NULL;
1386 bool is_dmabuf_proxy = false;
1387 int ret;
1388
1389 /*
1390 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1391 * therefore, wrap the DMA buf in a surface so we can use the
1392 * SurfaceCopy command.
1393 */
1394 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1395 dmabuf && only_2d &&
1396 mode_cmd->width > 64 && /* Don't create a proxy for cursor */
1397 dev_priv->active_display_unit == vmw_du_screen_target) {
1398 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1399 dmabuf, &surface);
1400 if (ret)
1401 return ERR_PTR(ret);
1402
1403 is_dmabuf_proxy = true;
1404 }
1405
1406 /* Create the new framebuffer depending one what we have */
1407 if (surface) {
1408 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1409 mode_cmd,
1410 is_dmabuf_proxy);
1411
1412 /*
1413 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1414 * needed
1415 */
1416 if (is_dmabuf_proxy)
1417 vmw_surface_unreference(&surface);
1418 } else if (dmabuf) {
1419 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1420 mode_cmd);
1421 } else {
1422 BUG();
1423 }
1424
1425 if (ret)
1426 return ERR_PTR(ret);
1427
1428 vfb->pin = vmw_framebuffer_pin;
1429 vfb->unpin = vmw_framebuffer_unpin;
1430
1431 return vfb;
1432 }
1433
1434 /*
1435 * Generic Kernel modesetting functions
1436 */
1437
1438 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1439 struct drm_file *file_priv,
1440 const struct drm_mode_fb_cmd2 *mode_cmd)
1441 {
1442 struct vmw_private *dev_priv = vmw_priv(dev);
1443 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1444 struct vmw_framebuffer *vfb = NULL;
1445 struct vmw_surface *surface = NULL;
1446 struct vmw_dma_buffer *bo = NULL;
1447 struct ttm_base_object *user_obj;
1448 int ret;
1449
1450 /**
1451 * This code should be conditioned on Screen Objects not being used.
1452 * If screen objects are used, we can allocate a GMR to hold the
1453 * requested framebuffer.
1454 */
1455
1456 if (!vmw_kms_validate_mode_vram(dev_priv,
1457 mode_cmd->pitches[0],
1458 mode_cmd->height)) {
1459 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1460 return ERR_PTR(-ENOMEM);
1461 }
1462
1463 /*
1464 * Take a reference on the user object of the resource
1465 * backing the kms fb. This ensures that user-space handle
1466 * lookups on that resource will always work as long as
1467 * it's registered with a kms framebuffer. This is important,
1468 * since vmw_execbuf_process identifies resources in the
1469 * command stream using user-space handles.
1470 */
1471
1472 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1473 if (unlikely(user_obj == NULL)) {
1474 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1475 return ERR_PTR(-ENOENT);
1476 }
1477
1478 /**
1479 * End conditioned code.
1480 */
1481
1482 /* returns either a dmabuf or surface */
1483 ret = vmw_user_lookup_handle(dev_priv, tfile,
1484 mode_cmd->handles[0],
1485 &surface, &bo);
1486 if (ret)
1487 goto err_out;
1488
1489
1490 if (!bo &&
1491 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1492 DRM_ERROR("Surface size cannot exceed %dx%d",
1493 dev_priv->texture_max_width,
1494 dev_priv->texture_max_height);
1495 goto err_out;
1496 }
1497
1498
1499 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1500 !(dev_priv->capabilities & SVGA_CAP_3D),
1501 mode_cmd);
1502 if (IS_ERR(vfb)) {
1503 ret = PTR_ERR(vfb);
1504 goto err_out;
1505 }
1506
1507 err_out:
1508 /* vmw_user_lookup_handle takes one ref so does new_fb */
1509 if (bo)
1510 vmw_dmabuf_unreference(&bo);
1511 if (surface)
1512 vmw_surface_unreference(&surface);
1513
1514 if (ret) {
1515 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1516 ttm_base_object_unref(&user_obj);
1517 return ERR_PTR(ret);
1518 } else
1519 vfb->user_obj = user_obj;
1520
1521 return &vfb->base;
1522 }
1523
1524
1525
1526 /**
1527 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1528 *
1529 * @dev: DRM device
1530 * @state: the driver state object
1531 *
1532 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1533 * us to assign a value to mode->crtc_clock so that
1534 * drm_calc_timestamping_constants() won't throw an error message
1535 *
1536 * RETURNS
1537 * Zero for success or -errno
1538 */
1539 static int
1540 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1541 struct drm_atomic_state *state)
1542 {
1543 struct drm_crtc_state *crtc_state;
1544 struct drm_crtc *crtc;
1545 struct vmw_private *dev_priv = vmw_priv(dev);
1546 int i;
1547
1548 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1549 unsigned long requested_bb_mem = 0;
1550
1551 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1552 if (crtc->primary->fb) {
1553 int cpp = crtc->primary->fb->pitches[0] /
1554 crtc->primary->fb->width;
1555
1556 requested_bb_mem += crtc->mode.hdisplay * cpp *
1557 crtc->mode.vdisplay;
1558 }
1559
1560 if (requested_bb_mem > dev_priv->prim_bb_mem)
1561 return -EINVAL;
1562 }
1563 }
1564
1565 return drm_atomic_helper_check(dev, state);
1566 }
1567
1568
1569 /**
1570 * vmw_kms_atomic_commit - Perform an atomic state commit
1571 *
1572 * @dev: DRM device
1573 * @state: the driver state object
1574 * @nonblock: Whether nonblocking behaviour is requested
1575 *
1576 * This is a simple wrapper around drm_atomic_helper_commit() for
1577 * us to clear the nonblocking value.
