]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
23beff5d8e3c37e6904314db295cc9896657a38f
[mirror_ubuntu-disco-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39 drm_plane_cleanup(&du->primary);
40 drm_plane_cleanup(&du->cursor);
41
42 drm_connector_unregister(&du->connector);
43 drm_crtc_cleanup(&du->crtc);
44 drm_encoder_cleanup(&du->encoder);
45 drm_connector_cleanup(&du->connector);
46 }
47
48 /*
49 * Display Unit Cursor functions
50 */
51
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53 u32 *image, u32 width, u32 height,
54 u32 hotspotX, u32 hotspotY)
55 {
56 struct {
57 u32 cmd;
58 SVGAFifoCmdDefineAlphaCursor cursor;
59 } *cmd;
60 u32 image_size = width * height * 4;
61 u32 cmd_size = sizeof(*cmd) + image_size;
62
63 if (!image)
64 return -EINVAL;
65
66 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67 if (unlikely(cmd == NULL)) {
68 DRM_ERROR("Fifo reserve failed.\n");
69 return -ENOMEM;
70 }
71
72 memset(cmd, 0, sizeof(*cmd));
73
74 memcpy(&cmd[1], image, image_size);
75
76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 cmd->cursor.id = 0;
78 cmd->cursor.width = width;
79 cmd->cursor.height = height;
80 cmd->cursor.hotspotX = hotspotX;
81 cmd->cursor.hotspotY = hotspotY;
82
83 vmw_fifo_commit_flush(dev_priv, cmd_size);
84
85 return 0;
86 }
87
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89 struct vmw_buffer_object *bo,
90 u32 width, u32 height,
91 u32 hotspotX, u32 hotspotY)
92 {
93 struct ttm_bo_kmap_obj map;
94 unsigned long kmap_offset;
95 unsigned long kmap_num;
96 void *virtual;
97 bool dummy;
98 int ret;
99
100 kmap_offset = 0;
101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102
103 ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104 if (unlikely(ret != 0)) {
105 DRM_ERROR("reserve failed\n");
106 return -EINVAL;
107 }
108
109 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110 if (unlikely(ret != 0))
111 goto err_unreserve;
112
113 virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 hotspotX, hotspotY);
116
117 ttm_bo_kunmap(&map);
118 err_unreserve:
119 ttm_bo_unreserve(&bo->base);
120
121 return ret;
122 }
123
124
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 bool show, int x, int y)
127 {
128 u32 *fifo_mem = dev_priv->mmio_virt;
129 uint32_t count;
130
131 spin_lock(&dev_priv->cursor_lock);
132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 spin_unlock(&dev_priv->cursor_lock);
138 }
139
140
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142 struct ttm_object_file *tfile,
143 struct ttm_buffer_object *bo,
144 SVGA3dCmdHeader *header)
145 {
146 struct ttm_bo_kmap_obj map;
147 unsigned long kmap_offset;
148 unsigned long kmap_num;
149 SVGA3dCopyBox *box;
150 unsigned box_count;
151 void *virtual;
152 bool dummy;
153 struct vmw_dma_cmd {
154 SVGA3dCmdHeader header;
155 SVGA3dCmdSurfaceDMA dma;
156 } *cmd;
157 int i, ret;
158
159 cmd = container_of(header, struct vmw_dma_cmd, header);
160
161 /* No snooper installed */
162 if (!srf->snooper.image)
163 return;
164
165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166 DRM_ERROR("face and mipmap for cursors should never != 0\n");
167 return;
168 }
169
170 if (cmd->header.size < 64) {
171 DRM_ERROR("at least one full copy box must be given\n");
172 return;
173 }
174
175 box = (SVGA3dCopyBox *)&cmd[1];
176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177 sizeof(SVGA3dCopyBox);
178
179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180 box->x != 0 || box->y != 0 || box->z != 0 ||
181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182 box->d != 1 || box_count != 1) {
183 /* TODO handle none page aligned offsets */
184 /* TODO handle more dst & src != 0 */
185 /* TODO handle more then one copy */
186 DRM_ERROR("Cant snoop dma request for cursor!\n");
187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188 box->srcx, box->srcy, box->srcz,
189 box->x, box->y, box->z,
190 box->w, box->h, box->d, box_count,
191 cmd->dma.guest.ptr.offset);
192 return;
193 }
194
195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196 kmap_num = (64*64*4) >> PAGE_SHIFT;
197
198 ret = ttm_bo_reserve(bo, true, false, NULL);
199 if (unlikely(ret != 0)) {
200 DRM_ERROR("reserve failed\n");
201 return;
202 }
203
204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205 if (unlikely(ret != 0))
206 goto err_unreserve;
207
208 virtual = ttm_kmap_obj_virtual(&map, &dummy);
209
210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211 memcpy(srf->snooper.image, virtual, 64*64*4);
212 } else {
213 /* Image is unsigned pointer. */
214 for (i = 0; i < box->h; i++)
215 memcpy(srf->snooper.image + i * 64,
216 virtual + i * cmd->dma.guest.pitch,
217 box->w * 4);
218 }
219
220 srf->snooper.age++;
221
222 ttm_bo_kunmap(&map);
223 err_unreserve:
224 ttm_bo_unreserve(bo);
225 }
226
227 /**
228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229 *
230 * @dev_priv: Pointer to the device private struct.
231 *
232 * Clears all legacy hotspots.
233 */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236 struct drm_device *dev = dev_priv->dev;
237 struct vmw_display_unit *du;
238 struct drm_crtc *crtc;
239
240 drm_modeset_lock_all(dev);
241 drm_for_each_crtc(crtc, dev) {
242 du = vmw_crtc_to_du(crtc);
243
244 du->hotspot_x = 0;
245 du->hotspot_y = 0;
246 }
247 drm_modeset_unlock_all(dev);
248 }
249
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252 struct drm_device *dev = dev_priv->dev;
253 struct vmw_display_unit *du;
254 struct drm_crtc *crtc;
255
256 mutex_lock(&dev->mode_config.mutex);
257
258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259 du = vmw_crtc_to_du(crtc);
260 if (!du->cursor_surface ||
261 du->cursor_age == du->cursor_surface->snooper.age)
262 continue;
263
264 du->cursor_age = du->cursor_surface->snooper.age;
265 vmw_cursor_update_image(dev_priv,
266 du->cursor_surface->snooper.image,
267 64, 64,
268 du->hotspot_x + du->core_hotspot_x,
269 du->hotspot_y + du->core_hotspot_y);
270 }
271
272 mutex_unlock(&dev->mode_config.mutex);
273 }
274
275
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279
280 drm_plane_cleanup(plane);
281 }
282
283
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286 drm_plane_cleanup(plane);
287
288 /* Planes are static in our case so we don't free it */
289 }
290
291
292 /**
293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294 *
295 * @vps: plane state associated with the display surface
296 * @unreference: true if we also want to unreference the display.
297 */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299 bool unreference)
300 {
301 if (vps->surf) {
302 if (vps->pinned) {
303 vmw_resource_unpin(&vps->surf->res);
304 vps->pinned--;
305 }
306
307 if (unreference) {
308 if (vps->pinned)
309 DRM_ERROR("Surface still pinned\n");
310 vmw_surface_unreference(&vps->surf);
311 }
312 }
313 }
314
315
316 /**
317 * vmw_du_plane_cleanup_fb - Unpins the cursor
318 *
319 * @plane: display plane
320 * @old_state: Contains the FB to clean up
321 *
322 * Unpins the framebuffer surface
323 *
324 * Returns 0 on success
325 */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328 struct drm_plane_state *old_state)
329 {
330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331
332 vmw_du_plane_unpin_surf(vps, false);
333 }
334
335
336 /**
337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338 *
339 * @plane: display plane
340 * @new_state: info on the new plane state, including the FB
341 *
342 * Returns 0 on success
343 */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346 struct drm_plane_state *new_state)
347 {
348 struct drm_framebuffer *fb = new_state->fb;
349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350
351
352 if (vps->surf)
353 vmw_surface_unreference(&vps->surf);
354
355 if (vps->bo)
356 vmw_bo_unreference(&vps->bo);
357
358 if (fb) {
359 if (vmw_framebuffer_to_vfb(fb)->bo) {
360 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361 vmw_bo_reference(vps->bo);
362 } else {
363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364 vmw_surface_reference(vps->surf);
365 }
366 }
367
368 return 0;
369 }
370
371
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374 struct drm_plane_state *old_state)
375 {
376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380 s32 hotspot_x, hotspot_y;
381 int ret = 0;
382
383
384 hotspot_x = du->hotspot_x;
385 hotspot_y = du->hotspot_y;
386
387 if (plane->state->fb) {
388 hotspot_x += plane->state->fb->hot_x;
389 hotspot_y += plane->state->fb->hot_y;
390 }
391
392 du->cursor_surface = vps->surf;
393 du->cursor_bo = vps->bo;
394
395 if (vps->surf) {
396 du->cursor_age = du->cursor_surface->snooper.age;
397
398 ret = vmw_cursor_update_image(dev_priv,
399 vps->surf->snooper.image,
400 64, 64, hotspot_x,
401 hotspot_y);
402 } else if (vps->bo) {
403 ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404 plane->state->crtc_w,
405 plane->state->crtc_h,
406 hotspot_x, hotspot_y);
407 } else {
408 vmw_cursor_update_position(dev_priv, false, 0, 0);
409 return;
410 }
411
412 if (!ret) {
413 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415
416 vmw_cursor_update_position(dev_priv, true,
417 du->cursor_x + hotspot_x,
418 du->cursor_y + hotspot_y);
419
420 du->core_hotspot_x = hotspot_x - du->hotspot_x;
421 du->core_hotspot_y = hotspot_y - du->hotspot_y;
422 } else {
423 DRM_ERROR("Failed to update cursor image\n");
424 }
425 }
426
427
428 /**
429 * vmw_du_primary_plane_atomic_check - check if the new state is okay
430 *
431 * @plane: display plane
432 * @state: info on the new plane state, including the FB
433 *
434 * Check if the new state is settable given the current state. Other
435 * than what the atomic helper checks, we care about crtc fitting
436 * the FB and maintaining one active framebuffer.
