]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 drm_plane_cleanup(&du->primary);
41 drm_plane_cleanup(&du->cursor);
42
43 drm_connector_unregister(&du->connector);
44 drm_crtc_cleanup(&du->crtc);
45 drm_encoder_cleanup(&du->encoder);
46 drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50 * Display Unit Cursor functions
51 */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 u32 *image, u32 width, u32 height,
55 u32 hotspotX, u32 hotspotY)
56 {
57 struct {
58 u32 cmd;
59 SVGAFifoCmdDefineAlphaCursor cursor;
60 } *cmd;
61 u32 image_size = width * height * 4;
62 u32 cmd_size = sizeof(*cmd) + image_size;
63
64 if (!image)
65 return -EINVAL;
66
67 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 if (unlikely(cmd == NULL)) {
69 DRM_ERROR("Fifo reserve failed.\n");
70 return -ENOMEM;
71 }
72
73 memset(cmd, 0, sizeof(*cmd));
74
75 memcpy(&cmd[1], image, image_size);
76
77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 cmd->cursor.id = 0;
79 cmd->cursor.width = width;
80 cmd->cursor.height = height;
81 cmd->cursor.hotspotX = hotspotX;
82 cmd->cursor.hotspotY = hotspotY;
83
84 vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86 return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 struct vmw_dma_buffer *dmabuf,
91 u32 width, u32 height,
92 u32 hotspotX, u32 hotspotY)
93 {
94 struct ttm_bo_kmap_obj map;
95 unsigned long kmap_offset;
96 unsigned long kmap_num;
97 void *virtual;
98 bool dummy;
99 int ret;
100
101 kmap_offset = 0;
102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 if (unlikely(ret != 0)) {
106 DRM_ERROR("reserve failed\n");
107 return -EINVAL;
108 }
109
110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 if (unlikely(ret != 0))
112 goto err_unreserve;
113
114 virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 hotspotX, hotspotY);
117
118 ttm_bo_kunmap(&map);
119 err_unreserve:
120 ttm_bo_unreserve(&dmabuf->base);
121
122 return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 bool show, int x, int y)
128 {
129 u32 *fifo_mem = dev_priv->mmio_virt;
130 uint32_t count;
131
132 spin_lock(&dev_priv->cursor_lock);
133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 struct ttm_object_file *tfile,
144 struct ttm_buffer_object *bo,
145 SVGA3dCmdHeader *header)
146 {
147 struct ttm_bo_kmap_obj map;
148 unsigned long kmap_offset;
149 unsigned long kmap_num;
150 SVGA3dCopyBox *box;
151 unsigned box_count;
152 void *virtual;
153 bool dummy;
154 struct vmw_dma_cmd {
155 SVGA3dCmdHeader header;
156 SVGA3dCmdSurfaceDMA dma;
157 } *cmd;
158 int i, ret;
159
160 cmd = container_of(header, struct vmw_dma_cmd, header);
161
162 /* No snooper installed */
163 if (!srf->snooper.image)
164 return;
165
166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 return;
169 }
170
171 if (cmd->header.size < 64) {
172 DRM_ERROR("at least one full copy box must be given\n");
173 return;
174 }
175
176 box = (SVGA3dCopyBox *)&cmd[1];
177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 sizeof(SVGA3dCopyBox);
179
180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 box->x != 0 || box->y != 0 || box->z != 0 ||
182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 box->d != 1 || box_count != 1) {
184 /* TODO handle none page aligned offsets */
185 /* TODO handle more dst & src != 0 */
186 /* TODO handle more then one copy */
187 DRM_ERROR("Cant snoop dma request for cursor!\n");
188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 box->srcx, box->srcy, box->srcz,
190 box->x, box->y, box->z,
191 box->w, box->h, box->d, box_count,
192 cmd->dma.guest.ptr.offset);
193 return;
194 }
195
196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199 ret = ttm_bo_reserve(bo, true, false, NULL);
200 if (unlikely(ret != 0)) {
201 DRM_ERROR("reserve failed\n");
202 return;
203 }
204
205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 if (unlikely(ret != 0))
207 goto err_unreserve;
208
209 virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 memcpy(srf->snooper.image, virtual, 64*64*4);
213 } else {
214 /* Image is unsigned pointer. */
215 for (i = 0; i < box->h; i++)
216 memcpy(srf->snooper.image + i * 64,
217 virtual + i * cmd->dma.guest.pitch,
218 box->w * 4);
219 }
220
221 srf->snooper.age++;
222
223 ttm_bo_kunmap(&map);
224 err_unreserve:
225 ttm_bo_unreserve(bo);
226 }
227
228 /**
229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230 *
231 * @dev_priv: Pointer to the device private struct.
232 *
233 * Clears all legacy hotspots.