1578 *
1579 * Nonblocking commits currently cause synchronization issues
1580 * for vmwgfx.
1581 *
1582 * RETURNS
1583 * Zero for success or negative error code on failure.
1584 */
1585 int vmw_kms_atomic_commit(struct drm_device *dev,
1586 struct drm_atomic_state *state,
1587 bool nonblock)
1588 {
1589 return drm_atomic_helper_commit(dev, state, false);
1590 }
1591
1592
1593 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1594 .fb_create = vmw_kms_fb_create,
1595 .atomic_check = vmw_kms_atomic_check_modeset,
1596 .atomic_commit = vmw_kms_atomic_commit,
1597 };
1598
1599 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1600 struct drm_file *file_priv,
1601 struct vmw_framebuffer *vfb,
1602 struct vmw_surface *surface,
1603 uint32_t sid,
1604 int32_t destX, int32_t destY,
1605 struct drm_vmw_rect *clips,
1606 uint32_t num_clips)
1607 {
1608 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1609 &surface->res, destX, destY,
1610 num_clips, 1, NULL);
1611 }
1612
1613
1614 int vmw_kms_present(struct vmw_private *dev_priv,
1615 struct drm_file *file_priv,
1616 struct vmw_framebuffer *vfb,
1617 struct vmw_surface *surface,
1618 uint32_t sid,
1619 int32_t destX, int32_t destY,
1620 struct drm_vmw_rect *clips,
1621 uint32_t num_clips)
1622 {
1623 int ret;
1624
1625 switch (dev_priv->active_display_unit) {
1626 case vmw_du_screen_target:
1627 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1628 &surface->res, destX, destY,
1629 num_clips, 1, NULL);
1630 break;
1631 case vmw_du_screen_object:
1632 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1633 sid, destX, destY, clips,
1634 num_clips);
1635 break;
1636 default:
1637 WARN_ONCE(true,
1638 "Present called with invalid display system.\n");
1639 ret = -ENOSYS;
1640 break;
1641 }
1642 if (ret)
1643 return ret;
1644
1645 vmw_fifo_flush(dev_priv, false);
1646
1647 return 0;
1648 }
1649
1650 static void
1651 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1652 {
1653 if (dev_priv->hotplug_mode_update_property)
1654 return;
1655
1656 dev_priv->hotplug_mode_update_property =
1657 drm_property_create_range(dev_priv->dev,
1658 DRM_MODE_PROP_IMMUTABLE,
1659 "hotplug_mode_update", 0, 1);
1660
1661 if (!dev_priv->hotplug_mode_update_property)
1662 return;
1663
1664 }
1665
1666 int vmw_kms_init(struct vmw_private *dev_priv)
1667 {
1668 struct drm_device *dev = dev_priv->dev;
1669 int ret;
1670
1671 drm_mode_config_init(dev);
1672 dev->mode_config.funcs = &vmw_kms_funcs;
1673 dev->mode_config.min_width = 1;
1674 dev->mode_config.min_height = 1;
1675 dev->mode_config.max_width = dev_priv->texture_max_width;
1676 dev->mode_config.max_height = dev_priv->texture_max_height;
1677
1678 drm_mode_create_suggested_offset_properties(dev);
1679 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1680
1681 ret = vmw_kms_stdu_init_display(dev_priv);
1682 if (ret) {
1683 ret = vmw_kms_sou_init_display(dev_priv);
1684 if (ret) /* Fallback */
1685 ret = vmw_kms_ldu_init_display(dev_priv);
1686 }
1687
1688 return ret;
1689 }
1690
1691 int vmw_kms_close(struct vmw_private *dev_priv)
1692 {
1693 int ret = 0;
1694
1695 /*
1696 * Docs says we should take the lock before calling this function
1697 * but since it destroys encoders and our destructor calls
1698 * drm_encoder_cleanup which takes the lock we deadlock.