437 *
438 * Returns 0 on success
439 */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441 struct drm_plane_state *state)
442 {
443 struct drm_crtc_state *crtc_state = NULL;
444 struct drm_framebuffer *new_fb = state->fb;
445 int ret;
446
447 if (state->crtc)
448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449
450 ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451 DRM_PLANE_HELPER_NO_SCALING,
452 DRM_PLANE_HELPER_NO_SCALING,
453 false, true);
454
455 if (!ret && new_fb) {
456 struct drm_crtc *crtc = state->crtc;
457 struct vmw_connector_state *vcs;
458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461
462 vcs = vmw_connector_state_to_vcs(du->connector.state);
463
464 /* Only one active implicit framebuffer at a time. */
465 mutex_lock(&dev_priv->global_kms_state_mutex);
466 if (vcs->is_implicit && dev_priv->implicit_fb &&
467 !(dev_priv->num_implicit == 1 && du->active_implicit)
468 && dev_priv->implicit_fb != vfb) {
469 DRM_ERROR("Multiple implicit framebuffers "
470 "not supported.\n");
471 ret = -EINVAL;
472 }
473 mutex_unlock(&dev_priv->global_kms_state_mutex);
474 }
475
476
477 return ret;
478 }
479
480
481 /**
482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483 *
484 * @plane: cursor plane
485 * @state: info on the new plane state
486 *
487 * This is a chance to fail if the new cursor state does not fit
488 * our requirements.
489 *
490 * Returns 0 on success
491 */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 struct drm_plane_state *new_state)
494 {
495 int ret = 0;
496 struct vmw_surface *surface = NULL;
497 struct drm_framebuffer *fb = new_state->fb;
498
499 struct drm_rect src = drm_plane_state_src(new_state);
500 struct drm_rect dest = drm_plane_state_dest(new_state);
501
502 /* Turning off */
503 if (!fb)
504 return ret;
505
506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507 &src, &dest,
508 DRM_MODE_ROTATE_0,
509 DRM_PLANE_HELPER_NO_SCALING,
510 DRM_PLANE_HELPER_NO_SCALING,
511 true, true, &new_state->visible);
512 if (!ret)
513 return ret;
514
515 /* A lot of the code assumes this */
516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518 new_state->crtc_w, new_state->crtc_h);
519 ret = -EINVAL;
520 }
521
522 if (!vmw_framebuffer_to_vfb(fb)->bo)
523 surface = vmw_framebuffer_to_vfbs(fb)->surface;
524
525 if (surface && !surface->snooper.image) {
526 DRM_ERROR("surface not suitable for cursor\n");
527 ret = -EINVAL;
528 }
529
530 return ret;
531 }
532
533
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535 struct drm_crtc_state *new_state)
536 {
537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538 int connector_mask = drm_connector_mask(&du->connector);
539 bool has_primary = new_state->plane_mask &
540 drm_plane_mask(crtc->primary);
541
542 /* We always want to have an active plane with an active CRTC */
543 if (has_primary != new_state->enable)
544 return -EINVAL;
545
546
547 if (new_state->connector_mask != connector_mask &&
548 new_state->connector_mask != 0) {
549 DRM_ERROR("Invalid connectors configuration\n");
550 return -EINVAL;
551 }
552
553 /*
554 * Our virtual device does not have a dot clock, so use the logical
555 * clock value as the dot clock.
556 */
557 if (new_state->mode.crtc_clock == 0)
558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559
560 return 0;
561 }
562
563
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565 struct drm_crtc_state *old_crtc_state)
566 {
567 }
568
569
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571 struct drm_crtc_state *old_crtc_state)
572 {
573 struct drm_pending_vblank_event *event = crtc->state->event;
574
575 if (event) {
576 crtc->state->event = NULL;
577
578 spin_lock_irq(&crtc->dev->event_lock);
579 drm_crtc_send_vblank_event(crtc, event);
580 spin_unlock_irq(&crtc->dev->event_lock);
581 }
582 }
583
584
585 /**
586 * vmw_du_crtc_duplicate_state - duplicate crtc state
587 * @crtc: DRM crtc
588 *
589 * Allocates and returns a copy of the crtc state (both common and
590 * vmw-specific) for the specified crtc.
591 *
592 * Returns: The newly allocated crtc state, or NULL on failure.
593 */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 struct drm_crtc_state *state;
598 struct vmw_crtc_state *vcs;
599
600 if (WARN_ON(!crtc->state))
601 return NULL;
602
603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605 if (!vcs)
606 return NULL;
607
608 state = &vcs->base;
609
610 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612 return state;
613 }
614
615
616 /**
617 * vmw_du_crtc_reset - creates a blank vmw crtc state
618 * @crtc: DRM crtc
619 *
620 * Resets the atomic state for @crtc by freeing the state pointer (which
621 * might be NULL, e.g. at driver load time) and allocating a new empty state
622 * object.
623 */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 struct vmw_crtc_state *vcs;
627
628
629 if (crtc->state) {
630 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632 kfree(vmw_crtc_state_to_vcs(crtc->state));
633 }
634
635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637 if (!vcs) {
638 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 return;
640 }
641
642 crtc->state = &vcs->base;
643 crtc->state->crtc = crtc;
644 }
645
646
647 /**
648 * vmw_du_crtc_destroy_state - destroy crtc state
649 * @crtc: DRM crtc
650 * @state: state object to destroy
651 *
652 * Destroys the crtc state (both common and vmw-specific) for the
653 * specified plane.
654 */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 struct drm_crtc_state *state)
658 {
659 drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664 * vmw_du_plane_duplicate_state - duplicate plane state
665 * @plane: drm plane
666 *
667 * Allocates and returns a copy of the plane state (both common and
668 * vmw-specific) for the specified plane.
669 *
670 * Returns: The newly allocated plane state, or NULL on failure.
671 */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 struct drm_plane_state *state;
676 struct vmw_plane_state *vps;
677
678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680 if (!vps)
681 return NULL;
682
683 vps->pinned = 0;
684 vps->cpp = 0;
685
686 /* Each ref counted resource needs to be acquired again */
687 if (vps->surf)
688 (void) vmw_surface_reference(vps->surf);
689
690 if (vps->bo)
691 (void) vmw_bo_reference(vps->bo);
692
693 state = &vps->base;
694
695 __drm_atomic_helper_plane_duplicate_state(plane, state);
696
697 return state;
698 }
699
700
701 /**
702 * vmw_du_plane_reset - creates a blank vmw plane state
703 * @plane: drm plane
704 *
705 * Resets the atomic state for @plane by freeing the state pointer (which might
706 * be NULL, e.g. at driver load time) and allocating a new empty state object.
707 */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710 struct vmw_plane_state *vps;
711
712
713 if (plane->state)
714 vmw_du_plane_destroy_state(plane, plane->state);
715
716 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717
718 if (!vps) {
719 DRM_ERROR("Cannot allocate vmw_plane_state\n");
720 return;
721 }
722
723 plane->state = &vps->base;
724 plane->state->plane = plane;
725 plane->state->rotation = DRM_MODE_ROTATE_0;
726 }
727
728
729 /**
730 * vmw_du_plane_destroy_state - destroy plane state
731 * @plane: DRM plane
732 * @state: state object to destroy
733 *
734 * Destroys the plane state (both common and vmw-specific) for the
735 * specified plane.
736 */
737 void
738 vmw_du_plane_destroy_state(struct drm_plane *plane,
739 struct drm_plane_state *state)
740 {
741 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
742
743
744 /* Should have been freed by cleanup_fb */
745 if (vps->surf)
746 vmw_surface_unreference(&vps->surf);
747
748 if (vps->bo)
749 vmw_bo_unreference(&vps->bo);
750
751 drm_atomic_helper_plane_destroy_state(plane, state);
752 }
753
754
755 /**
756 * vmw_du_connector_duplicate_state - duplicate connector state
757 * @connector: DRM connector
758 *
759 * Allocates and returns a copy of the connector state (both common and
760 * vmw-specific) for the specified connector.
761 *
762 * Returns: The newly allocated connector state, or NULL on failure.
763 */
764 struct drm_connector_state *
765 vmw_du_connector_duplicate_state(struct drm_connector *connector)
766 {
767 struct drm_connector_state *state;
768 struct vmw_connector_state *vcs;
769
770 if (WARN_ON(!connector->state))
771 return NULL;
772
773 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
774
775 if (!vcs)
776 return NULL;
777
778 state = &vcs->base;
779
780 __drm_atomic_helper_connector_duplicate_state(connector, state);
781
782 return state;
783 }
784
785
786 /**
787 * vmw_du_connector_reset - creates a blank vmw connector state
788 * @connector: DRM connector
789 *
790 * Resets the atomic state for @connector by freeing the state pointer (which
791 * might be NULL, e.g. at driver load time) and allocating a new empty state
792 * object.
793 */
794 void vmw_du_connector_reset(struct drm_connector *connector)
795 {
796 struct vmw_connector_state *vcs;
797
798
799 if (connector->state) {
800 __drm_atomic_helper_connector_destroy_state(connector->state);
801
802 kfree(vmw_connector_state_to_vcs(connector->state));
803 }
804
805 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
806
807 if (!vcs) {
808 DRM_ERROR("Cannot allocate vmw_connector_state\n");
809 return;
810 }
811
812 __drm_atomic_helper_connector_reset(connector, &vcs->base);
813 }
814
815
816 /**
817 * vmw_du_connector_destroy_state - destroy connector state
818 * @connector: DRM connector
819 * @state: state object to destroy
820 *
821 * Destroys the connector state (both common and vmw-specific) for the
822 * specified plane.
823 */
824 void
825 vmw_du_connector_destroy_state(struct drm_connector *connector,
826 struct drm_connector_state *state)
827 {
828 drm_atomic_helper_connector_destroy_state(connector, state);
829 }
830 /*
831 * Generic framebuffer code
832 */
833
834 /*
835 * Surface framebuffer code
836 */
837
838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
839 {
840 struct vmw_framebuffer_surface *vfbs =
841 vmw_framebuffer_to_vfbs(framebuffer);
842
843 drm_framebuffer_cleanup(framebuffer);
844 vmw_surface_unreference(&vfbs->surface);
845 if (vfbs->base.user_obj)
846 ttm_base_object_unref(&vfbs->base.user_obj);
847
848 kfree(vfbs);
849 }
850
851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
852 struct drm_file *file_priv,
853 unsigned flags, unsigned color,
854 struct drm_clip_rect *clips,
855 unsigned num_clips)
856 {
857 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
858 struct vmw_framebuffer_surface *vfbs =
859 vmw_framebuffer_to_vfbs(framebuffer);
860 struct drm_clip_rect norect;
861 int ret, inc = 1;
862
863 /* Legacy Display Unit does not support 3D */
864 if (dev_priv->active_display_unit == vmw_du_legacy)
865 return -EINVAL;
866
867 drm_modeset_lock_all(dev_priv->dev);
868
869 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
870 if (unlikely(ret != 0)) {
871 drm_modeset_unlock_all(dev_priv->dev);
872 return ret;
873 }
874
875 if (!num_clips) {
876 num_clips = 1;
877 clips = &norect;
878 norect.x1 = norect.y1 = 0;
879 norect.x2 = framebuffer->width;
880 norect.y2 = framebuffer->height;
881 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
882 num_clips /= 2;
883 inc = 2; /* skip source rects */
884 }
885
886 if (dev_priv->active_display_unit == vmw_du_screen_object)
887 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
888 clips, NULL, NULL, 0, 0,
889 num_clips, inc, NULL, NULL);
890 else
891 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
892 clips, NULL, NULL, 0, 0,
893 num_clips, inc, NULL, NULL);
894
895 vmw_fifo_flush(dev_priv, false);
896 ttm_read_unlock(&dev_priv->reservation_sem);
897
898 drm_modeset_unlock_all(dev_priv->dev);
899
900 return 0;
901 }
902
903 /**
904 * vmw_kms_readback - Perform a readback from the screen system to
905 * a buffer-object backed framebuffer.