234 */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 struct drm_device *dev = dev_priv->dev;
238 struct vmw_display_unit *du;
239 struct drm_crtc *crtc;
240
241 drm_modeset_lock_all(dev);
242 drm_for_each_crtc(crtc, dev) {
243 du = vmw_crtc_to_du(crtc);
244
245 du->hotspot_x = 0;
246 du->hotspot_y = 0;
247 }
248 drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 struct drm_device *dev = dev_priv->dev;
254 struct vmw_display_unit *du;
255 struct drm_crtc *crtc;
256
257 mutex_lock(&dev->mode_config.mutex);
258
259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 du = vmw_crtc_to_du(crtc);
261 if (!du->cursor_surface ||
262 du->cursor_age == du->cursor_surface->snooper.age)
263 continue;
264
265 du->cursor_age = du->cursor_surface->snooper.age;
266 vmw_cursor_update_image(dev_priv,
267 du->cursor_surface->snooper.image,
268 64, 64,
269 du->hotspot_x + du->core_hotspot_x,
270 du->hotspot_y + du->core_hotspot_y);
271 }
272
273 mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277
278 /**
279 * vmw_du_cursor_plane_update() - Update cursor image and location
280 *
281 * @plane: plane object to update
282 * @crtc: owning CRTC of @plane
283 * @fb: framebuffer to flip onto plane
284 * @crtc_x: x offset of plane on crtc
285 * @crtc_y: y offset of plane on crtc
286 * @crtc_w: width of plane rectangle on crtc
287 * @crtc_h: height of plane rectangle on crtc
288 * @src_x: Not used
289 * @src_y: Not used
290 * @src_w: Not used
291 * @src_h: Not used
292 *
293 *
294 * RETURNS:
295 * Zero on success, error code on failure
296 */
297 int vmw_du_cursor_plane_update(struct drm_plane *plane,
298 struct drm_crtc *crtc,
299 struct drm_framebuffer *fb,
300 int crtc_x, int crtc_y,
301 unsigned int crtc_w,
302 unsigned int crtc_h,
303 uint32_t src_x, uint32_t src_y,
304 uint32_t src_w, uint32_t src_h)
305 {
306 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
307 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
308 struct vmw_surface *surface = NULL;
309 struct vmw_dma_buffer *dmabuf = NULL;
310 s32 hotspot_x, hotspot_y;
311 int ret;
312
313 hotspot_x = du->hotspot_x + fb->hot_x;
314 hotspot_y = du->hotspot_y + fb->hot_y;
315
316 /* A lot of the code assumes this */
317 if (crtc_w != 64 || crtc_h != 64) {
318 ret = -EINVAL;
319 goto out;
320 }
321
322 if (vmw_framebuffer_to_vfb(fb)->dmabuf)
323 dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
324 else
325 surface = vmw_framebuffer_to_vfbs(fb)->surface;
326
327 if (surface && !surface->snooper.image) {
328 DRM_ERROR("surface not suitable for cursor\n");
329 ret = -EINVAL;
330 goto out;
331 }
332
333 /* setup new image */
334 ret = 0;
335 if (surface) {
336 /* vmw_user_surface_lookup takes one reference */
337 du->cursor_surface = surface;
338
339 du->cursor_age = du->cursor_surface->snooper.age;
340
341 ret = vmw_cursor_update_image(dev_priv, surface->snooper.image,
342 64, 64, hotspot_x, hotspot_y);
343 } else if (dmabuf) {
344 /* vmw_user_surface_lookup takes one reference */
345 du->cursor_dmabuf = dmabuf;
346
347 ret = vmw_cursor_update_dmabuf(dev_priv, dmabuf, crtc_w, crtc_h,
348 hotspot_x, hotspot_y);
349 } else {
350 vmw_cursor_update_position(dev_priv, false, 0, 0);
351 goto out;
352 }
353
354 if (!ret) {
355 du->cursor_x = crtc_x + du->set_gui_x;
356 du->cursor_y = crtc_y + du->set_gui_y;
357
358 vmw_cursor_update_position(dev_priv, true,
359 du->cursor_x + hotspot_x,
360 du->cursor_y + hotspot_y);
361 }
362
363 out:
364 return ret;
365 }
366
367
368 int vmw_du_cursor_plane_disable(struct drm_plane *plane)
369 {
370 if (plane->fb) {
371 drm_framebuffer_unreference(plane->fb);
372 plane->fb = NULL;
373 }
374
375 return -EINVAL;
376 }
377
378
379 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
380 {
381 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
382
383 drm_plane_cleanup(plane);
384 }
385
386
387 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
388 {
389 drm_plane_cleanup(plane);
390
391 /* Planes are static in our case so we don't free it */
392 }
393
394
395 /**
396 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
397 *
398 * @vps: plane state associated with the display surface
399 * @unreference: true if we also want to unreference the display.
400 */
401 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
402 bool unreference)
403 {
404 if (vps->surf) {
405 if (vps->pinned) {
406 vmw_resource_unpin(&vps->surf->res);
407 vps->pinned--;
408 }
409
410 if (unreference) {
411 if (vps->pinned)
412 DRM_ERROR("Surface still pinned\n");
413 vmw_surface_unreference(&vps->surf);
414 }
415 }
416 }
417
418
419 /**
420 * vmw_du_plane_cleanup_fb - Unpins the cursor
421 *
422 * @plane: display plane
423 * @old_state: Contains the FB to clean up
424 *
425 * Unpins the framebuffer surface
426 *
427 * Returns 0 on success
428 */
429 void
430 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
431 struct drm_plane_state *old_state)
432 {
433 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
434
435 vmw_du_plane_unpin_surf(vps, false);
436 }
437
438
439 /**
440 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
441 *
442 * @plane: display plane
443 * @new_state: info on the new plane state, including the FB
444 *
445 * Returns 0 on success
446 */
447 int
448 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
449 struct drm_plane_state *new_state)
450 {
451 struct drm_framebuffer *fb = new_state->fb;
452 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
453
454
455 if (vps->surf)
456 vmw_surface_unreference(&vps->surf);
457
458 if (vps->dmabuf)
459 vmw_dmabuf_unreference(&vps->dmabuf);
460
461 if (fb) {
462 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
463 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
464 vmw_dmabuf_reference(vps->dmabuf);
465 } else {
466 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
467 vmw_surface_reference(vps->surf);
468 }
469 }
470
471 return 0;
472 }
473
474
475 void
476 vmw_du_cursor_plane_atomic_disable(struct drm_plane *plane,
477 struct drm_plane_state *old_state)
478 {
479 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
480 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
481
482 drm_atomic_set_fb_for_plane(plane->state, NULL);
483 vmw_cursor_update_position(dev_priv, false, 0, 0);
484 }
485
486
487 void
488 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
489 struct drm_plane_state *old_state)
490 {
491 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
492 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
493 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
494 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
495 s32 hotspot_x, hotspot_y;
496 int ret = 0;
497
498
499 hotspot_x = du->hotspot_x;
500 hotspot_y = du->hotspot_y;
501 du->cursor_surface = vps->surf;
502 du->cursor_dmabuf = vps->dmabuf;
503
504 /* setup new image */
505 if (vps->surf) {
506 du->cursor_age = du->cursor_surface->snooper.age;
507
508 ret = vmw_cursor_update_image(dev_priv,
509 vps->surf->snooper.image,
510 64, 64, hotspot_x, hotspot_y);
511 } else if (vps->dmabuf) {
512 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
513 plane->state->crtc_w,
514 plane->state->crtc_h,
515 hotspot_x, hotspot_y);
516 } else {
517 vmw_cursor_update_position(dev_priv, false, 0, 0);
518 return;
519 }
520
521 if (!ret) {
522 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
523 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
524
525 vmw_cursor_update_position(dev_priv, true,
526 du->cursor_x + hotspot_x,
527 du->cursor_y + hotspot_y);
528 } else {
529 DRM_ERROR("Failed to update cursor image\n");
530 }
531 }
532
533
534 /**
535 * vmw_du_primary_plane_atomic_check - check if the new state is okay
536 *
537 * @plane: display plane
538 * @state: info on the new plane state, including the FB
539 *
540 * Check if the new state is settable given the current state. Other
541 * than what the atomic helper checks, we care about crtc fitting
542 * the FB and maintaining one active framebuffer.