1699 */
1700 drm_mode_config_cleanup(dev_priv->dev);
1701 if (dev_priv->active_display_unit == vmw_du_legacy)
1702 ret = vmw_kms_ldu_close_display(dev_priv);
1703
1704 return ret;
1705 }
1706
1707 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1708 struct drm_file *file_priv)
1709 {
1710 struct drm_vmw_cursor_bypass_arg *arg = data;
1711 struct vmw_display_unit *du;
1712 struct drm_crtc *crtc;
1713 int ret = 0;
1714
1715
1716 mutex_lock(&dev->mode_config.mutex);
1717 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1718
1719 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1720 du = vmw_crtc_to_du(crtc);
1721 du->hotspot_x = arg->xhot;
1722 du->hotspot_y = arg->yhot;
1723 }
1724
1725 mutex_unlock(&dev->mode_config.mutex);
1726 return 0;
1727 }
1728
1729 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1730 if (!crtc) {
1731 ret = -ENOENT;
1732 goto out;
1733 }
1734
1735 du = vmw_crtc_to_du(crtc);
1736
1737 du->hotspot_x = arg->xhot;
1738 du->hotspot_y = arg->yhot;
1739
1740 out:
1741 mutex_unlock(&dev->mode_config.mutex);
1742
1743 return ret;
1744 }
1745
1746 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1747 unsigned width, unsigned height, unsigned pitch,
1748 unsigned bpp, unsigned depth)
1749 {
1750 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1751 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1752 else if (vmw_fifo_have_pitchlock(vmw_priv))
1753 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1754 SVGA_FIFO_PITCHLOCK);
1755 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1756 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1757 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1758
1759 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1760 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1761 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1762 return -EINVAL;
1763 }
1764
1765 return 0;
1766 }
1767
1768 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1769 {
1770 struct vmw_vga_topology_state *save;
1771 uint32_t i;
1772
1773 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1774 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1775 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1776 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1777 vmw_priv->vga_pitchlock =
1778 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1779 else if (vmw_fifo_have_pitchlock(vmw_priv))
1780 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1781 SVGA_FIFO_PITCHLOCK);
1782
1783 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1784 return 0;
1785
1786 vmw_priv->num_displays = vmw_read(vmw_priv,
1787 SVGA_REG_NUM_GUEST_DISPLAYS);
1788
1789 if (vmw_priv->num_displays == 0)
1790 vmw_priv->num_displays = 1;
1791
1792 for (i = 0; i < vmw_priv->num_displays; ++i) {
1793 save = &vmw_priv->vga_save[i];
1794 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1795 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1796 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1797 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1798 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1799 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1800 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1801 if (i == 0 && vmw_priv->num_displays == 1 &&
1802 save->width == 0 && save->height == 0) {
1803
1804 /*
1805 * It should be fairly safe to assume that these
1806 * values are uninitialized.
1807 */
1808
1809 save->width = vmw_priv->vga_width - save->pos_x;
1810 save->height = vmw_priv->vga_height - save->pos_y;
1811 }
1812 }
1813
1814 return 0;
1815 }
1816
1817 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1818 {
1819 struct vmw_vga_topology_state *save;
1820 uint32_t i;
1821
1822 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1823 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1824 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1825 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1826 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1827 vmw_priv->vga_pitchlock);
1828 else if (vmw_fifo_have_pitchlock(vmw_priv))
1829 vmw_mmio_write(vmw_priv->vga_pitchlock,
1830 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1831
1832 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1833 return 0;
1834
1835 for (i = 0; i < vmw_priv->num_displays; ++i) {
1836 save = &vmw_priv->vga_save[i];
1837 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1838 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1839 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1840 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1841 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1842 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1843 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1844 }
1845
1846 return 0;
1847 }
1848
1849 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1850 uint32_t pitch,
1851 uint32_t height)
1852 {
1853 return ((u64) pitch * (u64) height) < (u64)
1854 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1855 dev_priv->prim_bb_mem : dev_priv->vram_size);
1856 }
1857
1858
1859 /**
1860 * Function called by DRM code called with vbl_lock held.
1861 */
1862 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1863 {
1864 return 0;
1865 }
1866
1867 /**
1868 * Function called by DRM code called with vbl_lock held.
1869 */
1870 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1871 {
1872 return -ENOSYS;
1873 }
1874
1875 /**
1876 * Function called by DRM code called with vbl_lock held.
1877 */
1878 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1879 {
1880 }
1881
1882
1883 /*
1884 * Small shared kms functions.
1885 */
1886
1887 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1888 struct drm_vmw_rect *rects)
1889 {
1890 struct drm_device *dev = dev_priv->dev;
1891 struct vmw_display_unit *du;
1892 struct drm_connector *con;
1893
1894 mutex_lock(&dev->mode_config.mutex);
1895
1896 #if 0
1897 {
1898 unsigned int i;
1899
1900 DRM_INFO("%s: new layout ", __func__);
1901 for (i = 0; i < num; i++)
1902 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1903 rects[i].w, rects[i].h);
1904 DRM_INFO("\n");
1905 }
1906 #endif
1907
1908 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1909 du = vmw_connector_to_du(con);
1910 if (num > du->unit) {
1911 du->pref_width = rects[du->unit].w;
1912 du->pref_height = rects[du->unit].h;
1913 du->pref_active = true;
1914 du->gui_x = rects[du->unit].x;
1915 du->gui_y = rects[du->unit].y;
1916 drm_object_property_set_value
1917 (&con->base, dev->mode_config.suggested_x_property,
1918 du->gui_x);
1919 drm_object_property_set_value
1920 (&con->base, dev->mode_config.suggested_y_property,
1921 du->gui_y);
1922 } else {
1923 du->pref_width = 800;
1924 du->pref_height = 600;
1925 du->pref_active = false;
1926 drm_object_property_set_value
1927 (&con->base, dev->mode_config.suggested_x_property,
1928 0);
1929 drm_object_property_set_value
1930 (&con->base, dev->mode_config.suggested_y_property,
1931 0);
1932 }
1933 con->status = vmw_du_connector_detect(con, true);
1934 }
1935
1936 mutex_unlock(&dev->mode_config.mutex);
1937 drm_sysfs_hotplug_event(dev);
1938
1939 return 0;
1940 }
1941
1942 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1943 u16 *r, u16 *g, u16 *b,
1944 uint32_t size,
1945 struct drm_modeset_acquire_ctx *ctx)
1946 {
1947 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1948 int i;
1949
1950 for (i = 0; i < size; i++) {
1951 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1952 r[i], g[i], b[i]);
1953 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1954 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1955 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1956 }
1957
1958 return 0;
1959 }
1960
1961 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1962 {
1963 return 0;
1964 }
1965
1966 enum drm_connector_status
1967 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1968 {
1969 uint32_t num_displays;
1970 struct drm_device *dev = connector->dev;
1971 struct vmw_private *dev_priv = vmw_priv(dev);
1972 struct vmw_display_unit *du = vmw_connector_to_du(connector);
1973
1974 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1975
1976 return ((vmw_connector_to_du(connector)->unit < num_displays &&
1977 du->pref_active) ?