906 *
907 * @dev_priv: Pointer to the device private structure.
908 * @file_priv: Pointer to a struct drm_file identifying the caller.
909 * Must be set to NULL if @user_fence_rep is NULL.
910 * @vfb: Pointer to the buffer-object backed framebuffer.
911 * @user_fence_rep: User-space provided structure for fence information.
912 * Must be set to non-NULL if @file_priv is non-NULL.
913 * @vclips: Array of clip rects.
914 * @num_clips: Number of clip rects in @vclips.
915 *
916 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
917 * interrupted.
918 */
919 int vmw_kms_readback(struct vmw_private *dev_priv,
920 struct drm_file *file_priv,
921 struct vmw_framebuffer *vfb,
922 struct drm_vmw_fence_rep __user *user_fence_rep,
923 struct drm_vmw_rect *vclips,
924 uint32_t num_clips)
925 {
926 switch (dev_priv->active_display_unit) {
927 case vmw_du_screen_object:
928 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
929 user_fence_rep, vclips, num_clips,
930 NULL);
931 case vmw_du_screen_target:
932 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
933 user_fence_rep, NULL, vclips, num_clips,
934 1, false, true, NULL);
935 default:
936 WARN_ONCE(true,
937 "Readback called with invalid display system.\n");
938 }
939
940 return -ENOSYS;
941 }
942
943
944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
945 .destroy = vmw_framebuffer_surface_destroy,
946 .dirty = vmw_framebuffer_surface_dirty,
947 };
948
949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
950 struct vmw_surface *surface,
951 struct vmw_framebuffer **out,
952 const struct drm_mode_fb_cmd2
953 *mode_cmd,
954 bool is_bo_proxy)
955
956 {
957 struct drm_device *dev = dev_priv->dev;
958 struct vmw_framebuffer_surface *vfbs;
959 enum SVGA3dSurfaceFormat format;
960 int ret;
961 struct drm_format_name_buf format_name;
962
963 /* 3D is only supported on HWv8 and newer hosts */
964 if (dev_priv->active_display_unit == vmw_du_legacy)
965 return -ENOSYS;
966
967 /*
968 * Sanity checks.
969 */
970
971 /* Surface must be marked as a scanout. */
972 if (unlikely(!surface->scanout))
973 return -EINVAL;
974
975 if (unlikely(surface->mip_levels[0] != 1 ||
976 surface->num_sizes != 1 ||
977 surface->base_size.width < mode_cmd->width ||
978 surface->base_size.height < mode_cmd->height ||
979 surface->base_size.depth != 1)) {
980 DRM_ERROR("Incompatible surface dimensions "
981 "for requested mode.\n");
982 return -EINVAL;
983 }
984
985 switch (mode_cmd->pixel_format) {
986 case DRM_FORMAT_ARGB8888:
987 format = SVGA3D_A8R8G8B8;
988 break;
989 case DRM_FORMAT_XRGB8888:
990 format = SVGA3D_X8R8G8B8;
991 break;
992 case DRM_FORMAT_RGB565:
993 format = SVGA3D_R5G6B5;
994 break;
995 case DRM_FORMAT_XRGB1555:
996 format = SVGA3D_A1R5G5B5;
997 break;
998 default:
999 DRM_ERROR("Invalid pixel format: %s\n",
1000 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1001 return -EINVAL;
1002 }
1003
1004 /*
1005 * For DX, surface format validation is done when surface->scanout
1006 * is set.
1007 */
1008 if (!dev_priv->has_dx && format != surface->format) {
1009 DRM_ERROR("Invalid surface format for requested mode.\n");
1010 return -EINVAL;
1011 }
1012
1013 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1014 if (!vfbs) {
1015 ret = -ENOMEM;
1016 goto out_err1;
1017 }
1018
1019 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1020 vfbs->surface = vmw_surface_reference(surface);
1021 vfbs->base.user_handle = mode_cmd->handles[0];
1022 vfbs->is_bo_proxy = is_bo_proxy;
1023
1024 *out = &vfbs->base;
1025
1026 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1027 &vmw_framebuffer_surface_funcs);
1028 if (ret)
1029 goto out_err2;
1030
1031 return 0;
1032
1033 out_err2:
1034 vmw_surface_unreference(&surface);
1035 kfree(vfbs);
1036 out_err1:
1037 return ret;
1038 }
1039
1040 /*
1041 * Buffer-object framebuffer code
1042 */
1043
1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1045 {
1046 struct vmw_framebuffer_bo *vfbd =
1047 vmw_framebuffer_to_vfbd(framebuffer);
1048
1049 drm_framebuffer_cleanup(framebuffer);
1050 vmw_bo_unreference(&vfbd->buffer);
1051 if (vfbd->base.user_obj)
1052 ttm_base_object_unref(&vfbd->base.user_obj);
1053
1054 kfree(vfbd);
1055 }
1056
1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1058 struct drm_file *file_priv,
1059 unsigned int flags, unsigned int color,
1060 struct drm_clip_rect *clips,
1061 unsigned int num_clips)
1062 {
1063 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1064 struct vmw_framebuffer_bo *vfbd =
1065 vmw_framebuffer_to_vfbd(framebuffer);
1066 struct drm_clip_rect norect;
1067 int ret, increment = 1;
1068
1069 drm_modeset_lock_all(dev_priv->dev);
1070
1071 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1072 if (unlikely(ret != 0)) {
1073 drm_modeset_unlock_all(dev_priv->dev);
1074 return ret;
1075 }
1076
1077 if (!num_clips) {
1078 num_clips = 1;
1079 clips = &norect;
1080 norect.x1 = norect.y1 = 0;
1081 norect.x2 = framebuffer->width;
1082 norect.y2 = framebuffer->height;
1083 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1084 num_clips /= 2;
1085 increment = 2;
1086 }
1087
1088 switch (dev_priv->active_display_unit) {
1089 case vmw_du_screen_target:
1090 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1091 clips, NULL, num_clips, increment,
1092 true, true, NULL);
1093 break;
1094 case vmw_du_screen_object:
1095 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1096 clips, NULL, num_clips,
1097 increment, true, NULL, NULL);
1098 break;
1099 case vmw_du_legacy:
1100 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1101 clips, num_clips, increment);
1102 break;
1103 default:
1104 ret = -EINVAL;
1105 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1106 break;
1107 }
1108
1109 vmw_fifo_flush(dev_priv, false);
1110 ttm_read_unlock(&dev_priv->reservation_sem);
1111
1112 drm_modeset_unlock_all(dev_priv->dev);
1113
1114 return ret;
1115 }
1116
1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1118 .destroy = vmw_framebuffer_bo_destroy,
1119 .dirty = vmw_framebuffer_bo_dirty,
1120 };
1121
1122 /**
1123 * Pin the bofer in a location suitable for access by the
1124 * display system.
1125 */
1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1127 {
1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129 struct vmw_buffer_object *buf;
1130 struct ttm_placement *placement;
1131 int ret;
1132
1133 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1134 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1135
1136 if (!buf)
1137 return 0;
1138
1139 switch (dev_priv->active_display_unit) {
1140 case vmw_du_legacy:
1141 vmw_overlay_pause_all(dev_priv);
1142 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1143 vmw_overlay_resume_all(dev_priv);
1144 break;
1145 case vmw_du_screen_object:
1146 case vmw_du_screen_target:
1147 if (vfb->bo) {
1148 if (dev_priv->capabilities & SVGA_CAP_3D) {
1149 /*
1150 * Use surface DMA to get content to
1151 * sreen target surface.
1152 */
1153 placement = &vmw_vram_gmr_placement;
1154 } else {
1155 /* Use CPU blit. */
1156 placement = &vmw_sys_placement;
1157 }
1158 } else {
1159 /* Use surface / image update */
1160 placement = &vmw_mob_placement;
1161 }
1162
1163 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1164 default:
1165 return -EINVAL;
1166 }
1167
1168 return ret;
1169 }
1170
1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174 struct vmw_buffer_object *buf;
1175
1176 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178
1179 if (WARN_ON(!buf))
1180 return 0;
1181
1182 return vmw_bo_unpin(dev_priv, buf, false);
1183 }
1184
1185 /**
1186 * vmw_create_bo_proxy - create a proxy surface for the buffer object
1187 *
1188 * @dev: DRM device
1189 * @mode_cmd: parameters for the new surface
1190 * @bo_mob: MOB backing the buffer object
1191 * @srf_out: newly created surface
1192 *
1193 * When the content FB is a buffer object, we create a surface as a proxy to the
1194 * same buffer. This way we can do a surface copy rather than a surface DMA.