543 *
544 * Returns 0 on success
545 */
546 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
547 struct drm_plane_state *state)
548 {
549 struct drm_framebuffer *new_fb = state->fb;
550 bool visible;
551
552 struct drm_rect src = {
553 .x1 = state->src_x,
554 .y1 = state->src_y,
555 .x2 = state->src_x + state->src_w,
556 .y2 = state->src_y + state->src_h,
557 };
558 struct drm_rect dest = {
559 .x1 = state->crtc_x,
560 .y1 = state->crtc_y,
561 .x2 = state->crtc_x + state->crtc_w,
562 .y2 = state->crtc_y + state->crtc_h,
563 };
564 struct drm_rect clip = dest;
565 int ret;
566
567 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
568 &src, &dest, &clip,
569 DRM_ROTATE_0,
570 DRM_PLANE_HELPER_NO_SCALING,
571 DRM_PLANE_HELPER_NO_SCALING,
572 false, true, &visible);
573
574
575 if (!ret && new_fb) {
576 struct drm_crtc *crtc = state->crtc;
577 struct vmw_connector_state *vcs;
578 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
579 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
580 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
581
582 vcs = vmw_connector_state_to_vcs(du->connector.state);
583
584 if ((dest.x2 > new_fb->width ||
585 dest.y2 > new_fb->height)) {
586 DRM_ERROR("CRTC area outside of framebuffer\n");
587 return -EINVAL;
588 }
589
590 /* Only one active implicit framebuffer at a time. */
591 mutex_lock(&dev_priv->global_kms_state_mutex);
592 if (vcs->is_implicit && dev_priv->implicit_fb &&
593 !(dev_priv->num_implicit == 1 && du->active_implicit)
594 && dev_priv->implicit_fb != vfb) {
595 DRM_ERROR("Multiple implicit framebuffers "
596 "not supported.\n");
597 ret = -EINVAL;
598 }
599 mutex_unlock(&dev_priv->global_kms_state_mutex);
600 }
601
602
603 return ret;
604 }
605
606
607 /**
608 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
609 *
610 * @plane: cursor plane
611 * @state: info on the new plane state
612 *
613 * This is a chance to fail if the new cursor state does not fit
614 * our requirements.
615 *
616 * Returns 0 on success
617 */
618 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
619 struct drm_plane_state *new_state)
620 {
621 int ret = 0;
622 struct vmw_surface *surface = NULL;
623 struct drm_framebuffer *fb = new_state->fb;
624
625
626 /* Turning off */
627 if (!fb)
628 return ret;
629
630 /* A lot of the code assumes this */
631 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
632 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
633 new_state->crtc_w, new_state->crtc_h);
634 ret = -EINVAL;
635 }
636
637 if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
638 surface = vmw_framebuffer_to_vfbs(fb)->surface;
639
640 if (surface && !surface->snooper.image) {
641 DRM_ERROR("surface not suitable for cursor\n");
642 ret = -EINVAL;
643 }
644
645 return ret;
646 }
647
648
649 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
650 struct drm_crtc_state *new_state)
651 {
652 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
653 int connector_mask = 1 << drm_connector_index(&du->connector);
654 bool has_primary = new_state->plane_mask &
655 BIT(drm_plane_index(crtc->primary));
656
657 /* We always want to have an active plane with an active CRTC */
658 if (has_primary != new_state->enable)
659 return -EINVAL;
660
661
662 if (new_state->connector_mask != connector_mask &&
663 new_state->connector_mask != 0) {
664 DRM_ERROR("Invalid connectors configuration\n");
665 return -EINVAL;
666 }
667
668 /*
669 * Our virtual device does not have a dot clock, so use the logical
670 * clock value as the dot clock.
671 */
672 if (new_state->mode.crtc_clock == 0)
673 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
674
675 return 0;
676 }
677
678
679 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
680 struct drm_crtc_state *old_crtc_state)
681 {
682 }
683
684
685 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
686 struct drm_crtc_state *old_crtc_state)
687 {
688 struct drm_pending_vblank_event *event = crtc->state->event;
689
690 if (event) {
691 crtc->state->event = NULL;
692
693 spin_lock_irq(&crtc->dev->event_lock);
694 if (drm_crtc_vblank_get(crtc) == 0)
695 drm_crtc_arm_vblank_event(crtc, event);
696 else
697 drm_crtc_send_vblank_event(crtc, event);
698 spin_unlock_irq(&crtc->dev->event_lock);
699 }
700
701 }
702
703
704 /**
705 * vmw_du_crtc_duplicate_state - duplicate crtc state
706 * @crtc: DRM crtc
707 *
708 * Allocates and returns a copy of the crtc state (both common and
709 * vmw-specific) for the specified crtc.
710 *
711 * Returns: The newly allocated crtc state, or NULL on failure.
712 */
713 struct drm_crtc_state *
714 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
715 {
716 struct drm_crtc_state *state;
717 struct vmw_crtc_state *vcs;
718
719 if (WARN_ON(!crtc->state))
720 return NULL;
721
722 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
723
724 if (!vcs)
725 return NULL;
726
727 state = &vcs->base;
728
729 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
730
731 return state;
732 }
733
734
735 /**
736 * vmw_du_crtc_reset - creates a blank vmw crtc state
737 * @crtc: DRM crtc
738 *
739 * Resets the atomic state for @crtc by freeing the state pointer (which
740 * might be NULL, e.g. at driver load time) and allocating a new empty state
741 * object.
742 */
743 void vmw_du_crtc_reset(struct drm_crtc *crtc)
744 {
745 struct vmw_crtc_state *vcs;
746
747
748 if (crtc->state) {
749 __drm_atomic_helper_crtc_destroy_state(crtc->state);
750
751 kfree(vmw_crtc_state_to_vcs(crtc->state));
752 }
753
754 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
755
756 if (!vcs) {
757 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
758 return;
759 }
760
761 crtc->state = &vcs->base;
762 crtc->state->crtc = crtc;
763 }
764
765
766 /**
767 * vmw_du_crtc_destroy_state - destroy crtc state
768 * @crtc: DRM crtc
769 * @state: state object to destroy
770 *
771 * Destroys the crtc state (both common and vmw-specific) for the
772 * specified plane.
773 */
774 void
775 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
776 struct drm_crtc_state *state)
777 {
778 drm_atomic_helper_crtc_destroy_state(crtc, state);
779 }
780
781
782 /**
783 * vmw_du_plane_duplicate_state - duplicate plane state
784 * @plane: drm plane
785 *
786 * Allocates and returns a copy of the plane state (both common and
787 * vmw-specific) for the specified plane.
788 *
789 * Returns: The newly allocated plane state, or NULL on failure.
