]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 drm_plane_cleanup(&du->primary);
41 drm_plane_cleanup(&du->cursor);
42
43 drm_connector_unregister(&du->connector);
44 drm_crtc_cleanup(&du->crtc);
45 drm_encoder_cleanup(&du->encoder);
46 drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50 * Display Unit Cursor functions
51 */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 u32 *image, u32 width, u32 height,
55 u32 hotspotX, u32 hotspotY)
56 {
57 struct {
58 u32 cmd;
59 SVGAFifoCmdDefineAlphaCursor cursor;
60 } *cmd;
61 u32 image_size = width * height * 4;
62 u32 cmd_size = sizeof(*cmd) + image_size;
63
64 if (!image)
65 return -EINVAL;
66
67 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 if (unlikely(cmd == NULL)) {
69 DRM_ERROR("Fifo reserve failed.\n");
70 return -ENOMEM;
71 }
72
73 memset(cmd, 0, sizeof(*cmd));
74
75 memcpy(&cmd[1], image, image_size);
76
77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 cmd->cursor.id = 0;
79 cmd->cursor.width = width;
80 cmd->cursor.height = height;
81 cmd->cursor.hotspotX = hotspotX;
82 cmd->cursor.hotspotY = hotspotY;
83
84 vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86 return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 struct vmw_dma_buffer *dmabuf,
91 u32 width, u32 height,
92 u32 hotspotX, u32 hotspotY)
93 {
94 struct ttm_bo_kmap_obj map;
95 unsigned long kmap_offset;
96 unsigned long kmap_num;
97 void *virtual;
98 bool dummy;
99 int ret;
100
101 kmap_offset = 0;
102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 if (unlikely(ret != 0)) {
106 DRM_ERROR("reserve failed\n");
107 return -EINVAL;
108 }
109
110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 if (unlikely(ret != 0))
112 goto err_unreserve;
113
114 virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 hotspotX, hotspotY);
117
118 ttm_bo_kunmap(&map);
119 err_unreserve:
120 ttm_bo_unreserve(&dmabuf->base);
121
122 return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 bool show, int x, int y)
128 {
129 u32 *fifo_mem = dev_priv->mmio_virt;
130 uint32_t count;
131
132 spin_lock(&dev_priv->cursor_lock);
133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 struct ttm_object_file *tfile,
144 struct ttm_buffer_object *bo,
145 SVGA3dCmdHeader *header)
146 {
147 struct ttm_bo_kmap_obj map;
148 unsigned long kmap_offset;
149 unsigned long kmap_num;
150 SVGA3dCopyBox *box;
151 unsigned box_count;
152 void *virtual;
153 bool dummy;
154 struct vmw_dma_cmd {
155 SVGA3dCmdHeader header;
156 SVGA3dCmdSurfaceDMA dma;
157 } *cmd;
158 int i, ret;
159
160 cmd = container_of(header, struct vmw_dma_cmd, header);
161
162 /* No snooper installed */
163 if (!srf->snooper.image)
164 return;
165
166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 return;
169 }
170
171 if (cmd->header.size < 64) {
172 DRM_ERROR("at least one full copy box must be given\n");
173 return;
174 }
175
176 box = (SVGA3dCopyBox *)&cmd[1];
177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 sizeof(SVGA3dCopyBox);
179
180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 box->x != 0 || box->y != 0 || box->z != 0 ||
182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 box->d != 1 || box_count != 1) {
184 /* TODO handle none page aligned offsets */
185 /* TODO handle more dst & src != 0 */
186 /* TODO handle more then one copy */
187 DRM_ERROR("Cant snoop dma request for cursor!\n");
188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 box->srcx, box->srcy, box->srcz,
190 box->x, box->y, box->z,
191 box->w, box->h, box->d, box_count,
192 cmd->dma.guest.ptr.offset);
193 return;
194 }
195
196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199 ret = ttm_bo_reserve(bo, true, false, NULL);
200 if (unlikely(ret != 0)) {
201 DRM_ERROR("reserve failed\n");
202 return;
203 }
204
205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 if (unlikely(ret != 0))
207 goto err_unreserve;
208
209 virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 memcpy(srf->snooper.image, virtual, 64*64*4);
213 } else {
214 /* Image is unsigned pointer. */
215 for (i = 0; i < box->h; i++)
216 memcpy(srf->snooper.image + i * 64,
217 virtual + i * cmd->dma.guest.pitch,
218 box->w * 4);
219 }
220
221 srf->snooper.age++;
222
223 ttm_bo_kunmap(&map);
224 err_unreserve:
225 ttm_bo_unreserve(bo);
226 }
227
228 /**
229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230 *
231 * @dev_priv: Pointer to the device private struct.
232 *
233 * Clears all legacy hotspots.
234 */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 struct drm_device *dev = dev_priv->dev;
238 struct vmw_display_unit *du;
239 struct drm_crtc *crtc;
240
241 drm_modeset_lock_all(dev);
242 drm_for_each_crtc(crtc, dev) {
243 du = vmw_crtc_to_du(crtc);
244
245 du->hotspot_x = 0;
246 du->hotspot_y = 0;
247 }
248 drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 struct drm_device *dev = dev_priv->dev;
254 struct vmw_display_unit *du;
255 struct drm_crtc *crtc;
256
257 mutex_lock(&dev->mode_config.mutex);
258
259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 du = vmw_crtc_to_du(crtc);
261 if (!du->cursor_surface ||
262 du->cursor_age == du->cursor_surface->snooper.age)
263 continue;
264
265 du->cursor_age = du->cursor_surface->snooper.age;
266 vmw_cursor_update_image(dev_priv,
267 du->cursor_surface->snooper.image,
268 64, 64,
269 du->hotspot_x + du->core_hotspot_x,
270 du->hotspot_y + du->core_hotspot_y);
271 }
272
273 mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280
281 drm_plane_cleanup(plane);
282 }
283
284
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 drm_plane_cleanup(plane);
288
289 /* Planes are static in our case so we don't free it */
290 }
291
292
293 /**
294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295 *
296 * @vps: plane state associated with the display surface
297 * @unreference: true if we also want to unreference the display.
298 */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 bool unreference)
301 {
302 if (vps->surf) {
303 if (vps->pinned) {
304 vmw_resource_unpin(&vps->surf->res);
305 vps->pinned--;
306 }
307
308 if (unreference) {
309 if (vps->pinned)
310 DRM_ERROR("Surface still pinned\n");
311 vmw_surface_unreference(&vps->surf);
312 }
313 }
314 }
315
316
317 /**
318 * vmw_du_plane_cleanup_fb - Unpins the cursor
319 *
320 * @plane: display plane
321 * @old_state: Contains the FB to clean up
322 *
323 * Unpins the framebuffer surface
324 *
325 * Returns 0 on success
326 */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 struct drm_plane_state *old_state)
330 {
331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332
333 vmw_du_plane_unpin_surf(vps, false);
334 }
335
336
337 /**
338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339 *
340 * @plane: display plane
341 * @new_state: info on the new plane state, including the FB
342 *
343 * Returns 0 on success
344 */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 struct drm_plane_state *new_state)
348 {
349 struct drm_framebuffer *fb = new_state->fb;
350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351
352
353 if (vps->surf)
354 vmw_surface_unreference(&vps->surf);
355
356 if (vps->dmabuf)
357 vmw_dmabuf_unreference(&vps->dmabuf);
358
359 if (fb) {
360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 vmw_dmabuf_reference(vps->dmabuf);
363 } else {
364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 vmw_surface_reference(vps->surf);
366 }
367 }
368
369 return 0;
370 }
371
372
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 struct drm_plane_state *old_state)
376 {
377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 s32 hotspot_x, hotspot_y;
382 int ret = 0;
383
384
385 hotspot_x = du->hotspot_x;
386 hotspot_y = du->hotspot_y;
387 du->cursor_surface = vps->surf;
388 du->cursor_dmabuf = vps->dmabuf;
389
390 /* setup new image */
391 if (vps->surf) {
392 du->cursor_age = du->cursor_surface->snooper.age;
393
394 ret = vmw_cursor_update_image(dev_priv,
395 vps->surf->snooper.image,
396 64, 64, hotspot_x, hotspot_y);
397 } else if (vps->dmabuf) {
398 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
399 plane->state->crtc_w,
400 plane->state->crtc_h,
401 hotspot_x, hotspot_y);
402 } else {
403 vmw_cursor_update_position(dev_priv, false, 0, 0);
404 return;
405 }
406
407 if (!ret) {
408 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
409 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
410
411 vmw_cursor_update_position(dev_priv, true,
412 du->cursor_x + hotspot_x,
413 du->cursor_y + hotspot_y);
414 } else {
415 DRM_ERROR("Failed to update cursor image\n");
416 }
417 }
418
419
420 /**
421 * vmw_du_primary_plane_atomic_check - check if the new state is okay
422 *
423 * @plane: display plane
424 * @state: info on the new plane state, including the FB
425 *
426 * Check if the new state is settable given the current state. Other
427 * than what the atomic helper checks, we care about crtc fitting
428 * the FB and maintaining one active framebuffer.