1195 * This is a more efficient approach
1196 *
1197 * RETURNS:
1198 * 0 on success, error code otherwise
1199 */
1200 static int vmw_create_bo_proxy(struct drm_device *dev,
1201 const struct drm_mode_fb_cmd2 *mode_cmd,
1202 struct vmw_buffer_object *bo_mob,
1203 struct vmw_surface **srf_out)
1204 {
1205 uint32_t format;
1206 struct drm_vmw_size content_base_size = {0};
1207 struct vmw_resource *res;
1208 unsigned int bytes_pp;
1209 struct drm_format_name_buf format_name;
1210 int ret;
1211
1212 switch (mode_cmd->pixel_format) {
1213 case DRM_FORMAT_ARGB8888:
1214 case DRM_FORMAT_XRGB8888:
1215 format = SVGA3D_X8R8G8B8;
1216 bytes_pp = 4;
1217 break;
1218
1219 case DRM_FORMAT_RGB565:
1220 case DRM_FORMAT_XRGB1555:
1221 format = SVGA3D_R5G6B5;
1222 bytes_pp = 2;
1223 break;
1224
1225 case 8:
1226 format = SVGA3D_P8;
1227 bytes_pp = 1;
1228 break;
1229
1230 default:
1231 DRM_ERROR("Invalid framebuffer format %s\n",
1232 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233 return -EINVAL;
1234 }
1235
1236 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1237 content_base_size.height = mode_cmd->height;
1238 content_base_size.depth = 1;
1239
1240 ret = vmw_surface_gb_priv_define(dev,
1241 0, /* kernel visible only */
1242 0, /* flags */
1243 format,
1244 true, /* can be a scanout buffer */
1245 1, /* num of mip levels */
1246 0,
1247 0,
1248 content_base_size,
1249 SVGA3D_MS_PATTERN_NONE,
1250 SVGA3D_MS_QUALITY_NONE,
1251 srf_out);
1252 if (ret) {
1253 DRM_ERROR("Failed to allocate proxy content buffer\n");
1254 return ret;
1255 }
1256
1257 res = &(*srf_out)->res;
1258
1259 /* Reserve and switch the backing mob. */
1260 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1261 (void) vmw_resource_reserve(res, false, true);
1262 vmw_bo_unreference(&res->backup);
1263 res->backup = vmw_bo_reference(bo_mob);
1264 res->backup_offset = 0;
1265 vmw_resource_unreserve(res, false, NULL, 0);
1266 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1267
1268 return 0;
1269 }
1270
1271
1272
1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1274 struct vmw_buffer_object *bo,
1275 struct vmw_framebuffer **out,
1276 const struct drm_mode_fb_cmd2
1277 *mode_cmd)
1278
1279 {
1280 struct drm_device *dev = dev_priv->dev;
1281 struct vmw_framebuffer_bo *vfbd;
1282 unsigned int requested_size;
1283 struct drm_format_name_buf format_name;
1284 int ret;
1285
1286 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1287 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1288 DRM_ERROR("Screen buffer object size is too small "
1289 "for requested mode.\n");
1290 return -EINVAL;
1291 }
1292
1293 /* Limited framebuffer color depth support for screen objects */
1294 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1295 switch (mode_cmd->pixel_format) {
1296 case DRM_FORMAT_XRGB8888:
1297 case DRM_FORMAT_ARGB8888:
1298 break;
1299 case DRM_FORMAT_XRGB1555:
1300 case DRM_FORMAT_RGB565:
1301 break;
1302 default:
1303 DRM_ERROR("Invalid pixel format: %s\n",
1304 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1305 return -EINVAL;
1306 }
1307 }
1308
1309 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1310 if (!vfbd) {
1311 ret = -ENOMEM;
1312 goto out_err1;
1313 }
1314
1315 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1316 vfbd->base.bo = true;
1317 vfbd->buffer = vmw_bo_reference(bo);
1318 vfbd->base.user_handle = mode_cmd->handles[0];
1319 *out = &vfbd->base;
1320
1321 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1322 &vmw_framebuffer_bo_funcs);
1323 if (ret)
1324 goto out_err2;
1325
1326 return 0;
1327
1328 out_err2:
1329 vmw_bo_unreference(&bo);
1330 kfree(vfbd);
1331 out_err1:
1332 return ret;
1333 }
1334
1335
1336 /**
1337 * vmw_kms_srf_ok - check if a surface can be created
1338 *
1339 * @width: requested width
1340 * @height: requested height
1341 *
1342 * Surfaces need to be less than texture size
1343 */
1344 static bool
1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1346 {
1347 if (width > dev_priv->texture_max_width ||
1348 height > dev_priv->texture_max_height)
1349 return false;
1350
1351 return true;
1352 }
1353
1354 /**
1355 * vmw_kms_new_framebuffer - Create a new framebuffer.
1356 *
1357 * @dev_priv: Pointer to device private struct.
1358 * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1359 * Either @bo or @surface must be NULL.
1360 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1361 * Either @bo or @surface must be NULL.
1362 * @only_2d: No presents will occur to this buffer object based framebuffer.
1363 * This helps the code to do some important optimizations.
1364 * @mode_cmd: Frame-buffer metadata.
1365 */
1366 struct vmw_framebuffer *
1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1368 struct vmw_buffer_object *bo,
1369 struct vmw_surface *surface,
1370 bool only_2d,
1371 const struct drm_mode_fb_cmd2 *mode_cmd)
1372 {
1373 struct vmw_framebuffer *vfb = NULL;
1374 bool is_bo_proxy = false;
1375 int ret;
1376
1377 /*
1378 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1379 * therefore, wrap the buffer object in a surface so we can use the
1380 * SurfaceCopy command.
1381 */
1382 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1383 bo && only_2d &&
1384 mode_cmd->width > 64 && /* Don't create a proxy for cursor */
1385 dev_priv->active_display_unit == vmw_du_screen_target) {
1386 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1387 bo, &surface);
1388 if (ret)
1389 return ERR_PTR(ret);
1390
1391 is_bo_proxy = true;
1392 }
1393
1394 /* Create the new framebuffer depending one what we have */
1395 if (surface) {
1396 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1397 mode_cmd,
1398 is_bo_proxy);
1399
1400 /*
1401 * vmw_create_bo_proxy() adds a reference that is no longer
1402 * needed
1403 */
1404 if (is_bo_proxy)
1405 vmw_surface_unreference(&surface);
1406 } else if (bo) {
1407 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1408 mode_cmd);
1409 } else {
1410 BUG();
1411 }
1412
1413 if (ret)
1414 return ERR_PTR(ret);
1415
1416 vfb->pin = vmw_framebuffer_pin;
1417 vfb->unpin = vmw_framebuffer_unpin;
1418
1419 return vfb;
1420 }
1421
1422 /*
1423 * Generic Kernel modesetting functions
1424 */
1425
1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1427 struct drm_file *file_priv,
1428 const struct drm_mode_fb_cmd2 *mode_cmd)
1429 {
1430 struct vmw_private *dev_priv = vmw_priv(dev);
1431 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1432 struct vmw_framebuffer *vfb = NULL;
1433 struct vmw_surface *surface = NULL;
1434 struct vmw_buffer_object *bo = NULL;
1435 struct ttm_base_object *user_obj;
1436 int ret;
1437
1438 /*
1439 * Take a reference on the user object of the resource
1440 * backing the kms fb. This ensures that user-space handle
1441 * lookups on that resource will always work as long as
1442 * it's registered with a kms framebuffer. This is important,
1443 * since vmw_execbuf_process identifies resources in the
1444 * command stream using user-space handles.
1445 */
1446
1447 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1448 if (unlikely(user_obj == NULL)) {
1449 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1450 return ERR_PTR(-ENOENT);
1451 }
1452
1453 /**
1454 * End conditioned code.
1455 */
1456
1457 /* returns either a bo or surface */
1458 ret = vmw_user_lookup_handle(dev_priv, tfile,
1459 mode_cmd->handles[0],
1460 &surface, &bo);
1461 if (ret)
1462 goto err_out;
1463
1464
1465 if (!bo &&
1466 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1467 DRM_ERROR("Surface size cannot exceed %dx%d",
1468 dev_priv->texture_max_width,
1469 dev_priv->texture_max_height);
1470 goto err_out;
1471 }
1472
1473
1474 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1475 !(dev_priv->capabilities & SVGA_CAP_3D),
1476 mode_cmd);
1477 if (IS_ERR(vfb)) {
1478 ret = PTR_ERR(vfb);
1479 goto err_out;
1480 }
1481
1482 err_out:
1483 /* vmw_user_lookup_handle takes one ref so does new_fb */
1484 if (bo)
1485 vmw_bo_unreference(&bo);
1486 if (surface)
1487 vmw_surface_unreference(&surface);
1488
1489 if (ret) {
1490 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1491 ttm_base_object_unref(&user_obj);
1492 return ERR_PTR(ret);
1493 } else
1494 vfb->user_obj = user_obj;
1495
1496 return &vfb->base;
1497 }
1498
1499 /**
1500 * vmw_kms_check_display_memory - Validates display memory required for a
1501 * topology
1502 * @dev: DRM device
1503 * @num_rects: number of drm_rect in rects
1504 * @rects: array of drm_rect representing the topology to validate indexed by
1505 * crtc index.
1506 *
1507 * Returns:
1508 * 0 on success otherwise negative error code
1509 */
1510 static int vmw_kms_check_display_memory(struct drm_device *dev,
1511 uint32_t num_rects,
1512 struct drm_rect *rects)
1513 {
1514 struct vmw_private *dev_priv = vmw_priv(dev);
1515 struct drm_mode_config *mode_config = &dev->mode_config;
1516 struct drm_rect bounding_box = {0};
1517 u64 total_pixels = 0, pixel_mem, bb_mem;
1518 int i;
1519
1520 for (i = 0; i < num_rects; i++) {
1521 /*
1522 * Currently this check is limiting the topology within max
1523 * texture/screentarget size. This should change in future when
1524 * user-space support multiple fb with topology.
1525 */
1526 if (rects[i].x1 < 0 || rects[i].y1 < 0 ||
1527 rects[i].x2 > mode_config->max_width ||
1528 rects[i].y2 > mode_config->max_height) {
1529 DRM_ERROR("Invalid GUI layout.\n");
1530 return -EINVAL;
1531 }
1532
1533 /* Bounding box upper left is at (0,0). */
1534 if (rects[i].x2 > bounding_box.x2)
1535 bounding_box.x2 = rects[i].x2;
1536
1537 if (rects[i].y2 > bounding_box.y2)
1538 bounding_box.y2 = rects[i].y2;
1539
1540 total_pixels += (u64) drm_rect_width(&rects[i]) *
1541 (u64) drm_rect_height(&rects[i]);
1542 }
1543
1544 /* Virtual svga device primary limits are always in 32-bpp. */
1545 pixel_mem = total_pixels * 4;
1546
1547 /*
1548 * For HV10 and below prim_bb_mem is vram size. When
1549 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1550 * limit on primary bounding box
1551 */
1552 if (pixel_mem > dev_priv->prim_bb_mem) {
1553 DRM_ERROR("Combined output size too large.\n");
1554 return -EINVAL;
1555 }
1556
1557 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1558 if (dev_priv->active_display_unit != vmw_du_screen_target ||
1559 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1560 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1561
1562 if (bb_mem > dev_priv->prim_bb_mem) {
1563 DRM_ERROR("Topology is beyond supported limits.\n");
1564 return -EINVAL;
1565 }
1566 }
1567
1568 return 0;
1569 }
1570
1571 /**
1572 * vmw_kms_check_topology - Validates topology in drm_atomic_state
1573 * @dev: DRM device
1574 * @state: the driver state object
1575 *
1576 * Returns:
1577 * 0 on success otherwise negative error code
1578 */
1579 static int vmw_kms_check_topology(struct drm_device *dev,
1580 struct drm_atomic_state *state)
1581 {
1582 struct vmw_private *dev_priv = vmw_priv(dev);
1583 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1584 struct drm_rect *rects;
1585 struct drm_crtc *crtc;
1586 uint32_t i;
1587 int ret = 0;
1588
1589 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1590 GFP_KERNEL);
1591 if (!rects)
1592 return -ENOMEM;
1593
1594 mutex_lock(&dev_priv->requested_layout_mutex);
1595
1596 drm_for_each_crtc(crtc, dev) {
1597 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1598 struct drm_crtc_state *crtc_state = crtc->state;
1599
1600 i = drm_crtc_index(crtc);
1601
1602 if (crtc_state && crtc_state->enable) {
1603 rects[i].x1 = du->gui_x;
1604 rects[i].y1 = du->gui_y;
1605 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1606 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1607 }
1608 }
1609
1610 /* Determine change to topology due to new atomic state */
1611 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1612 new_crtc_state, i) {
1613 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1614 struct drm_connector *connector;
1615 struct drm_connector_state *conn_state;
1616 struct vmw_connector_state *vmw_conn_state;
1617
1618 if (!new_crtc_state->enable && old_crtc_state->enable) {
1619 rects[i].x1 = 0;
1620 rects[i].y1 = 0;
1621 rects[i].x2 = 0;
1622 rects[i].y2 = 0;
1623 continue;
1624 }
1625
1626 if (!du->pref_active) {
1627 ret = -EINVAL;
1628 goto clean;
1629 }
1630
1631 /*
1632 * For vmwgfx each crtc has only one connector attached and it
1633 * is not changed so don't really need to check the
1634 * crtc->connector_mask and iterate over it.