790 */
791 struct drm_plane_state *
792 vmw_du_plane_duplicate_state(struct drm_plane *plane)
793 {
794 struct drm_plane_state *state;
795 struct vmw_plane_state *vps;
796
797 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
798
799 if (!vps)
800 return NULL;
801
802 vps->pinned = 0;
803
804 /* Mapping is managed by prepare_fb/cleanup_fb */
805 memset(&vps->guest_map, 0, sizeof(vps->guest_map));
806 memset(&vps->host_map, 0, sizeof(vps->host_map));
807 vps->cpp = 0;
808
809 /* Each ref counted resource needs to be acquired again */
810 if (vps->surf)
811 (void) vmw_surface_reference(vps->surf);
812
813 if (vps->dmabuf)
814 (void) vmw_dmabuf_reference(vps->dmabuf);
815
816 state = &vps->base;
817
818 __drm_atomic_helper_plane_duplicate_state(plane, state);
819
820 return state;
821 }
822
823
824 /**
825 * vmw_du_plane_reset - creates a blank vmw plane state
826 * @plane: drm plane
827 *
828 * Resets the atomic state for @plane by freeing the state pointer (which might
829 * be NULL, e.g. at driver load time) and allocating a new empty state object.
830 */
831 void vmw_du_plane_reset(struct drm_plane *plane)
832 {
833 struct vmw_plane_state *vps;
834
835
836 if (plane->state)
837 vmw_du_plane_destroy_state(plane, plane->state);
838
839 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
840
841 if (!vps) {
842 DRM_ERROR("Cannot allocate vmw_plane_state\n");
843 return;
844 }
845
846 plane->state = &vps->base;
847 plane->state->plane = plane;
848 plane->state->rotation = DRM_ROTATE_0;
849 }
850
851
852 /**
853 * vmw_du_plane_destroy_state - destroy plane state
854 * @plane: DRM plane
855 * @state: state object to destroy
856 *
857 * Destroys the plane state (both common and vmw-specific) for the
858 * specified plane.
859 */
860 void
861 vmw_du_plane_destroy_state(struct drm_plane *plane,
862 struct drm_plane_state *state)
863 {
864 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
865
866
867 /* Should have been freed by cleanup_fb */
868 if (vps->guest_map.virtual) {
869 DRM_ERROR("Guest mapping not freed\n");
870 ttm_bo_kunmap(&vps->guest_map);
871 }
872
873 if (vps->host_map.virtual) {
874 DRM_ERROR("Host mapping not freed\n");
875 ttm_bo_kunmap(&vps->host_map);
876 }
877
878 if (vps->surf)
879 vmw_surface_unreference(&vps->surf);
880
881 if (vps->dmabuf)
882 vmw_dmabuf_unreference(&vps->dmabuf);
883
884 drm_atomic_helper_plane_destroy_state(plane, state);
885 }
886
887
888 /**
889 * vmw_du_connector_duplicate_state - duplicate connector state
890 * @connector: DRM connector
891 *
892 * Allocates and returns a copy of the connector state (both common and
893 * vmw-specific) for the specified connector.
894 *
895 * Returns: The newly allocated connector state, or NULL on failure.
896 */
897 struct drm_connector_state *
898 vmw_du_connector_duplicate_state(struct drm_connector *connector)
899 {
900 struct drm_connector_state *state;
901 struct vmw_connector_state *vcs;
902
903 if (WARN_ON(!connector->state))
904 return NULL;
905
906 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
907
908 if (!vcs)
909 return NULL;
910
911 state = &vcs->base;
912
913 __drm_atomic_helper_connector_duplicate_state(connector, state);
914
915 return state;
916 }
917
918
919 /**
920 * vmw_du_connector_reset - creates a blank vmw connector state
921 * @connector: DRM connector
922 *
923 * Resets the atomic state for @connector by freeing the state pointer (which
924 * might be NULL, e.g. at driver load time) and allocating a new empty state
925 * object.
926 */
927 void vmw_du_connector_reset(struct drm_connector *connector)
928 {
929 struct vmw_connector_state *vcs;
930
931
932 if (connector->state) {
933 __drm_atomic_helper_connector_destroy_state(connector->state);
934
935 kfree(vmw_connector_state_to_vcs(connector->state));
936 }
937
938 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
939
940 if (!vcs) {
941 DRM_ERROR("Cannot allocate vmw_connector_state\n");
942 return;
943 }
944
945 __drm_atomic_helper_connector_reset(connector, &vcs->base);
946 }
947
948
949 /**
950 * vmw_du_connector_destroy_state - destroy connector state
951 * @connector: DRM connector
952 * @state: state object to destroy
953 *
954 * Destroys the connector state (both common and vmw-specific) for the
955 * specified plane.
956 */
957 void
958 vmw_du_connector_destroy_state(struct drm_connector *connector,
959 struct drm_connector_state *state)
960 {
961 drm_atomic_helper_connector_destroy_state(connector, state);
962 }
963 /*
964 * Generic framebuffer code
965 */
966
967 /*
968 * Surface framebuffer code
969 */
970
971 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
972 {
973 struct vmw_framebuffer_surface *vfbs =
974 vmw_framebuffer_to_vfbs(framebuffer);
975
976 drm_framebuffer_cleanup(framebuffer);
977 vmw_surface_unreference(&vfbs->surface);
978 if (vfbs->base.user_obj)
979 ttm_base_object_unref(&vfbs->base.user_obj);
980
981 kfree(vfbs);
982 }
983
984 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
985 struct drm_file *file_priv,
986 unsigned flags, unsigned color,
987 struct drm_clip_rect *clips,
988 unsigned num_clips)
989 {
990 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
991 struct vmw_framebuffer_surface *vfbs =
992 vmw_framebuffer_to_vfbs(framebuffer);
993 struct drm_clip_rect norect;
994 int ret, inc = 1;
995
996 /* Legacy Display Unit does not support 3D */
997 if (dev_priv->active_display_unit == vmw_du_legacy)
998 return -EINVAL;
999
1000 drm_modeset_lock_all(dev_priv->dev);
1001
1002 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1003 if (unlikely(ret != 0)) {
1004 drm_modeset_unlock_all(dev_priv->dev);
1005 return ret;
1006 }
1007
1008 if (!num_clips) {
1009 num_clips = 1;
1010 clips = &norect;
1011 norect.x1 = norect.y1 = 0;
1012 norect.x2 = framebuffer->width;
1013 norect.y2 = framebuffer->height;
1014 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1015 num_clips /= 2;
1016 inc = 2; /* skip source rects */
1017 }
1018
1019 if (dev_priv->active_display_unit == vmw_du_screen_object)
1020 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
1021 clips, NULL, NULL, 0, 0,
1022 num_clips, inc, NULL);
1023 else
1024 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
1025 clips, NULL, NULL, 0, 0,
1026 num_clips, inc, NULL);
1027
1028 vmw_fifo_flush(dev_priv, false);
1029 ttm_read_unlock(&dev_priv->reservation_sem);
1030
1031 drm_modeset_unlock_all(dev_priv->dev);
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * vmw_kms_readback - Perform a readback from the screen system to
1038 * a dma-buffer backed framebuffer.