429 *
430 * Returns 0 on success
431 */
432 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
433 struct drm_plane_state *state)
434 {
435 struct drm_framebuffer *new_fb = state->fb;
436 bool visible;
437
438 struct drm_rect src = {
439 .x1 = state->src_x,
440 .y1 = state->src_y,
441 .x2 = state->src_x + state->src_w,
442 .y2 = state->src_y + state->src_h,
443 };
444 struct drm_rect dest = {
445 .x1 = state->crtc_x,
446 .y1 = state->crtc_y,
447 .x2 = state->crtc_x + state->crtc_w,
448 .y2 = state->crtc_y + state->crtc_h,
449 };
450 struct drm_rect clip = dest;
451 int ret;
452
453 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
454 &src, &dest, &clip,
455 DRM_ROTATE_0,
456 DRM_PLANE_HELPER_NO_SCALING,
457 DRM_PLANE_HELPER_NO_SCALING,
458 false, true, &visible);
459
460
461 if (!ret && new_fb) {
462 struct drm_crtc *crtc = state->crtc;
463 struct vmw_connector_state *vcs;
464 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
465 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
466 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
467
468 vcs = vmw_connector_state_to_vcs(du->connector.state);
469
470 if ((dest.x2 > new_fb->width ||
471 dest.y2 > new_fb->height)) {
472 DRM_ERROR("CRTC area outside of framebuffer\n");
473 return -EINVAL;
474 }
475
476 /* Only one active implicit framebuffer at a time. */
477 mutex_lock(&dev_priv->global_kms_state_mutex);
478 if (vcs->is_implicit && dev_priv->implicit_fb &&
479 !(dev_priv->num_implicit == 1 && du->active_implicit)
480 && dev_priv->implicit_fb != vfb) {
481 DRM_ERROR("Multiple implicit framebuffers "
482 "not supported.\n");
483 ret = -EINVAL;
484 }
485 mutex_unlock(&dev_priv->global_kms_state_mutex);
486 }
487
488
489 return ret;
490 }
491
492
493 /**
494 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
495 *
496 * @plane: cursor plane
497 * @state: info on the new plane state
498 *
499 * This is a chance to fail if the new cursor state does not fit
500 * our requirements.
501 *
502 * Returns 0 on success
503 */
504 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
505 struct drm_plane_state *new_state)
506 {
507 int ret = 0;
508 struct vmw_surface *surface = NULL;
509 struct drm_framebuffer *fb = new_state->fb;
510
511
512 /* Turning off */
513 if (!fb)
514 return ret;
515
516 /* A lot of the code assumes this */
517 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
518 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
519 new_state->crtc_w, new_state->crtc_h);
520 ret = -EINVAL;
521 }
522
523 if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
524 surface = vmw_framebuffer_to_vfbs(fb)->surface;
525
526 if (surface && !surface->snooper.image) {
527 DRM_ERROR("surface not suitable for cursor\n");
528 ret = -EINVAL;
529 }
530
531 return ret;
532 }
533
534
535 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
536 struct drm_crtc_state *new_state)
537 {
538 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
539 int connector_mask = 1 << drm_connector_index(&du->connector);
540 bool has_primary = new_state->plane_mask &
541 BIT(drm_plane_index(crtc->primary));
542
543 /* We always want to have an active plane with an active CRTC */
544 if (has_primary != new_state->enable)
545 return -EINVAL;
546
547
548 if (new_state->connector_mask != connector_mask &&
549 new_state->connector_mask != 0) {
550 DRM_ERROR("Invalid connectors configuration\n");
551 return -EINVAL;
552 }
553
554 /*
555 * Our virtual device does not have a dot clock, so use the logical
556 * clock value as the dot clock.
557 */
558 if (new_state->mode.crtc_clock == 0)
559 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
560
561 return 0;
562 }
563
564
565 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
566 struct drm_crtc_state *old_crtc_state)
567 {
568 }
569
570
571 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
572 struct drm_crtc_state *old_crtc_state)
573 {
574 struct drm_pending_vblank_event *event = crtc->state->event;
575
576 if (event) {
577 crtc->state->event = NULL;
578
579 spin_lock_irq(&crtc->dev->event_lock);
580 if (drm_crtc_vblank_get(crtc) == 0)
581 drm_crtc_arm_vblank_event(crtc, event);
582 else
583 drm_crtc_send_vblank_event(crtc, event);
584 spin_unlock_irq(&crtc->dev->event_lock);
585 }
586
587 }
588
589
590 /**
591 * vmw_du_crtc_duplicate_state - duplicate crtc state
592 * @crtc: DRM crtc
593 *
594 * Allocates and returns a copy of the crtc state (both common and
595 * vmw-specific) for the specified crtc.
596 *
597 * Returns: The newly allocated crtc state, or NULL on failure.
598 */
599 struct drm_crtc_state *
600 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
601 {
602 struct drm_crtc_state *state;
603 struct vmw_crtc_state *vcs;
604
605 if (WARN_ON(!crtc->state))
606 return NULL;
607
608 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
609
610 if (!vcs)
611 return NULL;
612
613 state = &vcs->base;
614
615 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
616
617 return state;
618 }
619
620
621 /**
622 * vmw_du_crtc_reset - creates a blank vmw crtc state
623 * @crtc: DRM crtc
624 *
625 * Resets the atomic state for @crtc by freeing the state pointer (which
626 * might be NULL, e.g. at driver load time) and allocating a new empty state
627 * object.
628 */
629 void vmw_du_crtc_reset(struct drm_crtc *crtc)
630 {
631 struct vmw_crtc_state *vcs;
632
633
634 if (crtc->state) {
635 __drm_atomic_helper_crtc_destroy_state(crtc->state);
636
637 kfree(vmw_crtc_state_to_vcs(crtc->state));
638 }
639
640 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
641
642 if (!vcs) {
643 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
644 return;
645 }
646
647 crtc->state = &vcs->base;
648 crtc->state->crtc = crtc;
649 }
650
651
652 /**
653 * vmw_du_crtc_destroy_state - destroy crtc state
654 * @crtc: DRM crtc
655 * @state: state object to destroy
656 *
657 * Destroys the crtc state (both common and vmw-specific) for the
658 * specified plane.
659 */
660 void
661 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
662 struct drm_crtc_state *state)
663 {
664 drm_atomic_helper_crtc_destroy_state(crtc, state);
665 }
666
667
668 /**
669 * vmw_du_plane_duplicate_state - duplicate plane state
670 * @plane: drm plane
671 *
672 * Allocates and returns a copy of the plane state (both common and
673 * vmw-specific) for the specified plane.
674 *
675 * Returns: The newly allocated plane state, or NULL on failure.
676 */
677 struct drm_plane_state *
678 vmw_du_plane_duplicate_state(struct drm_plane *plane)
679 {
680 struct drm_plane_state *state;
681 struct vmw_plane_state *vps;
682
683 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
684
685 if (!vps)
686 return NULL;
687
688 vps->pinned = 0;
689
690 /* Mapping is managed by prepare_fb/cleanup_fb */
691 memset(&vps->guest_map, 0, sizeof(vps->guest_map));
692 memset(&vps->host_map, 0, sizeof(vps->host_map));
693 vps->cpp = 0;
694
695 /* Each ref counted resource needs to be acquired again */
696 if (vps->surf)
697 (void) vmw_surface_reference(vps->surf);
698
699 if (vps->dmabuf)
700 (void) vmw_dmabuf_reference(vps->dmabuf);
701
702 state = &vps->base;
703
704 __drm_atomic_helper_plane_duplicate_state(plane, state);
705
706 return state;
707 }
708
709
710 /**
711 * vmw_du_plane_reset - creates a blank vmw plane state
712 * @plane: drm plane
713 *
714 * Resets the atomic state for @plane by freeing the state pointer (which might
715 * be NULL, e.g. at driver load time) and allocating a new empty state object.
716 */
717 void vmw_du_plane_reset(struct drm_plane *plane)
718 {
719 struct vmw_plane_state *vps;
720
721
722 if (plane->state)
723 vmw_du_plane_destroy_state(plane, plane->state);
724
725 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
726
727 if (!vps) {
728 DRM_ERROR("Cannot allocate vmw_plane_state\n");
729 return;
730 }
731
732 plane->state = &vps->base;
733 plane->state->plane = plane;
734 plane->state->rotation = DRM_ROTATE_0;
735 }
736
737
738 /**
739 * vmw_du_plane_destroy_state - destroy plane state
740 * @plane: DRM plane
741 * @state: state object to destroy
742 *
743 * Destroys the plane state (both common and vmw-specific) for the
744 * specified plane.
745 */
746 void
747 vmw_du_plane_destroy_state(struct drm_plane *plane,
748 struct drm_plane_state *state)
749 {
750 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
751
752
753 /* Should have been freed by cleanup_fb */
754 if (vps->guest_map.virtual) {
755 DRM_ERROR("Guest mapping not freed\n");
756 ttm_bo_kunmap(&vps->guest_map);
757 }
758
759 if (vps->host_map.virtual) {
760 DRM_ERROR("Host mapping not freed\n");
761 ttm_bo_kunmap(&vps->host_map);
762 }
763
764 if (vps->surf)
765 vmw_surface_unreference(&vps->surf);
766
767 if (vps->dmabuf)
768 vmw_dmabuf_unreference(&vps->dmabuf);
769
770 drm_atomic_helper_plane_destroy_state(plane, state);
771 }
772
773
774 /**
775 * vmw_du_connector_duplicate_state - duplicate connector state
776 * @connector: DRM connector
777 *
778 * Allocates and returns a copy of the connector state (both common and
779 * vmw-specific) for the specified connector.
780 *
781 * Returns: The newly allocated connector state, or NULL on failure.
782 */
783 struct drm_connector_state *
784 vmw_du_connector_duplicate_state(struct drm_connector *connector)
785 {
786 struct drm_connector_state *state;
787 struct vmw_connector_state *vcs;
788
789 if (WARN_ON(!connector->state))
790 return NULL;
791
792 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
793
794 if (!vcs)
795 return NULL;
796
797 state = &vcs->base;
798
799 __drm_atomic_helper_connector_duplicate_state(connector, state);
800
801 return state;
802 }
803
804
805 /**
806 * vmw_du_connector_reset - creates a blank vmw connector state
807 * @connector: DRM connector
808 *
809 * Resets the atomic state for @connector by freeing the state pointer (which
810 * might be NULL, e.g. at driver load time) and allocating a new empty state
811 * object.