1635 */
1636 connector = &du->connector;
1637 conn_state = drm_atomic_get_connector_state(state, connector);
1638 if (IS_ERR(conn_state)) {
1639 ret = PTR_ERR(conn_state);
1640 goto clean;
1641 }
1642
1643 vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1644 vmw_conn_state->gui_x = du->gui_x;
1645 vmw_conn_state->gui_y = du->gui_y;
1646
1647 rects[i].x1 = du->gui_x;
1648 rects[i].y1 = du->gui_y;
1649 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1650 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1651 }
1652
1653 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1654 rects);
1655
1656 clean:
1657 mutex_unlock(&dev_priv->requested_layout_mutex);
1658 kfree(rects);
1659 return ret;
1660 }
1661
1662 /**
1663 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1664 *
1665 * @dev: DRM device
1666 * @state: the driver state object
1667 *
1668 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1669 * us to assign a value to mode->crtc_clock so that
1670 * drm_calc_timestamping_constants() won't throw an error message
1671 *
1672 * Returns:
1673 * Zero for success or -errno
1674 */
1675 static int
1676 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1677 struct drm_atomic_state *state)
1678 {
1679 struct drm_crtc *crtc;
1680 struct drm_crtc_state *crtc_state;
1681 bool need_modeset = false;
1682 int i, ret;
1683
1684 ret = drm_atomic_helper_check(dev, state);
1685 if (ret)
1686 return ret;
1687
1688 if (!state->allow_modeset)
1689 return ret;
1690
1691 /*
1692 * Legacy path do not set allow_modeset properly like
1693 * @drm_atomic_helper_update_plane, This will result in unnecessary call
1694 * to vmw_kms_check_topology. So extra set of check.
1695 */
1696 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1697 if (drm_atomic_crtc_needs_modeset(crtc_state))
1698 need_modeset = true;
1699 }
1700
1701 if (need_modeset)
1702 return vmw_kms_check_topology(dev, state);
1703
1704 return ret;
1705 }
1706
1707 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1708 .fb_create = vmw_kms_fb_create,
1709 .atomic_check = vmw_kms_atomic_check_modeset,
1710 .atomic_commit = drm_atomic_helper_commit,
1711 };
1712
1713 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1714 struct drm_file *file_priv,
1715 struct vmw_framebuffer *vfb,
1716 struct vmw_surface *surface,
1717 uint32_t sid,
1718 int32_t destX, int32_t destY,
1719 struct drm_vmw_rect *clips,
1720 uint32_t num_clips)
1721 {
1722 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1723 &surface->res, destX, destY,
1724 num_clips, 1, NULL, NULL);
1725 }
1726
1727
1728 int vmw_kms_present(struct vmw_private *dev_priv,
1729 struct drm_file *file_priv,
1730 struct vmw_framebuffer *vfb,
1731 struct vmw_surface *surface,
1732 uint32_t sid,
1733 int32_t destX, int32_t destY,
1734 struct drm_vmw_rect *clips,
1735 uint32_t num_clips)
1736 {
1737 int ret;
1738
1739 switch (dev_priv->active_display_unit) {
1740 case vmw_du_screen_target:
1741 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1742 &surface->res, destX, destY,
1743 num_clips, 1, NULL, NULL);
1744 break;
1745 case vmw_du_screen_object:
1746 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1747 sid, destX, destY, clips,
1748 num_clips);
1749 break;
1750 default:
1751 WARN_ONCE(true,
1752 "Present called with invalid display system.\n");
1753 ret = -ENOSYS;
1754 break;
1755 }
1756 if (ret)
1757 return ret;
1758
1759 vmw_fifo_flush(dev_priv, false);
1760
1761 return 0;
1762 }
1763
1764 static void
1765 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1766 {
1767 if (dev_priv->hotplug_mode_update_property)
1768 return;
1769
1770 dev_priv->hotplug_mode_update_property =
1771 drm_property_create_range(dev_priv->dev,
1772 DRM_MODE_PROP_IMMUTABLE,
1773 "hotplug_mode_update", 0, 1);
1774
1775 if (!dev_priv->hotplug_mode_update_property)
1776 return;
1777
1778 }
1779
1780 int vmw_kms_init(struct vmw_private *dev_priv)
1781 {
1782 struct drm_device *dev = dev_priv->dev;
1783 int ret;
1784
1785 drm_mode_config_init(dev);
1786 dev->mode_config.funcs = &vmw_kms_funcs;
1787 dev->mode_config.min_width = 1;
1788 dev->mode_config.min_height = 1;
1789 dev->mode_config.max_width = dev_priv->texture_max_width;
1790 dev->mode_config.max_height = dev_priv->texture_max_height;
1791
1792 drm_mode_create_suggested_offset_properties(dev);
1793 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1794
1795 ret = vmw_kms_stdu_init_display(dev_priv);
1796 if (ret) {
1797 ret = vmw_kms_sou_init_display(dev_priv);
1798 if (ret) /* Fallback */
1799 ret = vmw_kms_ldu_init_display(dev_priv);
1800 }
1801
1802 return ret;
1803 }
1804
1805 int vmw_kms_close(struct vmw_private *dev_priv)
1806 {
1807 int ret = 0;
1808
1809 /*
1810 * Docs says we should take the lock before calling this function
1811 * but since it destroys encoders and our destructor calls
1812 * drm_encoder_cleanup which takes the lock we deadlock.
1813 */
1814 drm_mode_config_cleanup(dev_priv->dev);
1815 if (dev_priv->active_display_unit == vmw_du_legacy)
1816 ret = vmw_kms_ldu_close_display(dev_priv);
1817
1818 return ret;
1819 }
1820
1821 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1822 struct drm_file *file_priv)
1823 {
1824 struct drm_vmw_cursor_bypass_arg *arg = data;
1825 struct vmw_display_unit *du;
1826 struct drm_crtc *crtc;
1827 int ret = 0;
1828
1829
1830 mutex_lock(&dev->mode_config.mutex);
1831 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1832
1833 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1834 du = vmw_crtc_to_du(crtc);
1835 du->hotspot_x = arg->xhot;
1836 du->hotspot_y = arg->yhot;
1837 }
1838
1839 mutex_unlock(&dev->mode_config.mutex);
1840 return 0;
1841 }
1842
1843 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1844 if (!crtc) {
1845 ret = -ENOENT;
1846 goto out;
1847 }
1848
1849 du = vmw_crtc_to_du(crtc);
1850
1851 du->hotspot_x = arg->xhot;
1852 du->hotspot_y = arg->yhot;
1853
1854 out:
1855 mutex_unlock(&dev->mode_config.mutex);
1856
1857 return ret;
1858 }
1859
1860 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1861 unsigned width, unsigned height, unsigned pitch,
1862 unsigned bpp, unsigned depth)
1863 {
1864 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1865 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1866 else if (vmw_fifo_have_pitchlock(vmw_priv))
1867 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1868 SVGA_FIFO_PITCHLOCK);
1869 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1870 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1871 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1872
1873 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1874 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1875 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1876 return -EINVAL;
1877 }
1878
1879 return 0;
1880 }
1881
1882 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1883 {
1884 struct vmw_vga_topology_state *save;
1885 uint32_t i;
1886
1887 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1888 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1889 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1890 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1891 vmw_priv->vga_pitchlock =
1892 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1893 else if (vmw_fifo_have_pitchlock(vmw_priv))
1894 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1895 SVGA_FIFO_PITCHLOCK);
1896
1897 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1898 return 0;
1899
1900 vmw_priv->num_displays = vmw_read(vmw_priv,
1901 SVGA_REG_NUM_GUEST_DISPLAYS);
1902
1903 if (vmw_priv->num_displays == 0)
1904 vmw_priv->num_displays = 1;
1905
1906 for (i = 0; i < vmw_priv->num_displays; ++i) {
1907 save = &vmw_priv->vga_save[i];
1908 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1909 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1910 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1911 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1912 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1913 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1914 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1915 if (i == 0 && vmw_priv->num_displays == 1 &&
1916 save->width == 0 && save->height == 0) {
1917
1918 /*
1919 * It should be fairly safe to assume that these
1920 * values are uninitialized.
1921 */
1922
1923 save->width = vmw_priv->vga_width - save->pos_x;
1924 save->height = vmw_priv->vga_height - save->pos_y;
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1932 {
1933 struct vmw_vga_topology_state *save;
1934 uint32_t i;
1935
1936 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1937 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1938 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1939 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1940 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1941 vmw_priv->vga_pitchlock);
1942 else if (vmw_fifo_have_pitchlock(vmw_priv))
1943 vmw_mmio_write(vmw_priv->vga_pitchlock,
1944 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1945
1946 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1947 return 0;
1948
1949 for (i = 0; i < vmw_priv->num_displays; ++i) {
1950 save = &vmw_priv->vga_save[i];
1951 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1952 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1953 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1954 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1955 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1956 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1957 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1958 }
1959
1960 return 0;
1961 }
1962
1963 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1964 uint32_t pitch,
1965 uint32_t height)
1966 {
1967 return ((u64) pitch * (u64) height) < (u64)
1968 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1969 dev_priv->prim_bb_mem : dev_priv->vram_size);
1970 }
1971
1972
1973 /**
1974 * Function called by DRM code called with vbl_lock held.
1975 */
1976 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1977 {
1978 return 0;
1979 }
1980
1981 /**
1982 * Function called by DRM code called with vbl_lock held.