1039 *
1040 * @dev_priv: Pointer to the device private structure.
1041 * @file_priv: Pointer to a struct drm_file identifying the caller.
1042 * Must be set to NULL if @user_fence_rep is NULL.
1043 * @vfb: Pointer to the dma-buffer backed framebuffer.
1044 * @user_fence_rep: User-space provided structure for fence information.
1045 * Must be set to non-NULL if @file_priv is non-NULL.
1046 * @vclips: Array of clip rects.
1047 * @num_clips: Number of clip rects in @vclips.
1048 *
1049 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
1050 * interrupted.
1051 */
1052 int vmw_kms_readback(struct vmw_private *dev_priv,
1053 struct drm_file *file_priv,
1054 struct vmw_framebuffer *vfb,
1055 struct drm_vmw_fence_rep __user *user_fence_rep,
1056 struct drm_vmw_rect *vclips,
1057 uint32_t num_clips)
1058 {
1059 switch (dev_priv->active_display_unit) {
1060 case vmw_du_screen_object:
1061 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
1062 user_fence_rep, vclips, num_clips);
1063 case vmw_du_screen_target:
1064 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
1065 user_fence_rep, NULL, vclips, num_clips,
1066 1, false, true);
1067 default:
1068 WARN_ONCE(true,
1069 "Readback called with invalid display system.\n");
1070 }
1071
1072 return -ENOSYS;
1073 }
1074
1075
1076 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
1077 .destroy = vmw_framebuffer_surface_destroy,
1078 .dirty = vmw_framebuffer_surface_dirty,
1079 };
1080
1081 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
1082 struct vmw_surface *surface,
1083 struct vmw_framebuffer **out,
1084 const struct drm_mode_fb_cmd2
1085 *mode_cmd,
1086 bool is_dmabuf_proxy)
1087
1088 {
1089 struct drm_device *dev = dev_priv->dev;
1090 struct vmw_framebuffer_surface *vfbs;
1091 enum SVGA3dSurfaceFormat format;
1092 int ret;
1093 struct drm_format_name_buf format_name;
1094
1095 /* 3D is only supported on HWv8 and newer hosts */
1096 if (dev_priv->active_display_unit == vmw_du_legacy)
1097 return -ENOSYS;
1098
1099 /*
1100 * Sanity checks.
1101 */
1102
1103 /* Surface must be marked as a scanout. */
1104 if (unlikely(!surface->scanout))
1105 return -EINVAL;
1106
1107 if (unlikely(surface->mip_levels[0] != 1 ||
1108 surface->num_sizes != 1 ||
1109 surface->base_size.width < mode_cmd->width ||
1110 surface->base_size.height < mode_cmd->height ||
1111 surface->base_size.depth != 1)) {
1112 DRM_ERROR("Incompatible surface dimensions "
1113 "for requested mode.\n");
1114 return -EINVAL;
1115 }
1116
1117 switch (mode_cmd->pixel_format) {
1118 case DRM_FORMAT_ARGB8888:
1119 format = SVGA3D_A8R8G8B8;
1120 break;
1121 case DRM_FORMAT_XRGB8888:
1122 format = SVGA3D_X8R8G8B8;
1123 break;
1124 case DRM_FORMAT_RGB565:
1125 format = SVGA3D_R5G6B5;
1126 break;
1127 case DRM_FORMAT_XRGB1555:
1128 format = SVGA3D_A1R5G5B5;
1129 break;
1130 default:
1131 DRM_ERROR("Invalid pixel format: %s\n",
1132 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1133 return -EINVAL;
1134 }
1135
1136 /*
1137 * For DX, surface format validation is done when surface->scanout
1138 * is set.
1139 */
1140 if (!dev_priv->has_dx && format != surface->format) {
1141 DRM_ERROR("Invalid surface format for requested mode.\n");
1142 return -EINVAL;
1143 }
1144
1145 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1146 if (!vfbs) {
1147 ret = -ENOMEM;
1148 goto out_err1;
1149 }
1150
1151 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1152 vfbs->surface = vmw_surface_reference(surface);
1153 vfbs->base.user_handle = mode_cmd->handles[0];
1154 vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1155
1156 *out = &vfbs->base;
1157
1158 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1159 &vmw_framebuffer_surface_funcs);
1160 if (ret)
1161 goto out_err2;
1162
1163 return 0;
1164
1165 out_err2:
1166 vmw_surface_unreference(&surface);
1167 kfree(vfbs);
1168 out_err1:
1169 return ret;
1170 }
1171
1172 /*
1173 * Dmabuf framebuffer code
1174 */
1175
1176 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1177 {
1178 struct vmw_framebuffer_dmabuf *vfbd =
1179 vmw_framebuffer_to_vfbd(framebuffer);
1180
1181 drm_framebuffer_cleanup(framebuffer);
1182 vmw_dmabuf_unreference(&vfbd->buffer);
1183 if (vfbd->base.user_obj)
1184 ttm_base_object_unref(&vfbd->base.user_obj);
1185
1186 kfree(vfbd);
1187 }
1188
1189 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1190 struct drm_file *file_priv,
1191 unsigned flags, unsigned color,
1192 struct drm_clip_rect *clips,
1193 unsigned num_clips)
1194 {
1195 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1196 struct vmw_framebuffer_dmabuf *vfbd =
1197 vmw_framebuffer_to_vfbd(framebuffer);
1198 struct drm_clip_rect norect;
1199 int ret, increment = 1;
1200
1201 drm_modeset_lock_all(dev_priv->dev);
1202
1203 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1204 if (unlikely(ret != 0)) {
1205 drm_modeset_unlock_all(dev_priv->dev);
1206 return ret;
1207 }
1208
1209 if (!num_clips) {
1210 num_clips = 1;
1211 clips = &norect;
1212 norect.x1 = norect.y1 = 0;
1213 norect.x2 = framebuffer->width;
1214 norect.y2 = framebuffer->height;
1215 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1216 num_clips /= 2;
1217 increment = 2;
1218 }
1219
1220 switch (dev_priv->active_display_unit) {
1221 case vmw_du_screen_target:
1222 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1223 clips, NULL, num_clips, increment,
1224 true, true);
1225 break;
1226 case vmw_du_screen_object:
1227 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1228 clips, NULL, num_clips,
1229 increment, true, NULL);
1230 break;
1231 case vmw_du_legacy:
1232 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1233 clips, num_clips, increment);
1234 break;
1235 default:
1236 ret = -EINVAL;
1237 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1238 break;
1239 }
1240
1241 vmw_fifo_flush(dev_priv, false);
1242 ttm_read_unlock(&dev_priv->reservation_sem);
1243
1244 drm_modeset_unlock_all(dev_priv->dev);
1245
1246 return ret;
1247 }
1248
1249 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1250 .destroy = vmw_framebuffer_dmabuf_destroy,
1251 .dirty = vmw_framebuffer_dmabuf_dirty,
1252 };
1253
1254 /**
1255 * Pin the dmabuffer to the start of vram.