812 */
813 void vmw_du_connector_reset(struct drm_connector *connector)
814 {
815 struct vmw_connector_state *vcs;
816
817
818 if (connector->state) {
819 __drm_atomic_helper_connector_destroy_state(connector->state);
820
821 kfree(vmw_connector_state_to_vcs(connector->state));
822 }
823
824 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
825
826 if (!vcs) {
827 DRM_ERROR("Cannot allocate vmw_connector_state\n");
828 return;
829 }
830
831 __drm_atomic_helper_connector_reset(connector, &vcs->base);
832 }
833
834
835 /**
836 * vmw_du_connector_destroy_state - destroy connector state
837 * @connector: DRM connector
838 * @state: state object to destroy
839 *
840 * Destroys the connector state (both common and vmw-specific) for the
841 * specified plane.
842 */
843 void
844 vmw_du_connector_destroy_state(struct drm_connector *connector,
845 struct drm_connector_state *state)
846 {
847 drm_atomic_helper_connector_destroy_state(connector, state);
848 }
849 /*
850 * Generic framebuffer code
851 */
852
853 /*
854 * Surface framebuffer code
855 */
856
857 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
858 {
859 struct vmw_framebuffer_surface *vfbs =
860 vmw_framebuffer_to_vfbs(framebuffer);
861
862 drm_framebuffer_cleanup(framebuffer);
863 vmw_surface_unreference(&vfbs->surface);
864 if (vfbs->base.user_obj)
865 ttm_base_object_unref(&vfbs->base.user_obj);
866
867 kfree(vfbs);
868 }
869
870 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
871 struct drm_file *file_priv,
872 unsigned flags, unsigned color,
873 struct drm_clip_rect *clips,
874 unsigned num_clips)
875 {
876 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
877 struct vmw_framebuffer_surface *vfbs =
878 vmw_framebuffer_to_vfbs(framebuffer);
879 struct drm_clip_rect norect;
880 int ret, inc = 1;
881
882 /* Legacy Display Unit does not support 3D */
883 if (dev_priv->active_display_unit == vmw_du_legacy)
884 return -EINVAL;
885
886 drm_modeset_lock_all(dev_priv->dev);
887
888 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
889 if (unlikely(ret != 0)) {
890 drm_modeset_unlock_all(dev_priv->dev);
891 return ret;
892 }
893
894 if (!num_clips) {
895 num_clips = 1;
896 clips = &norect;
897 norect.x1 = norect.y1 = 0;
898 norect.x2 = framebuffer->width;
899 norect.y2 = framebuffer->height;
900 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
901 num_clips /= 2;
902 inc = 2; /* skip source rects */
903 }
904
905 if (dev_priv->active_display_unit == vmw_du_screen_object)
906 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
907 clips, NULL, NULL, 0, 0,
908 num_clips, inc, NULL);
909 else
910 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
911 clips, NULL, NULL, 0, 0,
912 num_clips, inc, NULL);
913
914 vmw_fifo_flush(dev_priv, false);
915 ttm_read_unlock(&dev_priv->reservation_sem);
916
917 drm_modeset_unlock_all(dev_priv->dev);
918
919 return 0;
920 }
921
922 /**
923 * vmw_kms_readback - Perform a readback from the screen system to
924 * a dma-buffer backed framebuffer.
925 *
926 * @dev_priv: Pointer to the device private structure.
927 * @file_priv: Pointer to a struct drm_file identifying the caller.
928 * Must be set to NULL if @user_fence_rep is NULL.
929 * @vfb: Pointer to the dma-buffer backed framebuffer.
930 * @user_fence_rep: User-space provided structure for fence information.
931 * Must be set to non-NULL if @file_priv is non-NULL.
932 * @vclips: Array of clip rects.
933 * @num_clips: Number of clip rects in @vclips.
934 *
935 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
936 * interrupted.
937 */
938 int vmw_kms_readback(struct vmw_private *dev_priv,
939 struct drm_file *file_priv,
940 struct vmw_framebuffer *vfb,
941 struct drm_vmw_fence_rep __user *user_fence_rep,
942 struct drm_vmw_rect *vclips,
943 uint32_t num_clips)
944 {
945 switch (dev_priv->active_display_unit) {
946 case vmw_du_screen_object:
947 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
948 user_fence_rep, vclips, num_clips);
949 case vmw_du_screen_target:
950 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
951 user_fence_rep, NULL, vclips, num_clips,
952 1, false, true);
953 default:
954 WARN_ONCE(true,
955 "Readback called with invalid display system.\n");
956 }
957
958 return -ENOSYS;
959 }
960
961
962 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
963 .destroy = vmw_framebuffer_surface_destroy,
964 .dirty = vmw_framebuffer_surface_dirty,
965 };
966
967 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
968 struct vmw_surface *surface,
969 struct vmw_framebuffer **out,
970 const struct drm_mode_fb_cmd2
971 *mode_cmd,
972 bool is_dmabuf_proxy)
973
974 {
975 struct drm_device *dev = dev_priv->dev;
976 struct vmw_framebuffer_surface *vfbs;
977 enum SVGA3dSurfaceFormat format;
978 int ret;
979 struct drm_format_name_buf format_name;
980
981 /* 3D is only supported on HWv8 and newer hosts */
982 if (dev_priv->active_display_unit == vmw_du_legacy)
983 return -ENOSYS;
984
985 /*
986 * Sanity checks.
987 */
988
989 /* Surface must be marked as a scanout. */
990 if (unlikely(!surface->scanout))
991 return -EINVAL;
992
993 if (unlikely(surface->mip_levels[0] != 1 ||
994 surface->num_sizes != 1 ||
995 surface->base_size.width < mode_cmd->width ||
996 surface->base_size.height < mode_cmd->height ||
997 surface->base_size.depth != 1)) {
998 DRM_ERROR("Incompatible surface dimensions "
999 "for requested mode.\n");
1000 return -EINVAL;
1001 }
1002
1003 switch (mode_cmd->pixel_format) {
1004 case DRM_FORMAT_ARGB8888:
1005 format = SVGA3D_A8R8G8B8;
1006 break;
1007 case DRM_FORMAT_XRGB8888:
1008 format = SVGA3D_X8R8G8B8;
1009 break;
1010 case DRM_FORMAT_RGB565:
1011 format = SVGA3D_R5G6B5;
1012 break;
1013 case DRM_FORMAT_XRGB1555:
1014 format = SVGA3D_A1R5G5B5;
1015 break;
1016 default:
1017 DRM_ERROR("Invalid pixel format: %s\n",
1018 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1019 return -EINVAL;
1020 }
1021
1022 /*
1023 * For DX, surface format validation is done when surface->scanout
1024 * is set.
1025 */
1026 if (!dev_priv->has_dx && format != surface->format) {
1027 DRM_ERROR("Invalid surface format for requested mode.\n");
1028 return -EINVAL;
1029 }
1030
1031 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1032 if (!vfbs) {
1033 ret = -ENOMEM;
1034 goto out_err1;
1035 }
1036
1037 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1038 vfbs->surface = vmw_surface_reference(surface);
1039 vfbs->base.user_handle = mode_cmd->handles[0];
1040 vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1041
1042 *out = &vfbs->base;
1043
1044 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1045 &vmw_framebuffer_surface_funcs);
1046 if (ret)
1047 goto out_err2;
1048
1049 return 0;
1050
1051 out_err2:
1052 vmw_surface_unreference(&surface);
1053 kfree(vfbs);
1054 out_err1:
1055 return ret;
1056 }
1057
1058 /*
1059 * Dmabuf framebuffer code
1060 */
1061
1062 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1063 {
1064 struct vmw_framebuffer_dmabuf *vfbd =
1065 vmw_framebuffer_to_vfbd(framebuffer);
1066
1067 drm_framebuffer_cleanup(framebuffer);
1068 vmw_dmabuf_unreference(&vfbd->buffer);
1069 if (vfbd->base.user_obj)
1070 ttm_base_object_unref(&vfbd->base.user_obj);
1071
1072 kfree(vfbd);
1073 }
1074
1075 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1076 struct drm_file *file_priv,
1077 unsigned flags, unsigned color,
1078 struct drm_clip_rect *clips,
1079 unsigned num_clips)
1080 {
1081 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1082 struct vmw_framebuffer_dmabuf *vfbd =
1083 vmw_framebuffer_to_vfbd(framebuffer);
1084 struct drm_clip_rect norect;
1085 int ret, increment = 1;
1086
1087 drm_modeset_lock_all(dev_priv->dev);
1088
1089 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1090 if (unlikely(ret != 0)) {
1091 drm_modeset_unlock_all(dev_priv->dev);
1092 return ret;
1093 }
1094
1095 if (!num_clips) {
1096 num_clips = 1;
1097 clips = &norect;
1098 norect.x1 = norect.y1 = 0;
1099 norect.x2 = framebuffer->width;
1100 norect.y2 = framebuffer->height;
1101 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1102 num_clips /= 2;
1103 increment = 2;
1104 }
1105
1106 switch (dev_priv->active_display_unit) {
1107 case vmw_du_screen_target:
1108 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1109 clips, NULL, num_clips, increment,
1110 true, true);
1111 break;
1112 case vmw_du_screen_object:
1113 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1114 clips, NULL, num_clips,
1115 increment, true, NULL);
1116 break;
1117 case vmw_du_legacy:
1118 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1119 clips, num_clips, increment);
1120 break;
1121 default:
1122 ret = -EINVAL;
1123 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1124 break;
1125 }
1126
1127 vmw_fifo_flush(dev_priv, false);
1128 ttm_read_unlock(&dev_priv->reservation_sem);
1129
1130 drm_modeset_unlock_all(dev_priv->dev);
1131
1132 return ret;
1133 }
1134
1135 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1136 .destroy = vmw_framebuffer_dmabuf_destroy,
1137 .dirty = vmw_framebuffer_dmabuf_dirty,
1138 };
1139
1140 /**
1141 * Pin the dmabuffer to the start of vram.