1983 */
1984 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1985 {
1986 return -EINVAL;
1987 }
1988
1989 /**
1990 * Function called by DRM code called with vbl_lock held.
1991 */
1992 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1993 {
1994 }
1995
1996 /**
1997 * vmw_du_update_layout - Update the display unit with topology from resolution
1998 * plugin and generate DRM uevent
1999 * @dev_priv: device private
2000 * @num_rects: number of drm_rect in rects
2001 * @rects: toplogy to update
2002 */
2003 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2004 unsigned int num_rects, struct drm_rect *rects)
2005 {
2006 struct drm_device *dev = dev_priv->dev;
2007 struct vmw_display_unit *du;
2008 struct drm_connector *con;
2009 struct drm_connector_list_iter conn_iter;
2010
2011 /*
2012 * Currently only gui_x/y is protected with requested_layout_mutex.
2013 */
2014 mutex_lock(&dev_priv->requested_layout_mutex);
2015 drm_connector_list_iter_begin(dev, &conn_iter);
2016 drm_for_each_connector_iter(con, &conn_iter) {
2017 du = vmw_connector_to_du(con);
2018 if (num_rects > du->unit) {
2019 du->pref_width = drm_rect_width(&rects[du->unit]);
2020 du->pref_height = drm_rect_height(&rects[du->unit]);
2021 du->pref_active = true;
2022 du->gui_x = rects[du->unit].x1;
2023 du->gui_y = rects[du->unit].y1;
2024 } else {
2025 du->pref_width = 800;
2026 du->pref_height = 600;
2027 du->pref_active = false;
2028 du->gui_x = 0;
2029 du->gui_y = 0;
2030 }
2031 }
2032 drm_connector_list_iter_end(&conn_iter);
2033 mutex_unlock(&dev_priv->requested_layout_mutex);
2034
2035 mutex_lock(&dev->mode_config.mutex);
2036 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2037 du = vmw_connector_to_du(con);
2038 if (num_rects > du->unit) {
2039 drm_object_property_set_value
2040 (&con->base, dev->mode_config.suggested_x_property,
2041 du->gui_x);
2042 drm_object_property_set_value
2043 (&con->base, dev->mode_config.suggested_y_property,
2044 du->gui_y);
2045 } else {
2046 drm_object_property_set_value
2047 (&con->base, dev->mode_config.suggested_x_property,
2048 0);
2049 drm_object_property_set_value
2050 (&con->base, dev->mode_config.suggested_y_property,
2051 0);
2052 }
2053 con->status = vmw_du_connector_detect(con, true);
2054 }
2055 mutex_unlock(&dev->mode_config.mutex);
2056
2057 drm_sysfs_hotplug_event(dev);
2058
2059 return 0;
2060 }
2061
2062 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2063 u16 *r, u16 *g, u16 *b,
2064 uint32_t size,
2065 struct drm_modeset_acquire_ctx *ctx)
2066 {
2067 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2068 int i;
2069
2070 for (i = 0; i < size; i++) {
2071 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2072 r[i], g[i], b[i]);
2073 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2074 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2075 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2076 }
2077
2078 return 0;
2079 }
2080
2081 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2082 {
2083 return 0;
2084 }
2085
2086 enum drm_connector_status
2087 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2088 {
2089 uint32_t num_displays;
2090 struct drm_device *dev = connector->dev;
2091 struct vmw_private *dev_priv = vmw_priv(dev);
2092 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2093
2094 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2095
2096 return ((vmw_connector_to_du(connector)->unit < num_displays &&
2097 du->pref_active) ?
2098 connector_status_connected : connector_status_disconnected);
2099 }
2100
2101 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2102 /* 640x480@60Hz */
2103 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2104 752, 800, 0, 480, 489, 492, 525, 0,
2105 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2106 /* 800x600@60Hz */
2107 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2108 968, 1056, 0, 600, 601, 605, 628, 0,
2109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2110 /* 1024x768@60Hz */
2111 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2112 1184, 1344, 0, 768, 771, 777, 806, 0,
2113 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2114 /* 1152x864@75Hz */
2115 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2116 1344, 1600, 0, 864, 865, 868, 900, 0,
2117 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118 /* 1280x768@60Hz */
2119 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2120 1472, 1664, 0, 768, 771, 778, 798, 0,
2121 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2122 /* 1280x800@60Hz */
2123 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2124 1480, 1680, 0, 800, 803, 809, 831, 0,
2125 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2126 /* 1280x960@60Hz */
2127 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2128 1488, 1800, 0, 960, 961, 964, 1000, 0,
2129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130 /* 1280x1024@60Hz */
2131 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2132 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134 /* 1360x768@60Hz */
2135 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2136 1536, 1792, 0, 768, 771, 777, 795, 0,
2137 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138 /* 1440x1050@60Hz */
2139 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2140 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2141 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2142 /* 1440x900@60Hz */
2143 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2144 1672, 1904, 0, 900, 903, 909, 934, 0,
2145 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146 /* 1600x1200@60Hz */
2147 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2148 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2150 /* 1680x1050@60Hz */
2151 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2152 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2153 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154 /* 1792x1344@60Hz */
2155 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2156 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2157 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158 /* 1853x1392@60Hz */
2159 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2160 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2161 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2162 /* 1920x1200@60Hz */
2163 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2164 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2165 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166 /* 1920x1440@60Hz */
2167 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2168 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170 /* 2560x1600@60Hz */
2171 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2172 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2173 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2174 /* Terminate */
2175 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2176 };
2177
2178 /**
2179 * vmw_guess_mode_timing - Provide fake timings for a
2180 * 60Hz vrefresh mode.
2181 *
2182 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2183 * members filled in.
2184 */
2185 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2186 {
2187 mode->hsync_start = mode->hdisplay + 50;
2188 mode->hsync_end = mode->hsync_start + 50;
2189 mode->htotal = mode->hsync_end + 50;
2190
2191 mode->vsync_start = mode->vdisplay + 50;
2192 mode->vsync_end = mode->vsync_start + 50;
2193 mode->vtotal = mode->vsync_end + 50;
2194
2195 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2196 mode->vrefresh = drm_mode_vrefresh(mode);
2197 }
2198
2199
2200 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2201 uint32_t max_width, uint32_t max_height)
2202 {
2203 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2204 struct drm_device *dev = connector->dev;
2205 struct vmw_private *dev_priv = vmw_priv(dev);
2206 struct drm_display_mode *mode = NULL;
2207 struct drm_display_mode *bmode;
2208 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2209 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2211 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2212 };
2213 int i;
2214 u32 assumed_bpp = 4;
2215
2216 if (dev_priv->assume_16bpp)
2217 assumed_bpp = 2;
2218
2219 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2220 max_width = min(max_width, dev_priv->stdu_max_width);
2221 max_width = min(max_width, dev_priv->texture_max_width);
2222
2223 max_height = min(max_height, dev_priv->stdu_max_height);
2224 max_height = min(max_height, dev_priv->texture_max_height);
2225 }
2226
2227 /* Add preferred mode */
2228 mode = drm_mode_duplicate(dev, &prefmode);
2229 if (!mode)
2230 return 0;
2231 mode->hdisplay = du->pref_width;
2232 mode->vdisplay = du->pref_height;
2233 vmw_guess_mode_timing(mode);
2234
2235 if (vmw_kms_validate_mode_vram(dev_priv,
2236 mode->hdisplay * assumed_bpp,
2237 mode->vdisplay)) {
2238 drm_mode_probed_add(connector, mode);
2239 } else {
2240 drm_mode_destroy(dev, mode);
2241 mode = NULL;
2242 }
2243
2244 if (du->pref_mode) {
2245 list_del_init(&du->pref_mode->head);
2246 drm_mode_destroy(dev, du->pref_mode);
2247 }
2248
2249 /* mode might be null here, this is intended */
2250 du->pref_mode = mode;
2251
2252 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2253 bmode = &vmw_kms_connector_builtin[i];
2254 if (bmode->hdisplay > max_width ||
2255 bmode->vdisplay > max_height)
2256 continue;
2257
2258 if (!vmw_kms_validate_mode_vram(dev_priv,
2259 bmode->hdisplay * assumed_bpp,
2260 bmode->vdisplay))
2261 continue;
2262
2263 mode = drm_mode_duplicate(dev, bmode);
2264 if (!mode)
2265 return 0;
2266 mode->vrefresh = drm_mode_vrefresh(mode);
2267
2268 drm_mode_probed_add(connector, mode);
2269 }
2270
2271 drm_connector_list_update(connector);
2272 /* Move the prefered mode first, help apps pick the right mode. */
2273 drm_mode_sort(&connector->modes);
2274
2275 return 1;
2276 }
2277
2278 int vmw_du_connector_set_property(struct drm_connector *connector,
2279 struct drm_property *property,
2280 uint64_t val)
2281 {
2282 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2283 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2284
2285 if (property == dev_priv->implicit_placement_property)
2286 du->is_implicit = val;
2287
2288 return 0;
2289 }
2290
2291
2292
2293 /**
2294 * vmw_du_connector_atomic_set_property - Atomic version of get property
2295 *
2296 * @crtc - crtc the property is associated with
2297 *
2298 * Returns:
2299 * Zero on success, negative errno on failure.
2300 */
2301 int
2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2303 struct drm_connector_state *state,
2304 struct drm_property *property,
2305 uint64_t val)
2306 {
2307 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2310
2311
2312 if (property == dev_priv->implicit_placement_property) {
2313 vcs->is_implicit = val;
2314
2315 /*
2316 * We should really be doing a drm_atomic_commit() to
2317 * commit the new state, but since this doesn't cause
2318 * an immedate state change, this is probably ok
2319 */
2320 du->is_implicit = vcs->is_implicit;
2321 } else {
2322 return -EINVAL;
2323 }
2324
2325 return 0;
2326 }
2327
2328
2329 /**
2330 * vmw_du_connector_atomic_get_property - Atomic version of get property
2331 *
2332 * @connector - connector the property is associated with
2333 *
2334 * Returns:
2335 * Zero on success, negative errno on failure.
2336 */
2337 int
2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2339 const struct drm_connector_state *state,
2340 struct drm_property *property,
2341 uint64_t *val)
2342 {
2343 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2344 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2345
2346 if (property == dev_priv->implicit_placement_property)
2347 *val = vcs->is_implicit;
2348 else {
2349 DRM_ERROR("Invalid Property %s\n", property->name);
2350 return -EINVAL;
2351 }
2352
2353 return 0;
2354 }
2355
2356 /**
2357 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2358 * @dev: drm device for the ioctl
2359 * @data: data pointer for the ioctl
2360 * @file_priv: drm file for the ioctl call
2361 *
2362 * Update preferred topology of display unit as per ioctl request. The topology
2363 * is expressed as array of drm_vmw_rect.