1978 connector_status_connected : connector_status_disconnected);
1979 }
1980
1981 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1982 /* 640x480@60Hz */
1983 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1984 752, 800, 0, 480, 489, 492, 525, 0,
1985 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1986 /* 800x600@60Hz */
1987 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1988 968, 1056, 0, 600, 601, 605, 628, 0,
1989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1990 /* 1024x768@60Hz */
1991 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1992 1184, 1344, 0, 768, 771, 777, 806, 0,
1993 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1994 /* 1152x864@75Hz */
1995 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1996 1344, 1600, 0, 864, 865, 868, 900, 0,
1997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1998 /* 1280x768@60Hz */
1999 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2000 1472, 1664, 0, 768, 771, 778, 798, 0,
2001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2002 /* 1280x800@60Hz */
2003 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2004 1480, 1680, 0, 800, 803, 809, 831, 0,
2005 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2006 /* 1280x960@60Hz */
2007 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2008 1488, 1800, 0, 960, 961, 964, 1000, 0,
2009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2010 /* 1280x1024@60Hz */
2011 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2012 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2013 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2014 /* 1360x768@60Hz */
2015 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2016 1536, 1792, 0, 768, 771, 777, 795, 0,
2017 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2018 /* 1440x1050@60Hz */
2019 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2020 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2021 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2022 /* 1440x900@60Hz */
2023 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2024 1672, 1904, 0, 900, 903, 909, 934, 0,
2025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2026 /* 1600x1200@60Hz */
2027 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2028 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2029 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2030 /* 1680x1050@60Hz */
2031 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2032 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2033 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2034 /* 1792x1344@60Hz */
2035 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2036 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2037 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2038 /* 1853x1392@60Hz */
2039 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2040 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2041 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2042 /* 1920x1200@60Hz */
2043 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2044 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2045 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2046 /* 1920x1440@60Hz */
2047 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2048 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2049 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2050 /* 2560x1600@60Hz */
2051 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2052 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2053 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2054 /* Terminate */
2055 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2056 };
2057
2058 /**
2059 * vmw_guess_mode_timing - Provide fake timings for a
2060 * 60Hz vrefresh mode.
2061 *
2062 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2063 * members filled in.
2064 */
2065 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2066 {
2067 mode->hsync_start = mode->hdisplay + 50;
2068 mode->hsync_end = mode->hsync_start + 50;
2069 mode->htotal = mode->hsync_end + 50;
2070
2071 mode->vsync_start = mode->vdisplay + 50;
2072 mode->vsync_end = mode->vsync_start + 50;
2073 mode->vtotal = mode->vsync_end + 50;
2074
2075 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2076 mode->vrefresh = drm_mode_vrefresh(mode);
2077 }
2078
2079
2080 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2081 uint32_t max_width, uint32_t max_height)
2082 {
2083 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2084 struct drm_device *dev = connector->dev;
2085 struct vmw_private *dev_priv = vmw_priv(dev);
2086 struct drm_display_mode *mode = NULL;
2087 struct drm_display_mode *bmode;
2088 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2089 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2090 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2091 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2092 };
2093 int i;
2094 u32 assumed_bpp = 4;
2095
2096 if (dev_priv->assume_16bpp)
2097 assumed_bpp = 2;
2098
2099 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2100 max_width = min(max_width, dev_priv->stdu_max_width);
2101 max_width = min(max_width, dev_priv->texture_max_width);
2102
2103 max_height = min(max_height, dev_priv->stdu_max_height);
2104 max_height = min(max_height, dev_priv->texture_max_height);
2105 }
2106
2107 /* Add preferred mode */
2108 mode = drm_mode_duplicate(dev, &prefmode);
2109 if (!mode)
2110 return 0;
2111 mode->hdisplay = du->pref_width;
2112 mode->vdisplay = du->pref_height;
2113 vmw_guess_mode_timing(mode);
2114
2115 if (vmw_kms_validate_mode_vram(dev_priv,
2116 mode->hdisplay * assumed_bpp,
2117 mode->vdisplay)) {
2118 drm_mode_probed_add(connector, mode);
2119 } else {
2120 drm_mode_destroy(dev, mode);
2121 mode = NULL;
2122 }
2123
2124 if (du->pref_mode) {
2125 list_del_init(&du->pref_mode->head);
2126 drm_mode_destroy(dev, du->pref_mode);
2127 }
2128
2129 /* mode might be null here, this is intended */
2130 du->pref_mode = mode;
2131
2132 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2133 bmode = &vmw_kms_connector_builtin[i];
2134 if (bmode->hdisplay > max_width ||
2135 bmode->vdisplay > max_height)
2136 continue;
2137
2138 if (!vmw_kms_validate_mode_vram(dev_priv,
2139 bmode->hdisplay * assumed_bpp,
2140 bmode->vdisplay))
2141 continue;
2142
2143 mode = drm_mode_duplicate(dev, bmode);
2144 if (!mode)
2145 return 0;
2146 mode->vrefresh = drm_mode_vrefresh(mode);
2147
2148 drm_mode_probed_add(connector, mode);
2149 }
2150
2151 drm_mode_connector_list_update(connector);
2152 /* Move the prefered mode first, help apps pick the right mode. */
2153 drm_mode_sort(&connector->modes);
2154
2155 return 1;
2156 }
2157
2158 int vmw_du_connector_set_property(struct drm_connector *connector,
2159 struct drm_property *property,
2160 uint64_t val)
2161 {
2162 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2163 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2164
2165 if (property == dev_priv->implicit_placement_property)
2166 du->is_implicit = val;
2167
2168 return 0;
2169 }
2170
2171
2172
2173 /**
2174 * vmw_du_connector_atomic_set_property - Atomic version of get property
2175 *
2176 * @crtc - crtc the property is associated with
2177 *
2178 * Returns:
2179 * Zero on success, negative errno on failure.