1142 */
1143 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1144 {
1145 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1146 struct vmw_dma_buffer *buf;
1147 int ret;
1148
1149 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1150 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1151
1152 if (!buf)
1153 return 0;
1154
1155 switch (dev_priv->active_display_unit) {
1156 case vmw_du_legacy:
1157 vmw_overlay_pause_all(dev_priv);
1158 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1159 vmw_overlay_resume_all(dev_priv);
1160 break;
1161 case vmw_du_screen_object:
1162 case vmw_du_screen_target:
1163 if (vfb->dmabuf)
1164 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1165 false);
1166
1167 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1168 &vmw_mob_placement, false);
1169 default:
1170 return -EINVAL;
1171 }
1172
1173 return ret;
1174 }
1175
1176 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1177 {
1178 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1179 struct vmw_dma_buffer *buf;
1180
1181 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1182 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1183
1184 if (WARN_ON(!buf))
1185 return 0;
1186
1187 return vmw_dmabuf_unpin(dev_priv, buf, false);
1188 }
1189
1190 /**
1191 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1192 *
1193 * @dev: DRM device
1194 * @mode_cmd: parameters for the new surface
1195 * @dmabuf_mob: MOB backing the DMA buf
1196 * @srf_out: newly created surface
1197 *
1198 * When the content FB is a DMA buf, we create a surface as a proxy to the
1199 * same buffer. This way we can do a surface copy rather than a surface DMA.
1200 * This is a more efficient approach
1201 *
1202 * RETURNS:
1203 * 0 on success, error code otherwise
1204 */
1205 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1206 const struct drm_mode_fb_cmd2 *mode_cmd,
1207 struct vmw_dma_buffer *dmabuf_mob,
1208 struct vmw_surface **srf_out)
1209 {
1210 uint32_t format;
1211 struct drm_vmw_size content_base_size = {0};
1212 struct vmw_resource *res;
1213 unsigned int bytes_pp;
1214 struct drm_format_name_buf format_name;
1215 int ret;
1216
1217 switch (mode_cmd->pixel_format) {
1218 case DRM_FORMAT_ARGB8888:
1219 case DRM_FORMAT_XRGB8888:
1220 format = SVGA3D_X8R8G8B8;
1221 bytes_pp = 4;
1222 break;
1223
1224 case DRM_FORMAT_RGB565:
1225 case DRM_FORMAT_XRGB1555:
1226 format = SVGA3D_R5G6B5;
1227 bytes_pp = 2;
1228 break;
1229
1230 case 8:
1231 format = SVGA3D_P8;
1232 bytes_pp = 1;
1233 break;
1234
1235 default:
1236 DRM_ERROR("Invalid framebuffer format %s\n",
1237 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1238 return -EINVAL;
1239 }
1240
1241 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1242 content_base_size.height = mode_cmd->height;
1243 content_base_size.depth = 1;
1244
1245 ret = vmw_surface_gb_priv_define(dev,
1246 0, /* kernel visible only */
1247 0, /* flags */
1248 format,
1249 true, /* can be a scanout buffer */
1250 1, /* num of mip levels */
1251 0,
1252 0,
1253 content_base_size,
1254 srf_out);
1255 if (ret) {
1256 DRM_ERROR("Failed to allocate proxy content buffer\n");
1257 return ret;
1258 }
1259
1260 res = &(*srf_out)->res;
1261
1262 /* Reserve and switch the backing mob. */
1263 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1264 (void) vmw_resource_reserve(res, false, true);
1265 vmw_dmabuf_unreference(&res->backup);
1266 res->backup = vmw_dmabuf_reference(dmabuf_mob);
1267 res->backup_offset = 0;
1268 vmw_resource_unreserve(res, false, NULL, 0);
1269 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1270
1271 return 0;
1272 }
1273
1274
1275
1276 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1277 struct vmw_dma_buffer *dmabuf,
1278 struct vmw_framebuffer **out,
1279 const struct drm_mode_fb_cmd2
1280 *mode_cmd)
1281
1282 {
1283 struct drm_device *dev = dev_priv->dev;
1284 struct vmw_framebuffer_dmabuf *vfbd;
1285 unsigned int requested_size;
1286 struct drm_format_name_buf format_name;
1287 int ret;
1288
1289 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1290 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1291 DRM_ERROR("Screen buffer object size is too small "
1292 "for requested mode.\n");
1293 return -EINVAL;
1294 }
1295
1296 /* Limited framebuffer color depth support for screen objects */
1297 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1298 switch (mode_cmd->pixel_format) {
1299 case DRM_FORMAT_XRGB8888:
1300 case DRM_FORMAT_ARGB8888:
1301 break;
1302 case DRM_FORMAT_XRGB1555:
1303 case DRM_FORMAT_RGB565:
1304 break;
1305 default:
1306 DRM_ERROR("Invalid pixel format: %s\n",
1307 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1308 return -EINVAL;
1309 }
1310 }
1311
1312 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1313 if (!vfbd) {
1314 ret = -ENOMEM;
1315 goto out_err1;
1316 }
1317
1318 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1319 vfbd->base.dmabuf = true;
1320 vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1321 vfbd->base.user_handle = mode_cmd->handles[0];
1322 *out = &vfbd->base;
1323
1324 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1325 &vmw_framebuffer_dmabuf_funcs);
1326 if (ret)
1327 goto out_err2;
1328
1329 return 0;
1330
1331 out_err2:
1332 vmw_dmabuf_unreference(&dmabuf);
1333 kfree(vfbd);
1334 out_err1:
1335 return ret;
1336 }
1337
1338
1339 /**
1340 * vmw_kms_srf_ok - check if a surface can be created
1341 *
1342 * @width: requested width
1343 * @height: requested height
1344 *
1345 * Surfaces need to be less than texture size
1346 */
1347 static bool
1348 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1349 {
1350 if (width > dev_priv->texture_max_width ||
1351 height > dev_priv->texture_max_height)
1352 return false;
1353
1354 return true;
1355 }
1356
1357 /**
1358 * vmw_kms_new_framebuffer - Create a new framebuffer.
1359 *
1360 * @dev_priv: Pointer to device private struct.
1361 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1362 * Either @dmabuf or @surface must be NULL.
1363 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1364 * Either @dmabuf or @surface must be NULL.
1365 * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1366 * Helps the code to do some important optimizations.
1367 * @mode_cmd: Frame-buffer metadata.
1368 */
1369 struct vmw_framebuffer *
1370 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1371 struct vmw_dma_buffer *dmabuf,
1372 struct vmw_surface *surface,
1373 bool only_2d,
1374 const struct drm_mode_fb_cmd2 *mode_cmd)
1375 {
1376 struct vmw_framebuffer *vfb = NULL;
1377 bool is_dmabuf_proxy = false;
1378 int ret;
1379
1380 /*
1381 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1382 * therefore, wrap the DMA buf in a surface so we can use the
1383 * SurfaceCopy command.
1384 */
1385 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1386 dmabuf && only_2d &&
1387 mode_cmd->width > 64 && /* Don't create a proxy for cursor */
1388 dev_priv->active_display_unit == vmw_du_screen_target) {
1389 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1390 dmabuf, &surface);
1391 if (ret)
1392 return ERR_PTR(ret);
1393
1394 is_dmabuf_proxy = true;
1395 }
1396
1397 /* Create the new framebuffer depending one what we have */
1398 if (surface) {
1399 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1400 mode_cmd,
1401 is_dmabuf_proxy);
1402
1403 /*
1404 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1405 * needed
1406 */
1407 if (is_dmabuf_proxy)
1408 vmw_surface_unreference(&surface);
1409 } else if (dmabuf) {
1410 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1411 mode_cmd);
1412 } else {
1413 BUG();
1414 }
1415
1416 if (ret)
1417 return ERR_PTR(ret);
1418
1419 vfb->pin = vmw_framebuffer_pin;
1420 vfb->unpin = vmw_framebuffer_unpin;
1421
1422 return vfb;
1423 }
1424
1425 /*
1426 * Generic Kernel modesetting functions
1427 */
1428
1429 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1430 struct drm_file *file_priv,
1431 const struct drm_mode_fb_cmd2 *mode_cmd)
1432 {
1433 struct vmw_private *dev_priv = vmw_priv(dev);
1434 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1435 struct vmw_framebuffer *vfb = NULL;
1436 struct vmw_surface *surface = NULL;
1437 struct vmw_dma_buffer *bo = NULL;
1438 struct ttm_base_object *user_obj;
1439 int ret;
1440
1441 /**
1442 * This code should be conditioned on Screen Objects not being used.
1443 * If screen objects are used, we can allocate a GMR to hold the
1444 * requested framebuffer.
1445 */
1446
1447 if (!vmw_kms_validate_mode_vram(dev_priv,
1448 mode_cmd->pitches[0],
1449 mode_cmd->height)) {
1450 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1451 return ERR_PTR(-ENOMEM);
1452 }
1453
1454 /*
1455 * Take a reference on the user object of the resource
1456 * backing the kms fb. This ensures that user-space handle
1457 * lookups on that resource will always work as long as
1458 * it's registered with a kms framebuffer. This is important,
1459 * since vmw_execbuf_process identifies resources in the
1460 * command stream using user-space handles.
1461 */
1462
1463 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1464 if (unlikely(user_obj == NULL)) {
1465 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1466 return ERR_PTR(-ENOENT);
1467 }
1468
1469 /**
1470 * End conditioned code.