1256 */
1257 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1258 {
1259 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1260 struct vmw_dma_buffer *buf;
1261 int ret;
1262
1263 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1264 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1265
1266 if (!buf)
1267 return 0;
1268
1269 switch (dev_priv->active_display_unit) {
1270 case vmw_du_legacy:
1271 vmw_overlay_pause_all(dev_priv);
1272 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1273 vmw_overlay_resume_all(dev_priv);
1274 break;
1275 case vmw_du_screen_object:
1276 case vmw_du_screen_target:
1277 if (vfb->dmabuf)
1278 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1279 false);
1280
1281 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1282 &vmw_mob_placement, false);
1283 default:
1284 return -EINVAL;
1285 }
1286
1287 return ret;
1288 }
1289
1290 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1291 {
1292 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1293 struct vmw_dma_buffer *buf;
1294
1295 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1296 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1297
1298 if (WARN_ON(!buf))
1299 return 0;
1300
1301 return vmw_dmabuf_unpin(dev_priv, buf, false);
1302 }
1303
1304 /**
1305 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1306 *
1307 * @dev: DRM device
1308 * @mode_cmd: parameters for the new surface
1309 * @dmabuf_mob: MOB backing the DMA buf
1310 * @srf_out: newly created surface
1311 *
1312 * When the content FB is a DMA buf, we create a surface as a proxy to the
1313 * same buffer. This way we can do a surface copy rather than a surface DMA.
1314 * This is a more efficient approach
1315 *
1316 * RETURNS:
1317 * 0 on success, error code otherwise
1318 */
1319 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1320 const struct drm_mode_fb_cmd2 *mode_cmd,
1321 struct vmw_dma_buffer *dmabuf_mob,
1322 struct vmw_surface **srf_out)
1323 {
1324 uint32_t format;
1325 struct drm_vmw_size content_base_size = {0};
1326 struct vmw_resource *res;
1327 unsigned int bytes_pp;
1328 struct drm_format_name_buf format_name;
1329 int ret;
1330
1331 switch (mode_cmd->pixel_format) {
1332 case DRM_FORMAT_ARGB8888:
1333 case DRM_FORMAT_XRGB8888:
1334 format = SVGA3D_X8R8G8B8;
1335 bytes_pp = 4;
1336 break;
1337
1338 case DRM_FORMAT_RGB565:
1339 case DRM_FORMAT_XRGB1555:
1340 format = SVGA3D_R5G6B5;
1341 bytes_pp = 2;
1342 break;
1343
1344 case 8:
1345 format = SVGA3D_P8;
1346 bytes_pp = 1;
1347 break;
1348
1349 default:
1350 DRM_ERROR("Invalid framebuffer format %s\n",
1351 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1352 return -EINVAL;
1353 }
1354
1355 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1356 content_base_size.height = mode_cmd->height;
1357 content_base_size.depth = 1;
1358
1359 ret = vmw_surface_gb_priv_define(dev,
1360 0, /* kernel visible only */
1361 0, /* flags */
1362 format,
1363 true, /* can be a scanout buffer */
1364 1, /* num of mip levels */
1365 0,
1366 0,
1367 content_base_size,
1368 srf_out);
1369 if (ret) {
1370 DRM_ERROR("Failed to allocate proxy content buffer\n");
1371 return ret;
1372 }
1373
1374 res = &(*srf_out)->res;
1375
1376 /* Reserve and switch the backing mob. */
1377 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1378 (void) vmw_resource_reserve(res, false, true);
1379 vmw_dmabuf_unreference(&res->backup);
1380 res->backup = vmw_dmabuf_reference(dmabuf_mob);
1381 res->backup_offset = 0;
1382 vmw_resource_unreserve(res, false, NULL, 0);
1383 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1384
1385 return 0;
1386 }
1387
1388
1389
1390 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1391 struct vmw_dma_buffer *dmabuf,
1392 struct vmw_framebuffer **out,
1393 const struct drm_mode_fb_cmd2
1394 *mode_cmd)
1395
1396 {
1397 struct drm_device *dev = dev_priv->dev;
1398 struct vmw_framebuffer_dmabuf *vfbd;
1399 unsigned int requested_size;
1400 struct drm_format_name_buf format_name;
1401 int ret;
1402
1403 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1404 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1405 DRM_ERROR("Screen buffer object size is too small "
1406 "for requested mode.\n");
1407 return -EINVAL;
1408 }
1409
1410 /* Limited framebuffer color depth support for screen objects */
1411 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1412 switch (mode_cmd->pixel_format) {
1413 case DRM_FORMAT_XRGB8888:
1414 case DRM_FORMAT_ARGB8888:
1415 break;
1416 case DRM_FORMAT_XRGB1555:
1417 case DRM_FORMAT_RGB565:
1418 break;
1419 default:
1420 DRM_ERROR("Invalid pixel format: %s\n",
1421 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1422 return -EINVAL;
1423 }
1424 }
1425
1426 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1427 if (!vfbd) {
1428 ret = -ENOMEM;
1429 goto out_err1;
1430 }
1431
1432 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1433 vfbd->base.dmabuf = true;
1434 vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1435 vfbd->base.user_handle = mode_cmd->handles[0];
1436 *out = &vfbd->base;
1437
1438 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1439 &vmw_framebuffer_dmabuf_funcs);
1440 if (ret)
1441 goto out_err2;
1442
1443 return 0;
1444
1445 out_err2:
1446 vmw_dmabuf_unreference(&dmabuf);
1447 kfree(vfbd);
1448 out_err1:
1449 return ret;
1450 }
1451
1452
1453 /**
1454 * vmw_kms_srf_ok - check if a surface can be created
1455 *
1456 * @width: requested width
1457 * @height: requested height
1458 *
1459 * Surfaces need to be less than texture size
1460 */
1461 static bool
1462 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1463 {
1464 if (width > dev_priv->texture_max_width ||
1465 height > dev_priv->texture_max_height)
1466 return false;
1467
1468 return true;
1469 }
1470
1471 /**
1472 * vmw_kms_new_framebuffer - Create a new framebuffer.