2180 */
2181 int
2182 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2183 struct drm_connector_state *state,
2184 struct drm_property *property,
2185 uint64_t val)
2186 {
2187 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2188 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2189 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2190
2191
2192 if (property == dev_priv->implicit_placement_property) {
2193 vcs->is_implicit = val;
2194
2195 /*
2196 * We should really be doing a drm_atomic_commit() to
2197 * commit the new state, but since this doesn't cause
2198 * an immedate state change, this is probably ok
2199 */
2200 du->is_implicit = vcs->is_implicit;
2201 } else {
2202 return -EINVAL;
2203 }
2204
2205 return 0;
2206 }
2207
2208
2209 /**
2210 * vmw_du_connector_atomic_get_property - Atomic version of get property
2211 *
2212 * @connector - connector the property is associated with
2213 *
2214 * Returns:
2215 * Zero on success, negative errno on failure.
2216 */
2217 int
2218 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2219 const struct drm_connector_state *state,
2220 struct drm_property *property,
2221 uint64_t *val)
2222 {
2223 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2224 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2225
2226 if (property == dev_priv->implicit_placement_property)
2227 *val = vcs->is_implicit;
2228 else {
2229 DRM_ERROR("Invalid Property %s\n", property->name);
2230 return -EINVAL;
2231 }
2232
2233 return 0;
2234 }
2235
2236
2237 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2238 struct drm_file *file_priv)
2239 {
2240 struct vmw_private *dev_priv = vmw_priv(dev);
2241 struct drm_vmw_update_layout_arg *arg =
2242 (struct drm_vmw_update_layout_arg *)data;
2243 void __user *user_rects;
2244 struct drm_vmw_rect *rects;
2245 unsigned rects_size;
2246 int ret;
2247 int i;
2248 u64 total_pixels = 0;
2249 struct drm_mode_config *mode_config = &dev->mode_config;
2250 struct drm_vmw_rect bounding_box = {0};
2251
2252 if (!arg->num_outputs) {
2253 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2254 vmw_du_update_layout(dev_priv, 1, &def_rect);
2255 return 0;
2256 }
2257
2258 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2259 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2260 GFP_KERNEL);
2261 if (unlikely(!rects))
2262 return -ENOMEM;
2263
2264 user_rects = (void __user *)(unsigned long)arg->rects;
2265 ret = copy_from_user(rects, user_rects, rects_size);
2266 if (unlikely(ret != 0)) {
2267 DRM_ERROR("Failed to get rects.\n");
2268 ret = -EFAULT;
2269 goto out_free;
2270 }
2271
2272 for (i = 0; i < arg->num_outputs; ++i) {
2273 if (rects[i].x < 0 ||
2274 rects[i].y < 0 ||
2275 rects[i].x + rects[i].w > mode_config->max_width ||
2276 rects[i].y + rects[i].h > mode_config->max_height) {
2277 DRM_ERROR("Invalid GUI layout.\n");
2278 ret = -EINVAL;
2279 goto out_free;
2280 }
2281
2282 /*
2283 * bounding_box.w and bunding_box.h are used as
2284 * lower-right coordinates
2285 */
2286 if (rects[i].x + rects[i].w > bounding_box.w)
2287 bounding_box.w = rects[i].x + rects[i].w;
2288
2289 if (rects[i].y + rects[i].h > bounding_box.h)
2290 bounding_box.h = rects[i].y + rects[i].h;
2291
2292 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2293 }
2294
2295 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2296 /*
2297 * For Screen Targets, the limits for a toplogy are:
2298 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2299 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2300 */
2301 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4;
2302 u64 pixel_mem = total_pixels * 4;
2303
2304 if (bb_mem > dev_priv->prim_bb_mem) {
2305 DRM_ERROR("Topology is beyond supported limits.\n");
2306 ret = -EINVAL;
2307 goto out_free;
2308 }
2309
2310 if (pixel_mem > dev_priv->prim_bb_mem) {
2311 DRM_ERROR("Combined output size too large\n");
2312 ret = -EINVAL;
2313 goto out_free;
2314 }
2315 }
2316
2317 vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2318
2319 out_free:
2320 kfree(rects);
2321 return ret;
2322 }
2323
2324 /**
2325 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2326 * on a set of cliprects and a set of display units.
2327 *
2328 * @dev_priv: Pointer to a device private structure.
2329 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2330 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2331 * Cliprects are given in framebuffer coordinates.
2332 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2333 * be NULL. Cliprects are given in source coordinates.