1471 */
1472
1473 /* returns either a dmabuf or surface */
1474 ret = vmw_user_lookup_handle(dev_priv, tfile,
1475 mode_cmd->handles[0],
1476 &surface, &bo);
1477 if (ret)
1478 goto err_out;
1479
1480
1481 if (!bo &&
1482 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1483 DRM_ERROR("Surface size cannot exceed %dx%d",
1484 dev_priv->texture_max_width,
1485 dev_priv->texture_max_height);
1486 goto err_out;
1487 }
1488
1489
1490 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1491 !(dev_priv->capabilities & SVGA_CAP_3D),
1492 mode_cmd);
1493 if (IS_ERR(vfb)) {
1494 ret = PTR_ERR(vfb);
1495 goto err_out;
1496 }
1497
1498 err_out:
1499 /* vmw_user_lookup_handle takes one ref so does new_fb */
1500 if (bo)
1501 vmw_dmabuf_unreference(&bo);
1502 if (surface)
1503 vmw_surface_unreference(&surface);
1504
1505 if (ret) {
1506 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1507 ttm_base_object_unref(&user_obj);
1508 return ERR_PTR(ret);
1509 } else
1510 vfb->user_obj = user_obj;
1511
1512 return &vfb->base;
1513 }
1514
1515
1516
1517 /**
1518 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1519 *
1520 * @dev: DRM device
1521 * @state: the driver state object
1522 *
1523 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1524 * us to assign a value to mode->crtc_clock so that
1525 * drm_calc_timestamping_constants() won't throw an error message
1526 *
1527 * RETURNS
1528 * Zero for success or -errno
1529 */
1530 int
1531 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1532 struct drm_atomic_state *state)
1533 {
1534 struct drm_crtc_state *crtc_state;
1535 struct drm_crtc *crtc;
1536 struct vmw_private *dev_priv = vmw_priv(dev);
1537 int i;
1538
1539
1540 for_each_crtc_in_state(state, crtc, crtc_state, i) {
1541 unsigned long requested_bb_mem = 0;
1542
1543 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1544 if (crtc->primary->fb) {
1545 int cpp = crtc->primary->fb->pitches[0] /
1546 crtc->primary->fb->width;
1547
1548 requested_bb_mem += crtc->mode.hdisplay * cpp *
1549 crtc->mode.vdisplay;
1550 }
1551
1552 if (requested_bb_mem > dev_priv->prim_bb_mem)
1553 return -EINVAL;
1554 }
1555 }
1556
1557 return drm_atomic_helper_check(dev, state);
1558 }
1559
1560
1561 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1562 .fb_create = vmw_kms_fb_create,
1563 .atomic_check = vmw_kms_atomic_check_modeset,
1564 .atomic_commit = drm_atomic_helper_commit,
1565 };
1566
1567 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1568 struct drm_file *file_priv,
1569 struct vmw_framebuffer *vfb,
1570 struct vmw_surface *surface,
1571 uint32_t sid,
1572 int32_t destX, int32_t destY,
1573 struct drm_vmw_rect *clips,
1574 uint32_t num_clips)
1575 {
1576 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1577 &surface->res, destX, destY,
1578 num_clips, 1, NULL);
1579 }
1580
1581
1582 int vmw_kms_present(struct vmw_private *dev_priv,
1583 struct drm_file *file_priv,
1584 struct vmw_framebuffer *vfb,
1585 struct vmw_surface *surface,
1586 uint32_t sid,
1587 int32_t destX, int32_t destY,
1588 struct drm_vmw_rect *clips,
1589 uint32_t num_clips)
1590 {
1591 int ret;
1592
1593 switch (dev_priv->active_display_unit) {
1594 case vmw_du_screen_target:
1595 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1596 &surface->res, destX, destY,
1597 num_clips, 1, NULL);
1598 break;
1599 case vmw_du_screen_object:
1600 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1601 sid, destX, destY, clips,
1602 num_clips);
1603 break;
1604 default:
1605 WARN_ONCE(true,
1606 "Present called with invalid display system.\n");
1607 ret = -ENOSYS;
1608 break;
1609 }
1610 if (ret)
1611 return ret;
1612
1613 vmw_fifo_flush(dev_priv, false);
1614
1615 return 0;
1616 }
1617
1618 static void
1619 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1620 {
1621 if (dev_priv->hotplug_mode_update_property)
1622 return;
1623
1624 dev_priv->hotplug_mode_update_property =
1625 drm_property_create_range(dev_priv->dev,
1626 DRM_MODE_PROP_IMMUTABLE,
1627 "hotplug_mode_update", 0, 1);
1628
1629 if (!dev_priv->hotplug_mode_update_property)
1630 return;
1631
1632 }
1633
1634 int vmw_kms_init(struct vmw_private *dev_priv)
1635 {
1636 struct drm_device *dev = dev_priv->dev;
1637 int ret;
1638
1639 drm_mode_config_init(dev);
1640 dev->mode_config.funcs = &vmw_kms_funcs;
1641 dev->mode_config.min_width = 1;
1642 dev->mode_config.min_height = 1;
1643 dev->mode_config.max_width = dev_priv->texture_max_width;
1644 dev->mode_config.max_height = dev_priv->texture_max_height;
1645
1646 drm_mode_create_suggested_offset_properties(dev);
1647 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1648
1649 ret = vmw_kms_stdu_init_display(dev_priv);
1650 if (ret) {
1651 ret = vmw_kms_sou_init_display(dev_priv);
1652 if (ret) /* Fallback */
1653 ret = vmw_kms_ldu_init_display(dev_priv);
1654 }
1655
1656 return ret;
1657 }
1658
1659 int vmw_kms_close(struct vmw_private *dev_priv)
1660 {
1661 int ret;
1662
1663 /*
1664 * Docs says we should take the lock before calling this function
1665 * but since it destroys encoders and our destructor calls
1666 * drm_encoder_cleanup which takes the lock we deadlock.
1667 */
1668 drm_mode_config_cleanup(dev_priv->dev);
1669 if (dev_priv->active_display_unit == vmw_du_screen_object)
1670 ret = vmw_kms_sou_close_display(dev_priv);
1671 else if (dev_priv->active_display_unit == vmw_du_screen_target)
1672 ret = vmw_kms_stdu_close_display(dev_priv);
1673 else
1674 ret = vmw_kms_ldu_close_display(dev_priv);
1675
1676 return ret;
1677 }
1678
1679 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1680 struct drm_file *file_priv)
1681 {
1682 struct drm_vmw_cursor_bypass_arg *arg = data;
1683 struct vmw_display_unit *du;
1684 struct drm_crtc *crtc;
1685 int ret = 0;
1686
1687
1688 mutex_lock(&dev->mode_config.mutex);
1689 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1690
1691 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1692 du = vmw_crtc_to_du(crtc);
1693 du->hotspot_x = arg->xhot;
1694 du->hotspot_y = arg->yhot;
1695 }
1696
1697 mutex_unlock(&dev->mode_config.mutex);
1698 return 0;
1699 }
1700
1701 crtc = drm_crtc_find(dev, arg->crtc_id);
1702 if (!crtc) {
1703 ret = -ENOENT;
1704 goto out;
1705 }
1706
1707 du = vmw_crtc_to_du(crtc);
1708
1709 du->hotspot_x = arg->xhot;
1710 du->hotspot_y = arg->yhot;
1711
1712 out:
1713 mutex_unlock(&dev->mode_config.mutex);
1714
1715 return ret;
1716 }
1717
1718 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1719 unsigned width, unsigned height, unsigned pitch,
1720 unsigned bpp, unsigned depth)
1721 {
1722 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1723 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1724 else if (vmw_fifo_have_pitchlock(vmw_priv))
1725 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1726 SVGA_FIFO_PITCHLOCK);
1727 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1728 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1729 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1730
1731 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1732 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1733 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1734 return -EINVAL;
1735 }
1736
1737 return 0;
1738 }
1739
1740 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1741 {
1742 struct vmw_vga_topology_state *save;
1743 uint32_t i;
1744
1745 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1746 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1747 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1748 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1749 vmw_priv->vga_pitchlock =
1750 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1751 else if (vmw_fifo_have_pitchlock(vmw_priv))
1752 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1753 SVGA_FIFO_PITCHLOCK);
1754
1755 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1756 return 0;
1757
1758 vmw_priv->num_displays = vmw_read(vmw_priv,
1759 SVGA_REG_NUM_GUEST_DISPLAYS);
1760
1761 if (vmw_priv->num_displays == 0)
1762 vmw_priv->num_displays = 1;
1763
1764 for (i = 0; i < vmw_priv->num_displays; ++i) {
1765 save = &vmw_priv->vga_save[i];
1766 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1767 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1768 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1769 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1770 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1771 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1772 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1773 if (i == 0 && vmw_priv->num_displays == 1 &&
1774 save->width == 0 && save->height == 0) {
1775
1776 /*
1777 * It should be fairly safe to assume that these
1778 * values are uninitialized.
1779 */
1780
1781 save->width = vmw_priv->vga_width - save->pos_x;
1782 save->height = vmw_priv->vga_height - save->pos_y;
1783 }
1784 }
1785
1786 return 0;
1787 }
1788
1789 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1790 {
1791 struct vmw_vga_topology_state *save;
1792 uint32_t i;
1793
1794 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1795 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1796 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1797 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1798 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1799 vmw_priv->vga_pitchlock);
1800 else if (vmw_fifo_have_pitchlock(vmw_priv))
1801 vmw_mmio_write(vmw_priv->vga_pitchlock,
1802 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1803
1804 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1805 return 0;
1806
1807 for (i = 0; i < vmw_priv->num_displays; ++i) {
1808 save = &vmw_priv->vga_save[i];
1809 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1810 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1811 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1812 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1813 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1814 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1815 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1816 }
1817
1818 return 0;
1819 }
1820
1821 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1822 uint32_t pitch,
1823 uint32_t height)
1824 {
1825 return ((u64) pitch * (u64) height) < (u64)
1826 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1827 dev_priv->prim_bb_mem : dev_priv->vram_size);
1828 }
1829
1830
1831 /**
1832 * Function called by DRM code called with vbl_lock held.