2364 * e.g.
2365 * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2366 *
2367 * NOTE:
2368 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2369 * device limit on topology, x + w and y + h (lower right) cannot be greater
2370 * than INT_MAX. So topology beyond these limits will return with error.
2371 *
2372 * Returns:
2373 * Zero on success, negative errno on failure.
2374 */
2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2376 struct drm_file *file_priv)
2377 {
2378 struct vmw_private *dev_priv = vmw_priv(dev);
2379 struct drm_vmw_update_layout_arg *arg =
2380 (struct drm_vmw_update_layout_arg *)data;
2381 void __user *user_rects;
2382 struct drm_vmw_rect *rects;
2383 struct drm_rect *drm_rects;
2384 unsigned rects_size;
2385 int ret, i;
2386
2387 if (!arg->num_outputs) {
2388 struct drm_rect def_rect = {0, 0, 800, 600};
2389 vmw_du_update_layout(dev_priv, 1, &def_rect);
2390 return 0;
2391 }
2392
2393 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2394 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2395 GFP_KERNEL);
2396 if (unlikely(!rects))
2397 return -ENOMEM;
2398
2399 user_rects = (void __user *)(unsigned long)arg->rects;
2400 ret = copy_from_user(rects, user_rects, rects_size);
2401 if (unlikely(ret != 0)) {
2402 DRM_ERROR("Failed to get rects.\n");
2403 ret = -EFAULT;
2404 goto out_free;
2405 }
2406
2407 drm_rects = (struct drm_rect *)rects;
2408
2409 for (i = 0; i < arg->num_outputs; i++) {
2410 struct drm_vmw_rect curr_rect;
2411
2412 /* Verify user-space for overflow as kernel use drm_rect */
2413 if ((rects[i].x + rects[i].w > INT_MAX) ||
2414 (rects[i].y + rects[i].h > INT_MAX)) {
2415 ret = -ERANGE;
2416 goto out_free;
2417 }
2418
2419 curr_rect = rects[i];
2420 drm_rects[i].x1 = curr_rect.x;
2421 drm_rects[i].y1 = curr_rect.y;
2422 drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2423 drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2424 }
2425
2426 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2427
2428 if (ret == 0)
2429 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2430
2431 out_free:
2432 kfree(rects);
2433 return ret;
2434 }
2435
2436 /**
2437 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2438 * on a set of cliprects and a set of display units.
2439 *
2440 * @dev_priv: Pointer to a device private structure.
2441 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2442 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2443 * Cliprects are given in framebuffer coordinates.
2444 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2445 * be NULL. Cliprects are given in source coordinates.
2446 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2447 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2448 * @num_clips: Number of cliprects in the @clips or @vclips array.
2449 * @increment: Integer with which to increment the clip counter when looping.
2450 * Used to skip a predetermined number of clip rects.
2451 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2452 */
2453 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2454 struct vmw_framebuffer *framebuffer,
2455 const struct drm_clip_rect *clips,
2456 const struct drm_vmw_rect *vclips,
2457 s32 dest_x, s32 dest_y,
2458 int num_clips,
2459 int increment,
2460 struct vmw_kms_dirty *dirty)
2461 {
2462 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2463 struct drm_crtc *crtc;
2464 u32 num_units = 0;
2465 u32 i, k;
2466
2467 dirty->dev_priv = dev_priv;
2468
2469 /* If crtc is passed, no need to iterate over other display units */
2470 if (dirty->crtc) {
2471 units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2472 } else {
2473 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2474 head) {
2475 struct drm_plane *plane = crtc->primary;
2476
2477 if (plane->state->fb == &framebuffer->base)
2478 units[num_units++] = vmw_crtc_to_du(crtc);
2479 }
2480 }
2481
2482 for (k = 0; k < num_units; k++) {
2483 struct vmw_display_unit *unit = units[k];
2484 s32 crtc_x = unit->crtc.x;
2485 s32 crtc_y = unit->crtc.y;
2486 s32 crtc_width = unit->crtc.mode.hdisplay;
2487 s32 crtc_height = unit->crtc.mode.vdisplay;
2488 const struct drm_clip_rect *clips_ptr = clips;
2489 const struct drm_vmw_rect *vclips_ptr = vclips;
2490
2491 dirty->unit = unit;
2492 if (dirty->fifo_reserve_size > 0) {
2493 dirty->cmd = vmw_fifo_reserve(dev_priv,
2494 dirty->fifo_reserve_size);
2495 if (!dirty->cmd) {
2496 DRM_ERROR("Couldn't reserve fifo space "
2497 "for dirty blits.\n");
2498 return -ENOMEM;
2499 }
2500 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2501 }
2502 dirty->num_hits = 0;
2503 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2504 vclips_ptr += increment) {
2505 s32 clip_left;
2506 s32 clip_top;
2507
2508 /*
2509 * Select clip array type. Note that integer type
2510 * in @clips is unsigned short, whereas in @vclips
2511 * it's 32-bit.
2512 */
2513 if (clips) {
2514 dirty->fb_x = (s32) clips_ptr->x1;
2515 dirty->fb_y = (s32) clips_ptr->y1;
2516 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2517 crtc_x;
2518 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2519 crtc_y;
2520 } else {
2521 dirty->fb_x = vclips_ptr->x;
2522 dirty->fb_y = vclips_ptr->y;
2523 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2524 dest_x - crtc_x;
2525 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2526 dest_y - crtc_y;
2527 }
2528
2529 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2530 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2531
2532 /* Skip this clip if it's outside the crtc region */
2533 if (dirty->unit_x1 >= crtc_width ||
2534 dirty->unit_y1 >= crtc_height ||
2535 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2536 continue;
2537
2538 /* Clip right and bottom to crtc limits */
2539 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2540 crtc_width);
2541 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2542 crtc_height);
2543
2544 /* Clip left and top to crtc limits */
2545 clip_left = min_t(s32, dirty->unit_x1, 0);
2546 clip_top = min_t(s32, dirty->unit_y1, 0);
2547 dirty->unit_x1 -= clip_left;
2548 dirty->unit_y1 -= clip_top;
2549 dirty->fb_x -= clip_left;
2550 dirty->fb_y -= clip_top;
2551
2552 dirty->clip(dirty);
2553 }
2554
2555 dirty->fifo_commit(dirty);
2556 }
2557
2558 return 0;
2559 }
2560
2561 /**
2562 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2563 * command submission.
2564 *
2565 * @dev_priv. Pointer to a device private structure.
2566 * @buf: The buffer object
2567 * @interruptible: Whether to perform waits as interruptible.
2568 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2569 * The buffer will be validated as a GMR. Already pinned buffers will not be
2570 * validated.
2571 *
2572 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2573 * interrupted by a signal.
2574 */
2575 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2576 struct vmw_buffer_object *buf,
2577 bool interruptible,
2578 bool validate_as_mob,
2579 bool for_cpu_blit)
2580 {
2581 struct ttm_operation_ctx ctx = {
2582 .interruptible = interruptible,
2583 .no_wait_gpu = false};
2584 struct ttm_buffer_object *bo = &buf->base;
2585 int ret;
2586
2587 ttm_bo_reserve(bo, false, false, NULL);
2588 if (for_cpu_blit)
2589 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2590 else
2591 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2592 validate_as_mob);
2593 if (ret)
2594 ttm_bo_unreserve(bo);
2595
2596 return ret;
2597 }
2598
2599 /**
2600 * vmw_kms_helper_buffer_revert - Undo the actions of
2601 * vmw_kms_helper_buffer_prepare.
2602 *
2603 * @res: Pointer to the buffer object.
2604 *
2605 * Helper to be used if an error forces the caller to undo the actions of
2606 * vmw_kms_helper_buffer_prepare.
2607 */
2608 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2609 {
2610 if (buf)
2611 ttm_bo_unreserve(&buf->base);
2612 }
2613
2614 /**
2615 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2616 * kms command submission.
2617 *
2618 * @dev_priv: Pointer to a device private structure.
2619 * @file_priv: Pointer to a struct drm_file representing the caller's
2620 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2621 * if non-NULL, @user_fence_rep must be non-NULL.
2622 * @buf: The buffer object.
2623 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2624 * ref-counted fence pointer is returned here.
2625 * @user_fence_rep: Optional pointer to a user-space provided struct
2626 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2627 * function copies fence data to user-space in a fail-safe manner.
2628 */
2629 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2630 struct drm_file *file_priv,
2631 struct vmw_buffer_object *buf,
2632 struct vmw_fence_obj **out_fence,
2633 struct drm_vmw_fence_rep __user *
2634 user_fence_rep)
2635 {
2636 struct vmw_fence_obj *fence;
2637 uint32_t handle;
2638 int ret;
2639
2640 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2641 file_priv ? &handle : NULL);
2642 if (buf)
2643 vmw_bo_fence_single(&buf->base, fence);
2644 if (file_priv)
2645 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2646 ret, user_fence_rep, fence,
2647 handle, -1, NULL);
2648 if (out_fence)
2649 *out_fence = fence;
2650 else
2651 vmw_fence_obj_unreference(&fence);
2652
2653 vmw_kms_helper_buffer_revert(buf);
2654 }
2655
2656
2657 /**
2658 * vmw_kms_helper_resource_revert - Undo the actions of
2659 * vmw_kms_helper_resource_prepare.
2660 *
2661 * @res: Pointer to the resource. Typically a surface.
2662 *
2663 * Helper to be used if an error forces the caller to undo the actions of
2664 * vmw_kms_helper_resource_prepare.
2665 */
2666 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2667 {
2668 struct vmw_resource *res = ctx->res;
2669
2670 vmw_kms_helper_buffer_revert(ctx->buf);
2671 vmw_bo_unreference(&ctx->buf);
2672 vmw_resource_unreserve(res, false, NULL, 0);
2673 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2674 }
2675
2676 /**
2677 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2678 * command submission.
2679 *
2680 * @res: Pointer to the resource. Typically a surface.
2681 * @interruptible: Whether to perform waits as interruptible.
2682 *
2683 * Reserves and validates also the backup buffer if a guest-backed resource.
2684 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2685 * interrupted by a signal.