2334 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2335 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2336 * @num_clips: Number of cliprects in the @clips or @vclips array.
2337 * @increment: Integer with which to increment the clip counter when looping.
2338 * Used to skip a predetermined number of clip rects.
2339 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2340 */
2341 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2342 struct vmw_framebuffer *framebuffer,
2343 const struct drm_clip_rect *clips,
2344 const struct drm_vmw_rect *vclips,
2345 s32 dest_x, s32 dest_y,
2346 int num_clips,
2347 int increment,
2348 struct vmw_kms_dirty *dirty)
2349 {
2350 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2351 struct drm_crtc *crtc;
2352 u32 num_units = 0;
2353 u32 i, k;
2354
2355 dirty->dev_priv = dev_priv;
2356
2357 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2358 if (crtc->primary->fb != &framebuffer->base)
2359 continue;
2360 units[num_units++] = vmw_crtc_to_du(crtc);
2361 }
2362
2363 for (k = 0; k < num_units; k++) {
2364 struct vmw_display_unit *unit = units[k];
2365 s32 crtc_x = unit->crtc.x;
2366 s32 crtc_y = unit->crtc.y;
2367 s32 crtc_width = unit->crtc.mode.hdisplay;
2368 s32 crtc_height = unit->crtc.mode.vdisplay;
2369 const struct drm_clip_rect *clips_ptr = clips;
2370 const struct drm_vmw_rect *vclips_ptr = vclips;
2371
2372 dirty->unit = unit;
2373 if (dirty->fifo_reserve_size > 0) {
2374 dirty->cmd = vmw_fifo_reserve(dev_priv,
2375 dirty->fifo_reserve_size);
2376 if (!dirty->cmd) {
2377 DRM_ERROR("Couldn't reserve fifo space "
2378 "for dirty blits.\n");
2379 return -ENOMEM;
2380 }
2381 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2382 }
2383 dirty->num_hits = 0;
2384 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2385 vclips_ptr += increment) {
2386 s32 clip_left;
2387 s32 clip_top;
2388
2389 /*
2390 * Select clip array type. Note that integer type
2391 * in @clips is unsigned short, whereas in @vclips
2392 * it's 32-bit.
2393 */
2394 if (clips) {
2395 dirty->fb_x = (s32) clips_ptr->x1;
2396 dirty->fb_y = (s32) clips_ptr->y1;
2397 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2398 crtc_x;
2399 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2400 crtc_y;
2401 } else {
2402 dirty->fb_x = vclips_ptr->x;
2403 dirty->fb_y = vclips_ptr->y;
2404 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2405 dest_x - crtc_x;
2406 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2407 dest_y - crtc_y;
2408 }
2409
2410 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2411 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2412
2413 /* Skip this clip if it's outside the crtc region */
2414 if (dirty->unit_x1 >= crtc_width ||
2415 dirty->unit_y1 >= crtc_height ||
2416 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2417 continue;
2418
2419 /* Clip right and bottom to crtc limits */
2420 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2421 crtc_width);
2422 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2423 crtc_height);
2424
2425 /* Clip left and top to crtc limits */
2426 clip_left = min_t(s32, dirty->unit_x1, 0);
2427 clip_top = min_t(s32, dirty->unit_y1, 0);
2428 dirty->unit_x1 -= clip_left;
2429 dirty->unit_y1 -= clip_top;
2430 dirty->fb_x -= clip_left;
2431 dirty->fb_y -= clip_top;
2432
2433 dirty->clip(dirty);
2434 }
2435
2436 dirty->fifo_commit(dirty);
2437 }
2438
2439 return 0;
2440 }
2441
2442 /**
2443 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2444 * command submission.
2445 *
2446 * @dev_priv. Pointer to a device private structure.
2447 * @buf: The buffer object
2448 * @interruptible: Whether to perform waits as interruptible.
2449 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2450 * The buffer will be validated as a GMR. Already pinned buffers will not be
2451 * validated.
2452 *
2453 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2454 * interrupted by a signal.
2455 */
2456 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2457 struct vmw_dma_buffer *buf,
2458 bool interruptible,
2459 bool validate_as_mob)
2460 {
2461 struct ttm_buffer_object *bo = &buf->base;
2462 int ret;
2463
2464 ttm_bo_reserve(bo, false, false, NULL);
2465 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2466 validate_as_mob);
2467 if (ret)
2468 ttm_bo_unreserve(bo);
2469
2470 return ret;
2471 }
2472
2473 /**
2474 * vmw_kms_helper_buffer_revert - Undo the actions of
2475 * vmw_kms_helper_buffer_prepare.
2476 *
2477 * @res: Pointer to the buffer object.
2478 *
2479 * Helper to be used if an error forces the caller to undo the actions of
2480 * vmw_kms_helper_buffer_prepare.
2481 */
2482 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2483 {
2484 if (buf)
2485 ttm_bo_unreserve(&buf->base);
2486 }
2487
2488 /**
2489 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2490 * kms command submission.
2491 *
2492 * @dev_priv: Pointer to a device private structure.
2493 * @file_priv: Pointer to a struct drm_file representing the caller's
2494 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2495 * if non-NULL, @user_fence_rep must be non-NULL.
2496 * @buf: The buffer object.
2497 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2498 * ref-counted fence pointer is returned here.
2499 * @user_fence_rep: Optional pointer to a user-space provided struct
2500 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2501 * function copies fence data to user-space in a fail-safe manner.