1473 *
1474 * @dev_priv: Pointer to device private struct.
1475 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1476 * Either @dmabuf or @surface must be NULL.
1477 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1478 * Either @dmabuf or @surface must be NULL.
1479 * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1480 * Helps the code to do some important optimizations.
1481 * @mode_cmd: Frame-buffer metadata.
1482 */
1483 struct vmw_framebuffer *
1484 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1485 struct vmw_dma_buffer *dmabuf,
1486 struct vmw_surface *surface,
1487 bool only_2d,
1488 const struct drm_mode_fb_cmd2 *mode_cmd)
1489 {
1490 struct vmw_framebuffer *vfb = NULL;
1491 bool is_dmabuf_proxy = false;
1492 int ret;
1493
1494 /*
1495 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1496 * therefore, wrap the DMA buf in a surface so we can use the
1497 * SurfaceCopy command.
1498 */
1499 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1500 dmabuf && only_2d &&
1501 dev_priv->active_display_unit == vmw_du_screen_target) {
1502 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1503 dmabuf, &surface);
1504 if (ret)
1505 return ERR_PTR(ret);
1506
1507 is_dmabuf_proxy = true;
1508 }
1509
1510 /* Create the new framebuffer depending one what we have */
1511 if (surface) {
1512 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1513 mode_cmd,
1514 is_dmabuf_proxy);
1515
1516 /*
1517 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1518 * needed
1519 */
1520 if (is_dmabuf_proxy)
1521 vmw_surface_unreference(&surface);
1522 } else if (dmabuf) {
1523 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1524 mode_cmd);
1525 } else {
1526 BUG();
1527 }
1528
1529 if (ret)
1530 return ERR_PTR(ret);
1531
1532 vfb->pin = vmw_framebuffer_pin;
1533 vfb->unpin = vmw_framebuffer_unpin;
1534
1535 return vfb;
1536 }
1537
1538 /*
1539 * Generic Kernel modesetting functions
1540 */
1541
1542 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1543 struct drm_file *file_priv,
1544 const struct drm_mode_fb_cmd2 *mode_cmd)
1545 {
1546 struct vmw_private *dev_priv = vmw_priv(dev);
1547 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1548 struct vmw_framebuffer *vfb = NULL;
1549 struct vmw_surface *surface = NULL;
1550 struct vmw_dma_buffer *bo = NULL;
1551 struct ttm_base_object *user_obj;
1552 int ret;
1553
1554 /**
1555 * This code should be conditioned on Screen Objects not being used.
1556 * If screen objects are used, we can allocate a GMR to hold the
1557 * requested framebuffer.
1558 */
1559
1560 if (!vmw_kms_validate_mode_vram(dev_priv,
1561 mode_cmd->pitches[0],
1562 mode_cmd->height)) {
1563 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1564 return ERR_PTR(-ENOMEM);
1565 }
1566
1567 /*
1568 * Take a reference on the user object of the resource
1569 * backing the kms fb. This ensures that user-space handle
1570 * lookups on that resource will always work as long as
1571 * it's registered with a kms framebuffer. This is important,
1572 * since vmw_execbuf_process identifies resources in the
1573 * command stream using user-space handles.
1574 */
1575
1576 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1577 if (unlikely(user_obj == NULL)) {
1578 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1579 return ERR_PTR(-ENOENT);
1580 }
1581
1582 /**
1583 * End conditioned code.
1584 */
1585
1586 /* returns either a dmabuf or surface */
1587 ret = vmw_user_lookup_handle(dev_priv, tfile,
1588 mode_cmd->handles[0],
1589 &surface, &bo);
1590 if (ret)
1591 goto err_out;
1592
1593
1594 if (!bo &&
1595 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1596 DRM_ERROR("Surface size cannot exceed %dx%d",
1597 dev_priv->texture_max_width,
1598 dev_priv->texture_max_height);
1599 goto err_out;
1600 }
1601
1602
1603 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1604 !(dev_priv->capabilities & SVGA_CAP_3D),
1605 mode_cmd);
1606 if (IS_ERR(vfb)) {
1607 ret = PTR_ERR(vfb);
1608 goto err_out;
1609 }
1610
1611 err_out:
1612 /* vmw_user_lookup_handle takes one ref so does new_fb */
1613 if (bo)
1614 vmw_dmabuf_unreference(&bo);
1615 if (surface)
1616 vmw_surface_unreference(&surface);
1617
1618 if (ret) {
1619 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1620 ttm_base_object_unref(&user_obj);
1621 return ERR_PTR(ret);
1622 } else
1623 vfb->user_obj = user_obj;
1624
1625 return &vfb->base;
1626 }
1627
1628
1629
1630 /**
1631 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1632 *
1633 * @dev: DRM device
1634 * @state: the driver state object
1635 *
1636 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1637 * us to assign a value to mode->crtc_clock so that
1638 * drm_calc_timestamping_constants() won't throw an error message
1639 *
1640 * RETURNS
1641 * Zero for success or -errno
1642 */
1643 int
1644 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1645 struct drm_atomic_state *state)
1646 {
1647 struct drm_crtc_state *crtc_state;
1648 struct drm_crtc *crtc;
1649 struct vmw_private *dev_priv = vmw_priv(dev);
1650 int i;
1651
1652
1653 for_each_crtc_in_state(state, crtc, crtc_state, i) {
1654 unsigned long requested_bb_mem = 0;
1655
1656 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1657 if (crtc->primary->fb) {
1658 int cpp = crtc->primary->fb->pitches[0] /
1659 crtc->primary->fb->width;
1660
1661 requested_bb_mem += crtc->mode.hdisplay * cpp *
1662 crtc->mode.vdisplay;
1663 }
1664
1665 if (requested_bb_mem > dev_priv->prim_bb_mem)
1666 return -EINVAL;
1667 }
1668 }
1669
1670 return drm_atomic_helper_check(dev, state);
1671 }
1672
1673
1674 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1675 .fb_create = vmw_kms_fb_create,
1676 .atomic_check = vmw_kms_atomic_check_modeset,
1677 .atomic_commit = drm_atomic_helper_commit,
1678 };
1679
1680 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1681 struct drm_file *file_priv,
1682 struct vmw_framebuffer *vfb,
1683 struct vmw_surface *surface,
1684 uint32_t sid,
1685 int32_t destX, int32_t destY,
1686 struct drm_vmw_rect *clips,
1687 uint32_t num_clips)
1688 {
1689 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1690 &surface->res, destX, destY,
1691 num_clips, 1, NULL);
1692 }
1693
1694
1695 int vmw_kms_present(struct vmw_private *dev_priv,
1696 struct drm_file *file_priv,
1697 struct vmw_framebuffer *vfb,
1698 struct vmw_surface *surface,
1699 uint32_t sid,
1700 int32_t destX, int32_t destY,
1701 struct drm_vmw_rect *clips,
1702 uint32_t num_clips)
1703 {