1833 */
1834 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1835 {
1836 return 0;
1837 }
1838
1839 /**
1840 * Function called by DRM code called with vbl_lock held.
1841 */
1842 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1843 {
1844 return -ENOSYS;
1845 }
1846
1847 /**
1848 * Function called by DRM code called with vbl_lock held.
1849 */
1850 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1851 {
1852 }
1853
1854
1855 /*
1856 * Small shared kms functions.
1857 */
1858
1859 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1860 struct drm_vmw_rect *rects)
1861 {
1862 struct drm_device *dev = dev_priv->dev;
1863 struct vmw_display_unit *du;
1864 struct drm_connector *con;
1865
1866 mutex_lock(&dev->mode_config.mutex);
1867
1868 #if 0
1869 {
1870 unsigned int i;
1871
1872 DRM_INFO("%s: new layout ", __func__);
1873 for (i = 0; i < num; i++)
1874 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1875 rects[i].w, rects[i].h);
1876 DRM_INFO("\n");
1877 }
1878 #endif
1879
1880 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1881 du = vmw_connector_to_du(con);
1882 if (num > du->unit) {
1883 du->pref_width = rects[du->unit].w;
1884 du->pref_height = rects[du->unit].h;
1885 du->pref_active = true;
1886 du->gui_x = rects[du->unit].x;
1887 du->gui_y = rects[du->unit].y;
1888 drm_object_property_set_value
1889 (&con->base, dev->mode_config.suggested_x_property,
1890 du->gui_x);
1891 drm_object_property_set_value
1892 (&con->base, dev->mode_config.suggested_y_property,
1893 du->gui_y);
1894 } else {
1895 du->pref_width = 800;
1896 du->pref_height = 600;
1897 du->pref_active = false;
1898 drm_object_property_set_value
1899 (&con->base, dev->mode_config.suggested_x_property,
1900 0);
1901 drm_object_property_set_value
1902 (&con->base, dev->mode_config.suggested_y_property,
1903 0);
1904 }
1905 con->status = vmw_du_connector_detect(con, true);
1906 }
1907
1908 mutex_unlock(&dev->mode_config.mutex);
1909 drm_sysfs_hotplug_event(dev);
1910
1911 return 0;
1912 }
1913
1914 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1915 u16 *r, u16 *g, u16 *b,
1916 uint32_t size,
1917 struct drm_modeset_acquire_ctx *ctx)
1918 {
1919 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1920 int i;
1921
1922 for (i = 0; i < size; i++) {
1923 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1924 r[i], g[i], b[i]);
1925 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1926 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1927 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1928 }
1929
1930 return 0;
1931 }
1932
1933 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1934 {
1935 return 0;
1936 }
1937
1938 enum drm_connector_status
1939 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1940 {
1941 uint32_t num_displays;
1942 struct drm_device *dev = connector->dev;
1943 struct vmw_private *dev_priv = vmw_priv(dev);
1944 struct vmw_display_unit *du = vmw_connector_to_du(connector);
1945
1946 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1947
1948 return ((vmw_connector_to_du(connector)->unit < num_displays &&
1949 du->pref_active) ?
1950 connector_status_connected : connector_status_disconnected);
1951 }
1952
1953 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1954 /* 640x480@60Hz */
1955 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1956 752, 800, 0, 480, 489, 492, 525, 0,
1957 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1958 /* 800x600@60Hz */
1959 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1960 968, 1056, 0, 600, 601, 605, 628, 0,
1961 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1962 /* 1024x768@60Hz */
1963 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1964 1184, 1344, 0, 768, 771, 777, 806, 0,
1965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1966 /* 1152x864@75Hz */
1967 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1968 1344, 1600, 0, 864, 865, 868, 900, 0,
1969 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1970 /* 1280x768@60Hz */
1971 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1972 1472, 1664, 0, 768, 771, 778, 798, 0,
1973 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1974 /* 1280x800@60Hz */
1975 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1976 1480, 1680, 0, 800, 803, 809, 831, 0,
1977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1978 /* 1280x960@60Hz */
1979 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1980 1488, 1800, 0, 960, 961, 964, 1000, 0,
1981 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1982 /* 1280x1024@60Hz */
1983 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1984 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1985 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1986 /* 1360x768@60Hz */
1987 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1988 1536, 1792, 0, 768, 771, 777, 795, 0,
1989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1990 /* 1440x1050@60Hz */
1991 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1992 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
1993 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1994 /* 1440x900@60Hz */
1995 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1996 1672, 1904, 0, 900, 903, 909, 934, 0,
1997 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1998 /* 1600x1200@60Hz */
1999 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2000 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2001 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2002 /* 1680x1050@60Hz */
2003 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2004 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2005 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2006 /* 1792x1344@60Hz */
2007 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2008 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2009 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2010 /* 1853x1392@60Hz */
2011 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2012 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2013 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2014 /* 1920x1200@60Hz */
2015 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2016 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2018 /* 1920x1440@60Hz */
2019 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2020 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2021 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2022 /* 2560x1600@60Hz */
2023 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2024 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2026 /* Terminate */
2027 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2028 };
2029
2030 /**
2031 * vmw_guess_mode_timing - Provide fake timings for a
2032 * 60Hz vrefresh mode.
2033 *
2034 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2035 * members filled in.
2036 */
2037 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2038 {
2039 mode->hsync_start = mode->hdisplay + 50;
2040 mode->hsync_end = mode->hsync_start + 50;
2041 mode->htotal = mode->hsync_end + 50;
2042
2043 mode->vsync_start = mode->vdisplay + 50;
2044 mode->vsync_end = mode->vsync_start + 50;
2045 mode->vtotal = mode->vsync_end + 50;
2046
2047 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2048 mode->vrefresh = drm_mode_vrefresh(mode);
2049 }
2050
2051
2052 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2053 uint32_t max_width, uint32_t max_height)
2054 {
2055 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2056 struct drm_device *dev = connector->dev;
2057 struct vmw_private *dev_priv = vmw_priv(dev);
2058 struct drm_display_mode *mode = NULL;
2059 struct drm_display_mode *bmode;
2060 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2061 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2062 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2063 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2064 };
2065 int i;
2066 u32 assumed_bpp = 4;
2067
2068 if (dev_priv->assume_16bpp)
2069 assumed_bpp = 2;
2070
2071 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2072 max_width = min(max_width, dev_priv->stdu_max_width);
2073 max_width = min(max_width, dev_priv->texture_max_width);
2074
2075 max_height = min(max_height, dev_priv->stdu_max_height);
2076 max_height = min(max_height, dev_priv->texture_max_height);
2077 }
2078
2079 /* Add preferred mode */
2080 mode = drm_mode_duplicate(dev, &prefmode);
2081 if (!mode)
2082 return 0;
2083 mode->hdisplay = du->pref_width;
2084 mode->vdisplay = du->pref_height;
2085 vmw_guess_mode_timing(mode);
2086
2087 if (vmw_kms_validate_mode_vram(dev_priv,
2088 mode->hdisplay * assumed_bpp,
2089 mode->vdisplay)) {
2090 drm_mode_probed_add(connector, mode);
2091 } else {
2092 drm_mode_destroy(dev, mode);
2093 mode = NULL;
2094 }
2095
2096 if (du->pref_mode) {
2097 list_del_init(&du->pref_mode->head);
2098 drm_mode_destroy(dev, du->pref_mode);
2099 }
2100
2101 /* mode might be null here, this is intended */
2102 du->pref_mode = mode;
2103
2104 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2105 bmode = &vmw_kms_connector_builtin[i];
2106 if (bmode->hdisplay > max_width ||
2107 bmode->vdisplay > max_height)
2108 continue;
2109
2110 if (!vmw_kms_validate_mode_vram(dev_priv,
2111 bmode->hdisplay * assumed_bpp,
2112 bmode->vdisplay))
2113 continue;
2114
2115 mode = drm_mode_duplicate(dev, bmode);
2116 if (!mode)
2117 return 0;
2118 mode->vrefresh = drm_mode_vrefresh(mode);
2119
2120 drm_mode_probed_add(connector, mode);
2121 }
2122
2123 drm_mode_connector_list_update(connector);
2124 /* Move the prefered mode first, help apps pick the right mode. */
2125 drm_mode_sort(&connector->modes);
2126
2127 return 1;
2128 }
2129
2130 int vmw_du_connector_set_property(struct drm_connector *connector,
2131 struct drm_property *property,
2132 uint64_t val)
2133 {
2134 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2135 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2136
2137 if (property == dev_priv->implicit_placement_property)
2138 du->is_implicit = val;
2139
2140 return 0;
2141 }
2142
2143
2144
2145 /**
2146 * vmw_du_connector_atomic_set_property - Atomic version of get property
2147 *
2148 * @crtc - crtc the property is associated with
2149 *
2150 * Returns:
2151 * Zero on success, negative errno on failure.
2152 */
2153 int
2154 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2155 struct drm_connector_state *state,
2156 struct drm_property *property,
2157 uint64_t val)
2158 {
2159 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2160 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2161 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2162
2163
2164 if (property == dev_priv->implicit_placement_property) {
2165 vcs->is_implicit = val;
2166
2167 /*
2168 * We should really be doing a drm_atomic_commit() to
2169 * commit the new state, but since this doesn't cause
2170 * an immedate state change, this is probably ok
2171 */
2172 du->is_implicit = vcs->is_implicit;
2173 } else {
2174 return -EINVAL;
2175 }
2176
2177 return 0;
2178 }
2179
2180
2181 /**
2182 * vmw_du_connector_atomic_get_property - Atomic version of get property
2183 *
2184 * @connector - connector the property is associated with
2185 *
2186 * Returns:
2187 * Zero on success, negative errno on failure.