2502 */
2503 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2504 struct drm_file *file_priv,
2505 struct vmw_dma_buffer *buf,
2506 struct vmw_fence_obj **out_fence,
2507 struct drm_vmw_fence_rep __user *
2508 user_fence_rep)
2509 {
2510 struct vmw_fence_obj *fence;
2511 uint32_t handle;
2512 int ret;
2513
2514 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2515 file_priv ? &handle : NULL);
2516 if (buf)
2517 vmw_fence_single_bo(&buf->base, fence);
2518 if (file_priv)
2519 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2520 ret, user_fence_rep, fence,
2521 handle, -1, NULL);
2522 if (out_fence)
2523 *out_fence = fence;
2524 else
2525 vmw_fence_obj_unreference(&fence);
2526
2527 vmw_kms_helper_buffer_revert(buf);
2528 }
2529
2530
2531 /**
2532 * vmw_kms_helper_resource_revert - Undo the actions of
2533 * vmw_kms_helper_resource_prepare.
2534 *
2535 * @res: Pointer to the resource. Typically a surface.
2536 *
2537 * Helper to be used if an error forces the caller to undo the actions of
2538 * vmw_kms_helper_resource_prepare.
2539 */
2540 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2541 {
2542 vmw_kms_helper_buffer_revert(res->backup);
2543 vmw_resource_unreserve(res, false, NULL, 0);
2544 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2545 }
2546
2547 /**
2548 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2549 * command submission.
2550 *
2551 * @res: Pointer to the resource. Typically a surface.
2552 * @interruptible: Whether to perform waits as interruptible.
2553 *
2554 * Reserves and validates also the backup buffer if a guest-backed resource.
2555 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2556 * interrupted by a signal.
2557 */
2558 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2559 bool interruptible)
2560 {
2561 int ret = 0;
2562
2563 if (interruptible)
2564 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2565 else
2566 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2567
2568 if (unlikely(ret != 0))
2569 return -ERESTARTSYS;
2570
2571 ret = vmw_resource_reserve(res, interruptible, false);
2572 if (ret)
2573 goto out_unlock;
2574
2575 if (res->backup) {
2576 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2577 interruptible,
2578 res->dev_priv->has_mob);
2579 if (ret)
2580 goto out_unreserve;
2581 }
2582 ret = vmw_resource_validate(res);
2583 if (ret)
2584 goto out_revert;
2585 return 0;
2586
2587 out_revert:
2588 vmw_kms_helper_buffer_revert(res->backup);
2589 out_unreserve:
2590 vmw_resource_unreserve(res, false, NULL, 0);
2591 out_unlock:
2592 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2593 return ret;
2594 }
2595
2596 /**
2597 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2598 * kms command submission.
2599 *
2600 * @res: Pointer to the resource. Typically a surface.
2601 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2602 * ref-counted fence pointer is returned here.
2603 */
2604 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2605 struct vmw_fence_obj **out_fence)
2606 {
2607 if (res->backup || out_fence)
2608 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2609 out_fence, NULL);
2610
2611 vmw_resource_unreserve(res, false, NULL, 0);
2612 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2613 }
2614
2615 /**
2616 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2617 * its backing MOB.
2618 *
2619 * @res: Pointer to the surface resource
2620 * @clips: Clip rects in framebuffer (surface) space.
2621 * @num_clips: Number of clips in @clips.
2622 * @increment: Integer with which to increment the clip counter when looping.
2623 * Used to skip a predetermined number of clip rects.
2624 *
2625 * This function makes sure the proxy surface is updated from its backing MOB
2626 * using the region given by @clips. The surface resource @res and its backing
2627 * MOB needs to be reserved and validated on call.
2628 */
2629 int vmw_kms_update_proxy(struct vmw_resource *res,
2630 const struct drm_clip_rect *clips,
2631 unsigned num_clips,
2632 int increment)
2633 {
2634 struct vmw_private *dev_priv = res->dev_priv;
2635 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2636 struct {
2637 SVGA3dCmdHeader header;
2638 SVGA3dCmdUpdateGBImage body;
2639 } *cmd;
2640 SVGA3dBox *box;
2641 size_t copy_size = 0;
2642 int i;
2643
2644 if (!clips)
2645 return 0;
2646
2647 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2648 if (!cmd) {
2649 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2650 "update.\n");
2651 return -ENOMEM;
2652 }
2653
2654 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2655 box = &cmd->body.box;
2656
2657 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2658 cmd->header.size = sizeof(cmd->body);
2659 cmd->body.image.sid = res->id;
2660 cmd->body.image.face = 0;
2661 cmd->body.image.mipmap = 0;
2662
2663 if (clips->x1 > size->width || clips->x2 > size->width ||
2664 clips->y1 > size->height || clips->y2 > size->height) {
2665 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2666 return -EINVAL;
2667 }
2668
2669 box->x = clips->x1;
2670 box->y = clips->y1;
2671 box->z = 0;
2672 box->w = clips->x2 - clips->x1;
2673 box->h = clips->y2 - clips->y1;
2674 box->d = 1;
2675
2676 copy_size += sizeof(*cmd);
2677 }
2678
2679 vmw_fifo_commit(dev_priv, copy_size);
2680
2681 return 0;
2682 }
2683
2684 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2685 unsigned unit,
2686 u32 max_width,
2687 u32 max_height,
2688 struct drm_connector **p_con,
2689 struct drm_crtc **p_crtc,
2690 struct drm_display_mode **p_mode)
2691 {
2692 struct drm_connector *con;
2693 struct vmw_display_unit *du;
2694 struct drm_display_mode *mode;
2695 int i = 0;
2696
2697 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2698 head) {
2699 if (i == unit)
2700 break;
2701
2702 ++i;
2703 }
2704
2705 if (i != unit) {
2706 DRM_ERROR("Could not find initial display unit.\n");
2707 return -EINVAL;
2708 }
2709
2710 if (list_empty(&con->modes))
2711 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2712
2713 if (list_empty(&con->modes)) {
2714 DRM_ERROR("Could not find initial display mode.\n");
2715 return -EINVAL;
2716 }
2717
2718 du = vmw_connector_to_du(con);
2719 *p_con = con;
2720 *p_crtc = &du->crtc;
2721
2722 list_for_each_entry(mode, &con->modes, head) {
2723 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2724 break;
2725 }
2726
2727 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2728 *p_mode = mode;
2729 else {
2730 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2731 *p_mode = list_first_entry(&con->modes,
2732 struct drm_display_mode,
2733 head);
2734 }
2735
2736 return 0;
2737 }
2738
2739 /**
2740 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2741 *
2742 * @dev_priv: Pointer to a device private struct.