2686 */
2687 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2688 bool interruptible,
2689 struct vmw_validation_ctx *ctx)
2690 {
2691 int ret = 0;
2692
2693 ctx->buf = NULL;
2694 ctx->res = res;
2695
2696 if (interruptible)
2697 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2698 else
2699 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2700
2701 if (unlikely(ret != 0))
2702 return -ERESTARTSYS;
2703
2704 ret = vmw_resource_reserve(res, interruptible, false);
2705 if (ret)
2706 goto out_unlock;
2707
2708 if (res->backup) {
2709 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2710 interruptible,
2711 res->dev_priv->has_mob,
2712 false);
2713 if (ret)
2714 goto out_unreserve;
2715
2716 ctx->buf = vmw_bo_reference(res->backup);
2717 }
2718 ret = vmw_resource_validate(res);
2719 if (ret)
2720 goto out_revert;
2721 return 0;
2722
2723 out_revert:
2724 vmw_kms_helper_buffer_revert(ctx->buf);
2725 out_unreserve:
2726 vmw_resource_unreserve(res, false, NULL, 0);
2727 out_unlock:
2728 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2729 return ret;
2730 }
2731
2732 /**
2733 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2734 * kms command submission.
2735 *
2736 * @res: Pointer to the resource. Typically a surface.
2737 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2738 * ref-counted fence pointer is returned here.
2739 */
2740 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2741 struct vmw_fence_obj **out_fence)
2742 {
2743 struct vmw_resource *res = ctx->res;
2744
2745 if (ctx->buf || out_fence)
2746 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2747 out_fence, NULL);
2748
2749 vmw_bo_unreference(&ctx->buf);
2750 vmw_resource_unreserve(res, false, NULL, 0);
2751 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2752 }
2753
2754 /**
2755 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2756 * its backing MOB.
2757 *
2758 * @res: Pointer to the surface resource
2759 * @clips: Clip rects in framebuffer (surface) space.
2760 * @num_clips: Number of clips in @clips.
2761 * @increment: Integer with which to increment the clip counter when looping.
2762 * Used to skip a predetermined number of clip rects.
2763 *
2764 * This function makes sure the proxy surface is updated from its backing MOB
2765 * using the region given by @clips. The surface resource @res and its backing
2766 * MOB needs to be reserved and validated on call.
2767 */
2768 int vmw_kms_update_proxy(struct vmw_resource *res,
2769 const struct drm_clip_rect *clips,
2770 unsigned num_clips,
2771 int increment)
2772 {
2773 struct vmw_private *dev_priv = res->dev_priv;
2774 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2775 struct {
2776 SVGA3dCmdHeader header;
2777 SVGA3dCmdUpdateGBImage body;
2778 } *cmd;
2779 SVGA3dBox *box;
2780 size_t copy_size = 0;
2781 int i;
2782
2783 if (!clips)
2784 return 0;
2785
2786 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2787 if (!cmd) {
2788 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2789 "update.\n");
2790 return -ENOMEM;
2791 }
2792
2793 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2794 box = &cmd->body.box;
2795
2796 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2797 cmd->header.size = sizeof(cmd->body);
2798 cmd->body.image.sid = res->id;
2799 cmd->body.image.face = 0;
2800 cmd->body.image.mipmap = 0;
2801
2802 if (clips->x1 > size->width || clips->x2 > size->width ||
2803 clips->y1 > size->height || clips->y2 > size->height) {
2804 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2805 return -EINVAL;
2806 }
2807
2808 box->x = clips->x1;
2809 box->y = clips->y1;
2810 box->z = 0;
2811 box->w = clips->x2 - clips->x1;
2812 box->h = clips->y2 - clips->y1;
2813 box->d = 1;
2814
2815 copy_size += sizeof(*cmd);
2816 }
2817
2818 vmw_fifo_commit(dev_priv, copy_size);
2819
2820 return 0;
2821 }
2822
2823 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2824 unsigned unit,
2825 u32 max_width,
2826 u32 max_height,
2827 struct drm_connector **p_con,
2828 struct drm_crtc **p_crtc,
2829 struct drm_display_mode **p_mode)
2830 {
2831 struct drm_connector *con;
2832 struct vmw_display_unit *du;
2833 struct drm_display_mode *mode;
2834 int i = 0;
2835 int ret = 0;
2836
2837 mutex_lock(&dev_priv->dev->mode_config.mutex);
2838 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2839 head) {
2840 if (i == unit)
2841 break;
2842
2843 ++i;
2844 }
2845
2846 if (i != unit) {
2847 DRM_ERROR("Could not find initial display unit.\n");
2848 ret = -EINVAL;
2849 goto out_unlock;
2850 }
2851
2852 if (list_empty(&con->modes))
2853 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2854
2855 if (list_empty(&con->modes)) {
2856 DRM_ERROR("Could not find initial display mode.\n");
2857 ret = -EINVAL;
2858 goto out_unlock;
2859 }
2860
2861 du = vmw_connector_to_du(con);
2862 *p_con = con;
2863 *p_crtc = &du->crtc;
2864
2865 list_for_each_entry(mode, &con->modes, head) {
2866 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2867 break;
2868 }
2869
2870 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2871 *p_mode = mode;
2872 else {
2873 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2874 *p_mode = list_first_entry(&con->modes,
2875 struct drm_display_mode,
2876 head);
2877 }
2878
2879 out_unlock:
2880 mutex_unlock(&dev_priv->dev->mode_config.mutex);
2881
2882 return ret;
2883 }
2884
2885 /**
2886 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2887 *
2888 * @dev_priv: Pointer to a device private struct.
2889 * @du: The display unit of the crtc.
2890 */
2891 void vmw_kms_del_active(struct vmw_private *dev_priv,
2892 struct vmw_display_unit *du)
2893 {
2894 mutex_lock(&dev_priv->global_kms_state_mutex);
2895 if (du->active_implicit) {
2896 if (--(dev_priv->num_implicit) == 0)
2897 dev_priv->implicit_fb = NULL;
2898 du->active_implicit = false;
2899 }
2900 mutex_unlock(&dev_priv->global_kms_state_mutex);
2901 }
2902
2903 /**
2904 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2905 *
2906 * @vmw_priv: Pointer to a device private struct.
2907 * @du: The display unit of the crtc.
2908 * @vfb: The implicit framebuffer
2909 *
2910 * Registers a binding to an implicit framebuffer.
2911 */
2912 void vmw_kms_add_active(struct vmw_private *dev_priv,
2913 struct vmw_display_unit *du,
2914 struct vmw_framebuffer *vfb)
2915 {
2916 mutex_lock(&dev_priv->global_kms_state_mutex);
2917 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2918
2919 if (!du->active_implicit && du->is_implicit) {
2920 dev_priv->implicit_fb = vfb;
2921 du->active_implicit = true;
2922 dev_priv->num_implicit++;
2923 }
2924 mutex_unlock(&dev_priv->global_kms_state_mutex);
2925 }
2926
2927 /**
2928 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2929 *
2930 * @dev_priv: Pointer to device-private struct.
2931 * @crtc: The crtc we want to flip.
2932 *
2933 * Returns true or false depending whether it's OK to flip this crtc
2934 * based on the criterion that we must not have more than one implicit
2935 * frame-buffer at any one time.
2936 */
2937 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2938 struct drm_crtc *crtc)
2939 {
2940 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2941 bool ret;
2942
2943 mutex_lock(&dev_priv->global_kms_state_mutex);
2944 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2945 mutex_unlock(&dev_priv->global_kms_state_mutex);
2946
2947 return ret;
2948 }
2949
2950 /**
2951 * vmw_kms_update_implicit_fb - Update the implicit fb.
2952 *
2953 * @dev_priv: Pointer to device-private struct.
2954 * @crtc: The crtc the new implicit frame-buffer is bound to.
2955 */
2956 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2957 struct drm_crtc *crtc)
2958 {
2959 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2960 struct drm_plane *plane = crtc->primary;
2961 struct vmw_framebuffer *vfb;
2962
2963 mutex_lock(&dev_priv->global_kms_state_mutex);
2964
2965 if (!du->is_implicit)
2966 goto out_unlock;
2967
2968 vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2969 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2970 dev_priv->implicit_fb != vfb);
2971
2972 dev_priv->implicit_fb = vfb;
2973 out_unlock:
2974 mutex_unlock(&dev_priv->global_kms_state_mutex);
2975 }
2976
2977 /**
2978 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2979 * property.
2980 *
2981 * @dev_priv: Pointer to a device private struct.
2982 * @immutable: Whether the property is immutable.
2983 *
2984 * Sets up the implicit placement property unless it's already set up.
2985 */
2986 void
2987 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2988 bool immutable)
2989 {
2990 if (dev_priv->implicit_placement_property)
2991 return;
2992
2993 dev_priv->implicit_placement_property =
2994 drm_property_create_range(dev_priv->dev,
2995 immutable ?
2996 DRM_MODE_PROP_IMMUTABLE : 0,
2997 "implicit_placement", 0, 1);
2998
2999 }
3000
3001
3002 /**
3003 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3004 *
3005 * @set: The configuration to set.
3006 *
3007 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3008 * when drm_mode_set_crtcinfo is called as part of the configuration setting
3009 * causes it to return incorrect crtc dimensions causing severe problems in
3010 * the vmwgfx modesetting. So explicitly clear that member before calling
3011 * into drm_atomic_helper_set_config.
3012 */
3013 int vmw_kms_set_config(struct drm_mode_set *set,
3014 struct drm_modeset_acquire_ctx *ctx)
3015 {
3016 if (set && set->mode)
3017 set->mode->type = 0;
3018
3019 return drm_atomic_helper_set_config(set, ctx);
3020 }
3021
3022
3023 /**
3024 * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3025 *
3026 * @dev: Pointer to the drm device
3027 * Return: 0 on success. Negative error code on failure.
3028 */
3029 int vmw_kms_suspend(struct drm_device *dev)
3030 {
3031 struct vmw_private *dev_priv = vmw_priv(dev);
3032
3033 dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3034 if (IS_ERR(dev_priv->suspend_state)) {
3035 int ret = PTR_ERR(dev_priv->suspend_state);
3036
3037 DRM_ERROR("Failed kms suspend: %d\n", ret);
3038 dev_priv->suspend_state = NULL;
3039
3040 return ret;
3041 }
3042
3043 return 0;
3044 }
3045
3046
3047 /**
3048 * vmw_kms_resume - Re-enable modesetting and restore state
3049 *
3050 * @dev: Pointer to the drm device
3051 * Return: 0 on success. Negative error code on failure.
3052 *
3053 * State is resumed from a previous vmw_kms_suspend(). It's illegal
3054 * to call this function without a previous vmw_kms_suspend().
3055 */
3056 int vmw_kms_resume(struct drm_device *dev)
3057 {
3058 struct vmw_private *dev_priv = vmw_priv(dev);
3059 int ret;
3060
3061 if (WARN_ON(!dev_priv->suspend_state))
3062 return 0;
3063
3064 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3065 dev_priv->suspend_state = NULL;
3066
3067 return ret;
3068 }
3069
3070 /**
3071 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3072 *
3073 * @dev: Pointer to the drm device
3074 */
3075 void vmw_kms_lost_device(struct drm_device *dev)
3076 {
3077 drm_atomic_helper_shutdown(dev);
3078 }