2188 */
2189 int
2190 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2191 const struct drm_connector_state *state,
2192 struct drm_property *property,
2193 uint64_t *val)
2194 {
2195 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2196 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2197
2198 if (property == dev_priv->implicit_placement_property)
2199 *val = vcs->is_implicit;
2200 else {
2201 DRM_ERROR("Invalid Property %s\n", property->name);
2202 return -EINVAL;
2203 }
2204
2205 return 0;
2206 }
2207
2208
2209 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2210 struct drm_file *file_priv)
2211 {
2212 struct vmw_private *dev_priv = vmw_priv(dev);
2213 struct drm_vmw_update_layout_arg *arg =
2214 (struct drm_vmw_update_layout_arg *)data;
2215 void __user *user_rects;
2216 struct drm_vmw_rect *rects;
2217 unsigned rects_size;
2218 int ret;
2219 int i;
2220 u64 total_pixels = 0;
2221 struct drm_mode_config *mode_config = &dev->mode_config;
2222 struct drm_vmw_rect bounding_box = {0};
2223
2224 if (!arg->num_outputs) {
2225 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2226 vmw_du_update_layout(dev_priv, 1, &def_rect);
2227 return 0;
2228 }
2229
2230 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2231 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2232 GFP_KERNEL);
2233 if (unlikely(!rects))
2234 return -ENOMEM;
2235
2236 user_rects = (void __user *)(unsigned long)arg->rects;
2237 ret = copy_from_user(rects, user_rects, rects_size);
2238 if (unlikely(ret != 0)) {
2239 DRM_ERROR("Failed to get rects.\n");
2240 ret = -EFAULT;
2241 goto out_free;
2242 }
2243
2244 for (i = 0; i < arg->num_outputs; ++i) {
2245 if (rects[i].x < 0 ||
2246 rects[i].y < 0 ||
2247 rects[i].x + rects[i].w > mode_config->max_width ||
2248 rects[i].y + rects[i].h > mode_config->max_height) {
2249 DRM_ERROR("Invalid GUI layout.\n");
2250 ret = -EINVAL;
2251 goto out_free;
2252 }
2253
2254 /*
2255 * bounding_box.w and bunding_box.h are used as
2256 * lower-right coordinates
2257 */
2258 if (rects[i].x + rects[i].w > bounding_box.w)
2259 bounding_box.w = rects[i].x + rects[i].w;
2260
2261 if (rects[i].y + rects[i].h > bounding_box.h)
2262 bounding_box.h = rects[i].y + rects[i].h;
2263
2264 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2265 }
2266
2267 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2268 /*
2269 * For Screen Targets, the limits for a toplogy are:
2270 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2271 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2272 */
2273 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4;
2274 u64 pixel_mem = total_pixels * 4;
2275
2276 if (bb_mem > dev_priv->prim_bb_mem) {
2277 DRM_ERROR("Topology is beyond supported limits.\n");
2278 ret = -EINVAL;
2279 goto out_free;
2280 }
2281
2282 if (pixel_mem > dev_priv->prim_bb_mem) {
2283 DRM_ERROR("Combined output size too large\n");
2284 ret = -EINVAL;
2285 goto out_free;
2286 }
2287 }
2288
2289 vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2290
2291 out_free:
2292 kfree(rects);
2293 return ret;
2294 }
2295
2296 /**
2297 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2298 * on a set of cliprects and a set of display units.
2299 *
2300 * @dev_priv: Pointer to a device private structure.
2301 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2302 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2303 * Cliprects are given in framebuffer coordinates.
2304 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2305 * be NULL. Cliprects are given in source coordinates.
2306 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2307 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2308 * @num_clips: Number of cliprects in the @clips or @vclips array.
2309 * @increment: Integer with which to increment the clip counter when looping.
2310 * Used to skip a predetermined number of clip rects.
2311 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2312 */
2313 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2314 struct vmw_framebuffer *framebuffer,
2315 const struct drm_clip_rect *clips,
2316 const struct drm_vmw_rect *vclips,
2317 s32 dest_x, s32 dest_y,
2318 int num_clips,
2319 int increment,
2320 struct vmw_kms_dirty *dirty)
2321 {
2322 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2323 struct drm_crtc *crtc;
2324 u32 num_units = 0;
2325 u32 i, k;
2326
2327 dirty->dev_priv = dev_priv;
2328
2329 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2330 if (crtc->primary->fb != &framebuffer->base)
2331 continue;
2332 units[num_units++] = vmw_crtc_to_du(crtc);
2333 }
2334
2335 for (k = 0; k < num_units; k++) {
2336 struct vmw_display_unit *unit = units[k];
2337 s32 crtc_x = unit->crtc.x;
2338 s32 crtc_y = unit->crtc.y;
2339 s32 crtc_width = unit->crtc.mode.hdisplay;
2340 s32 crtc_height = unit->crtc.mode.vdisplay;
2341 const struct drm_clip_rect *clips_ptr = clips;
2342 const struct drm_vmw_rect *vclips_ptr = vclips;
2343
2344 dirty->unit = unit;
2345 if (dirty->fifo_reserve_size > 0) {
2346 dirty->cmd = vmw_fifo_reserve(dev_priv,
2347 dirty->fifo_reserve_size);
2348 if (!dirty->cmd) {
2349 DRM_ERROR("Couldn't reserve fifo space "
2350 "for dirty blits.\n");
2351 return -ENOMEM;
2352 }
2353 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2354 }
2355 dirty->num_hits = 0;
2356 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2357 vclips_ptr += increment) {
2358 s32 clip_left;
2359 s32 clip_top;
2360
2361 /*
2362 * Select clip array type. Note that integer type
2363 * in @clips is unsigned short, whereas in @vclips
2364 * it's 32-bit.
2365 */
2366 if (clips) {
2367 dirty->fb_x = (s32) clips_ptr->x1;
2368 dirty->fb_y = (s32) clips_ptr->y1;
2369 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2370 crtc_x;
2371 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2372 crtc_y;
2373 } else {
2374 dirty->fb_x = vclips_ptr->x;
2375 dirty->fb_y = vclips_ptr->y;
2376 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2377 dest_x - crtc_x;
2378 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2379 dest_y - crtc_y;
2380 }
2381
2382 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2383 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2384
2385 /* Skip this clip if it's outside the crtc region */
2386 if (dirty->unit_x1 >= crtc_width ||
2387 dirty->unit_y1 >= crtc_height ||
2388 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2389 continue;
2390
2391 /* Clip right and bottom to crtc limits */
2392 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2393 crtc_width);
2394 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2395 crtc_height);
2396
2397 /* Clip left and top to crtc limits */
2398 clip_left = min_t(s32, dirty->unit_x1, 0);
2399 clip_top = min_t(s32, dirty->unit_y1, 0);
2400 dirty->unit_x1 -= clip_left;
2401 dirty->unit_y1 -= clip_top;
2402 dirty->fb_x -= clip_left;
2403 dirty->fb_y -= clip_top;
2404
2405 dirty->clip(dirty);
2406 }
2407
2408 dirty->fifo_commit(dirty);
2409 }
2410
2411 return 0;
2412 }
2413
2414 /**
2415 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2416 * command submission.
2417 *
2418 * @dev_priv. Pointer to a device private structure.
2419 * @buf: The buffer object
2420 * @interruptible: Whether to perform waits as interruptible.
2421 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2422 * The buffer will be validated as a GMR. Already pinned buffers will not be
2423 * validated.
2424 *
2425 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2426 * interrupted by a signal.
2427 */
2428 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2429 struct vmw_dma_buffer *buf,
2430 bool interruptible,
2431 bool validate_as_mob)
2432 {
2433 struct ttm_buffer_object *bo = &buf->base;
2434 int ret;
2435
2436 ttm_bo_reserve(bo, false, false, NULL);
2437 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2438 validate_as_mob);
2439 if (ret)
2440 ttm_bo_unreserve(bo);
2441
2442 return ret;
2443 }
2444
2445 /**
2446 * vmw_kms_helper_buffer_revert - Undo the actions of
2447 * vmw_kms_helper_buffer_prepare.
2448 *
2449 * @res: Pointer to the buffer object.
2450 *
2451 * Helper to be used if an error forces the caller to undo the actions of
2452 * vmw_kms_helper_buffer_prepare.
2453 */
2454 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2455 {
2456 if (buf)
2457 ttm_bo_unreserve(&buf->base);
2458 }
2459
2460 /**
2461 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2462 * kms command submission.
2463 *
2464 * @dev_priv: Pointer to a device private structure.
2465 * @file_priv: Pointer to a struct drm_file representing the caller's
2466 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2467 * if non-NULL, @user_fence_rep must be non-NULL.
2468 * @buf: The buffer object.
2469 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2470 * ref-counted fence pointer is returned here.
2471 * @user_fence_rep: Optional pointer to a user-space provided struct
2472 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2473 * function copies fence data to user-space in a fail-safe manner.
2474 */
2475 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2476 struct drm_file *file_priv,
2477 struct vmw_dma_buffer *buf,
2478 struct vmw_fence_obj **out_fence,
2479 struct drm_vmw_fence_rep __user *
2480 user_fence_rep)
2481 {
2482 struct vmw_fence_obj *fence;
2483 uint32_t handle;
2484 int ret;
2485
2486 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2487 file_priv ? &handle : NULL);
2488 if (buf)
2489 vmw_fence_single_bo(&buf->base, fence);
2490 if (file_priv)
2491 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2492 ret, user_fence_rep, fence,
2493 handle);
2494 if (out_fence)
2495 *out_fence = fence;
2496 else
2497 vmw_fence_obj_unreference(&fence);
2498
2499 vmw_kms_helper_buffer_revert(buf);
2500 }
2501
2502
2503 /**
2504 * vmw_kms_helper_resource_revert - Undo the actions of
2505 * vmw_kms_helper_resource_prepare.