2743 * @du: The display unit of the crtc.
2744 */
2745 void vmw_kms_del_active(struct vmw_private *dev_priv,
2746 struct vmw_display_unit *du)
2747 {
2748 mutex_lock(&dev_priv->global_kms_state_mutex);
2749 if (du->active_implicit) {
2750 if (--(dev_priv->num_implicit) == 0)
2751 dev_priv->implicit_fb = NULL;
2752 du->active_implicit = false;
2753 }
2754 mutex_unlock(&dev_priv->global_kms_state_mutex);
2755 }
2756
2757 /**
2758 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2759 *
2760 * @vmw_priv: Pointer to a device private struct.
2761 * @du: The display unit of the crtc.
2762 * @vfb: The implicit framebuffer
2763 *
2764 * Registers a binding to an implicit framebuffer.
2765 */
2766 void vmw_kms_add_active(struct vmw_private *dev_priv,
2767 struct vmw_display_unit *du,
2768 struct vmw_framebuffer *vfb)
2769 {
2770 mutex_lock(&dev_priv->global_kms_state_mutex);
2771 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2772
2773 if (!du->active_implicit && du->is_implicit) {
2774 dev_priv->implicit_fb = vfb;
2775 du->active_implicit = true;
2776 dev_priv->num_implicit++;
2777 }
2778 mutex_unlock(&dev_priv->global_kms_state_mutex);
2779 }
2780
2781 /**
2782 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2783 *
2784 * @dev_priv: Pointer to device-private struct.
2785 * @crtc: The crtc we want to flip.
2786 *
2787 * Returns true or false depending whether it's OK to flip this crtc
2788 * based on the criterion that we must not have more than one implicit
2789 * frame-buffer at any one time.
2790 */
2791 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2792 struct drm_crtc *crtc)
2793 {
2794 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2795 bool ret;
2796
2797 mutex_lock(&dev_priv->global_kms_state_mutex);
2798 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2799 mutex_unlock(&dev_priv->global_kms_state_mutex);
2800
2801 return ret;
2802 }
2803
2804 /**
2805 * vmw_kms_update_implicit_fb - Update the implicit fb.
2806 *
2807 * @dev_priv: Pointer to device-private struct.
2808 * @crtc: The crtc the new implicit frame-buffer is bound to.
2809 */
2810 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2811 struct drm_crtc *crtc)
2812 {
2813 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2814 struct vmw_framebuffer *vfb;
2815
2816 mutex_lock(&dev_priv->global_kms_state_mutex);
2817
2818 if (!du->is_implicit)
2819 goto out_unlock;
2820
2821 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2822 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2823 dev_priv->implicit_fb != vfb);
2824
2825 dev_priv->implicit_fb = vfb;
2826 out_unlock:
2827 mutex_unlock(&dev_priv->global_kms_state_mutex);
2828 }
2829
2830 /**
2831 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2832 * property.
2833 *
2834 * @dev_priv: Pointer to a device private struct.
2835 * @immutable: Whether the property is immutable.
2836 *
2837 * Sets up the implicit placement property unless it's already set up.
2838 */
2839 void
2840 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2841 bool immutable)
2842 {
2843 if (dev_priv->implicit_placement_property)
2844 return;
2845
2846 dev_priv->implicit_placement_property =
2847 drm_property_create_range(dev_priv->dev,
2848 immutable ?
2849 DRM_MODE_PROP_IMMUTABLE : 0,
2850 "implicit_placement", 0, 1);
2851
2852 }
2853
2854
2855 /**
2856 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2857 *
2858 * @set: The configuration to set.
2859 *
2860 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2861 * when drm_mode_set_crtcinfo is called as part of the configuration setting
2862 * causes it to return incorrect crtc dimensions causing severe problems in
2863 * the vmwgfx modesetting. So explicitly clear that member before calling
2864 * into drm_atomic_helper_set_config.
2865 */
2866 int vmw_kms_set_config(struct drm_mode_set *set,
2867 struct drm_modeset_acquire_ctx *ctx)
2868 {
2869 if (set && set->mode)
2870 set->mode->type = 0;
2871
2872 return drm_atomic_helper_set_config(set, ctx);
2873 }