2506 *
2507 * @res: Pointer to the resource. Typically a surface.
2508 *
2509 * Helper to be used if an error forces the caller to undo the actions of
2510 * vmw_kms_helper_resource_prepare.
2511 */
2512 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2513 {
2514 vmw_kms_helper_buffer_revert(res->backup);
2515 vmw_resource_unreserve(res, false, NULL, 0);
2516 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2517 }
2518
2519 /**
2520 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2521 * command submission.
2522 *
2523 * @res: Pointer to the resource. Typically a surface.
2524 * @interruptible: Whether to perform waits as interruptible.
2525 *
2526 * Reserves and validates also the backup buffer if a guest-backed resource.
2527 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2528 * interrupted by a signal.
2529 */
2530 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2531 bool interruptible)
2532 {
2533 int ret = 0;
2534
2535 if (interruptible)
2536 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2537 else
2538 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2539
2540 if (unlikely(ret != 0))
2541 return -ERESTARTSYS;
2542
2543 ret = vmw_resource_reserve(res, interruptible, false);
2544 if (ret)
2545 goto out_unlock;
2546
2547 if (res->backup) {
2548 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2549 interruptible,
2550 res->dev_priv->has_mob);
2551 if (ret)
2552 goto out_unreserve;
2553 }
2554 ret = vmw_resource_validate(res);
2555 if (ret)
2556 goto out_revert;
2557 return 0;
2558
2559 out_revert:
2560 vmw_kms_helper_buffer_revert(res->backup);
2561 out_unreserve:
2562 vmw_resource_unreserve(res, false, NULL, 0);
2563 out_unlock:
2564 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2565 return ret;
2566 }
2567
2568 /**
2569 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2570 * kms command submission.
2571 *
2572 * @res: Pointer to the resource. Typically a surface.
2573 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2574 * ref-counted fence pointer is returned here.
2575 */
2576 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2577 struct vmw_fence_obj **out_fence)
2578 {
2579 if (res->backup || out_fence)
2580 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2581 out_fence, NULL);
2582
2583 vmw_resource_unreserve(res, false, NULL, 0);
2584 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2585 }
2586
2587 /**
2588 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2589 * its backing MOB.
2590 *
2591 * @res: Pointer to the surface resource
2592 * @clips: Clip rects in framebuffer (surface) space.
2593 * @num_clips: Number of clips in @clips.
2594 * @increment: Integer with which to increment the clip counter when looping.
2595 * Used to skip a predetermined number of clip rects.
2596 *
2597 * This function makes sure the proxy surface is updated from its backing MOB
2598 * using the region given by @clips. The surface resource @res and its backing
2599 * MOB needs to be reserved and validated on call.
2600 */
2601 int vmw_kms_update_proxy(struct vmw_resource *res,
2602 const struct drm_clip_rect *clips,
2603 unsigned num_clips,
2604 int increment)
2605 {
2606 struct vmw_private *dev_priv = res->dev_priv;
2607 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2608 struct {
2609 SVGA3dCmdHeader header;
2610 SVGA3dCmdUpdateGBImage body;
2611 } *cmd;
2612 SVGA3dBox *box;
2613 size_t copy_size = 0;
2614 int i;
2615
2616 if (!clips)
2617 return 0;
2618
2619 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2620 if (!cmd) {
2621 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2622 "update.\n");
2623 return -ENOMEM;
2624 }
2625
2626 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2627 box = &cmd->body.box;
2628
2629 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2630 cmd->header.size = sizeof(cmd->body);
2631 cmd->body.image.sid = res->id;
2632 cmd->body.image.face = 0;
2633 cmd->body.image.mipmap = 0;
2634
2635 if (clips->x1 > size->width || clips->x2 > size->width ||
2636 clips->y1 > size->height || clips->y2 > size->height) {
2637 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2638 return -EINVAL;
2639 }
2640
2641 box->x = clips->x1;
2642 box->y = clips->y1;
2643 box->z = 0;
2644 box->w = clips->x2 - clips->x1;
2645 box->h = clips->y2 - clips->y1;
2646 box->d = 1;
2647
2648 copy_size += sizeof(*cmd);
2649 }
2650
2651 vmw_fifo_commit(dev_priv, copy_size);
2652
2653 return 0;
2654 }
2655
2656 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2657 unsigned unit,
2658 u32 max_width,
2659 u32 max_height,
2660 struct drm_connector **p_con,
2661 struct drm_crtc **p_crtc,
2662 struct drm_display_mode **p_mode)
2663 {
2664 struct drm_connector *con;
2665 struct vmw_display_unit *du;
2666 struct drm_display_mode *mode;
2667 int i = 0;
2668
2669 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2670 head) {
2671 if (i == unit)
2672 break;
2673
2674 ++i;
2675 }
2676
2677 if (i != unit) {
2678 DRM_ERROR("Could not find initial display unit.\n");
2679 return -EINVAL;
2680 }
2681
2682 if (list_empty(&con->modes))
2683 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2684
2685 if (list_empty(&con->modes)) {
2686 DRM_ERROR("Could not find initial display mode.\n");
2687 return -EINVAL;
2688 }
2689
2690 du = vmw_connector_to_du(con);
2691 *p_con = con;
2692 *p_crtc = &du->crtc;
2693
2694 list_for_each_entry(mode, &con->modes, head) {
2695 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2696 break;
2697 }
2698
2699 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2700 *p_mode = mode;
2701 else {
2702 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2703 *p_mode = list_first_entry(&con->modes,
2704 struct drm_display_mode,
2705 head);
2706 }
2707
2708 return 0;
2709 }
2710
2711 /**
2712 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2713 *
2714 * @dev_priv: Pointer to a device private struct.
2715 * @du: The display unit of the crtc.
2716 */
2717 void vmw_kms_del_active(struct vmw_private *dev_priv,
2718 struct vmw_display_unit *du)
2719 {
2720 mutex_lock(&dev_priv->global_kms_state_mutex);
2721 if (du->active_implicit) {
2722 if (--(dev_priv->num_implicit) == 0)
2723 dev_priv->implicit_fb = NULL;
2724 du->active_implicit = false;
2725 }
2726 mutex_unlock(&dev_priv->global_kms_state_mutex);
2727 }
2728
2729 /**
2730 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2731 *
2732 * @vmw_priv: Pointer to a device private struct.
2733 * @du: The display unit of the crtc.
2734 * @vfb: The implicit framebuffer
2735 *
2736 * Registers a binding to an implicit framebuffer.
2737 */
2738 void vmw_kms_add_active(struct vmw_private *dev_priv,
2739 struct vmw_display_unit *du,
2740 struct vmw_framebuffer *vfb)
2741 {
2742 mutex_lock(&dev_priv->global_kms_state_mutex);
2743 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2744
2745 if (!du->active_implicit && du->is_implicit) {
2746 dev_priv->implicit_fb = vfb;
2747 du->active_implicit = true;
2748 dev_priv->num_implicit++;
2749 }
2750 mutex_unlock(&dev_priv->global_kms_state_mutex);
2751 }
2752
2753 /**
2754 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2755 *
2756 * @dev_priv: Pointer to device-private struct.
2757 * @crtc: The crtc we want to flip.
2758 *
2759 * Returns true or false depending whether it's OK to flip this crtc
2760 * based on the criterion that we must not have more than one implicit
2761 * frame-buffer at any one time.
2762 */
2763 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2764 struct drm_crtc *crtc)
2765 {
2766 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2767 bool ret;
2768
2769 mutex_lock(&dev_priv->global_kms_state_mutex);
2770 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2771 mutex_unlock(&dev_priv->global_kms_state_mutex);
2772
2773 return ret;
2774 }
2775
2776 /**
2777 * vmw_kms_update_implicit_fb - Update the implicit fb.
2778 *
2779 * @dev_priv: Pointer to device-private struct.
2780 * @crtc: The crtc the new implicit frame-buffer is bound to.
2781 */
2782 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2783 struct drm_crtc *crtc)
2784 {
2785 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2786 struct vmw_framebuffer *vfb;
2787
2788 mutex_lock(&dev_priv->global_kms_state_mutex);
2789
2790 if (!du->is_implicit)
2791 goto out_unlock;
2792
2793 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2794 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2795 dev_priv->implicit_fb != vfb);
2796
2797 dev_priv->implicit_fb = vfb;
2798 out_unlock:
2799 mutex_unlock(&dev_priv->global_kms_state_mutex);
2800 }
2801
2802 /**
2803 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2804 * property.
2805 *
2806 * @dev_priv: Pointer to a device private struct.
2807 * @immutable: Whether the property is immutable.
2808 *
2809 * Sets up the implicit placement property unless it's already set up.
2810 */
2811 void
2812 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2813 bool immutable)
2814 {
2815 if (dev_priv->implicit_placement_property)
2816 return;
2817
2818 dev_priv->implicit_placement_property =
2819 drm_property_create_range(dev_priv->dev,
2820 immutable ?
2821 DRM_MODE_PROP_IMMUTABLE : 0,
2822 "implicit_placement", 0, 1);
2823
2824 }
2825
2826
2827 /**
2828 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2829 *
2830 * @set: The configuration to set.
2831 *
2832 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2833 * when drm_mode_set_crtcinfo is called as part of the configuration setting
2834 * causes it to return incorrect crtc dimensions causing severe problems in
2835 * the vmwgfx modesetting. So explicitly clear that member before calling
2836 * into drm_atomic_helper_set_config.
2837 */
2838 int vmw_kms_set_config(struct drm_mode_set *set,
2839 struct drm_modeset_acquire_ctx *ctx)
2840 {
2841 if (set && set->mode)
2842 set->mode->type = 0;
2843
2844 return drm_atomic_helper_set_config(set, ctx);
2845 }