1704 int ret;
1705
1706 switch (dev_priv->active_display_unit) {
1707 case vmw_du_screen_target:
1708 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1709 &surface->res, destX, destY,
1710 num_clips, 1, NULL);
1711 break;
1712 case vmw_du_screen_object:
1713 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1714 sid, destX, destY, clips,
1715 num_clips);
1716 break;
1717 default:
1718 WARN_ONCE(true,
1719 "Present called with invalid display system.\n");
1720 ret = -ENOSYS;
1721 break;
1722 }
1723 if (ret)
1724 return ret;
1725
1726 vmw_fifo_flush(dev_priv, false);
1727
1728 return 0;
1729 }
1730
1731 static void
1732 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1733 {
1734 if (dev_priv->hotplug_mode_update_property)
1735 return;
1736
1737 dev_priv->hotplug_mode_update_property =
1738 drm_property_create_range(dev_priv->dev,
1739 DRM_MODE_PROP_IMMUTABLE,
1740 "hotplug_mode_update", 0, 1);
1741
1742 if (!dev_priv->hotplug_mode_update_property)
1743 return;
1744
1745 }
1746
1747 int vmw_kms_init(struct vmw_private *dev_priv)
1748 {
1749 struct drm_device *dev = dev_priv->dev;
1750 int ret;
1751
1752 drm_mode_config_init(dev);
1753 dev->mode_config.funcs = &vmw_kms_funcs;
1754 dev->mode_config.min_width = 1;
1755 dev->mode_config.min_height = 1;
1756 dev->mode_config.max_width = dev_priv->texture_max_width;
1757 dev->mode_config.max_height = dev_priv->texture_max_height;
1758
1759 drm_mode_create_suggested_offset_properties(dev);
1760 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1761
1762 ret = vmw_kms_stdu_init_display(dev_priv);
1763 if (ret) {
1764 ret = vmw_kms_sou_init_display(dev_priv);
1765 if (ret) /* Fallback */
1766 ret = vmw_kms_ldu_init_display(dev_priv);
1767 }
1768
1769 return ret;
1770 }
1771
1772 int vmw_kms_close(struct vmw_private *dev_priv)
1773 {
1774 int ret;
1775
1776 /*
1777 * Docs says we should take the lock before calling this function
1778 * but since it destroys encoders and our destructor calls
1779 * drm_encoder_cleanup which takes the lock we deadlock.
1780 */
1781 drm_mode_config_cleanup(dev_priv->dev);
1782 if (dev_priv->active_display_unit == vmw_du_screen_object)
1783 ret = vmw_kms_sou_close_display(dev_priv);
1784 else if (dev_priv->active_display_unit == vmw_du_screen_target)
1785 ret = vmw_kms_stdu_close_display(dev_priv);
1786 else
1787 ret = vmw_kms_ldu_close_display(dev_priv);
1788
1789 return ret;
1790 }
1791
1792 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1793 struct drm_file *file_priv)
1794 {
1795 struct drm_vmw_cursor_bypass_arg *arg = data;
1796 struct vmw_display_unit *du;
1797 struct drm_crtc *crtc;
1798 int ret = 0;
1799
1800
1801 mutex_lock(&dev->mode_config.mutex);
1802 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1803
1804 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1805 du = vmw_crtc_to_du(crtc);
1806 du->hotspot_x = arg->xhot;
1807 du->hotspot_y = arg->yhot;
1808 }
1809
1810 mutex_unlock(&dev->mode_config.mutex);
1811 return 0;
1812 }
1813
1814 crtc = drm_crtc_find(dev, arg->crtc_id);
1815 if (!crtc) {
1816 ret = -ENOENT;
1817 goto out;
1818 }
1819
1820 du = vmw_crtc_to_du(crtc);
1821
1822 du->hotspot_x = arg->xhot;
1823 du->hotspot_y = arg->yhot;
1824
1825 out:
1826 mutex_unlock(&dev->mode_config.mutex);
1827
1828 return ret;
1829 }
1830
1831 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1832 unsigned width, unsigned height, unsigned pitch,
1833 unsigned bpp, unsigned depth)
1834 {
1835 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1836 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1837 else if (vmw_fifo_have_pitchlock(vmw_priv))
1838 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1839 SVGA_FIFO_PITCHLOCK);
1840 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1841 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1842 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1843
1844 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1845 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1846 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1847 return -EINVAL;
1848 }
1849
1850 return 0;
1851 }
1852
1853 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1854 {
1855 struct vmw_vga_topology_state *save;
1856 uint32_t i;
1857
1858 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1859 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1860 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1861 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1862 vmw_priv->vga_pitchlock =
1863 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1864 else if (vmw_fifo_have_pitchlock(vmw_priv))
1865 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1866 SVGA_FIFO_PITCHLOCK);
1867
1868 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1869 return 0;
1870
1871 vmw_priv->num_displays = vmw_read(vmw_priv,
1872 SVGA_REG_NUM_GUEST_DISPLAYS);
1873
1874 if (vmw_priv->num_displays == 0)
1875 vmw_priv->num_displays = 1;
1876
1877 for (i = 0; i < vmw_priv->num_displays; ++i) {
1878 save = &vmw_priv->vga_save[i];
1879 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1880 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1881 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1882 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1883 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1884 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1885 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1886 if (i == 0 && vmw_priv->num_displays == 1 &&
1887 save->width == 0 && save->height == 0) {
1888
1889 /*
1890 * It should be fairly safe to assume that these
1891 * values are uninitialized.
1892 */
1893
1894 save->width = vmw_priv->vga_width - save->pos_x;
1895 save->height = vmw_priv->vga_height - save->pos_y;
1896 }
1897 }
1898
1899 return 0;
1900 }
1901
1902 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1903 {
1904 struct vmw_vga_topology_state *save;
1905 uint32_t i;
1906
1907 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1908 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1909 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1910 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1911 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1912 vmw_priv->vga_pitchlock);
1913 else if (vmw_fifo_have_pitchlock(vmw_priv))
1914 vmw_mmio_write(vmw_priv->vga_pitchlock,
1915 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1916
1917 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1918 return 0;
1919
1920 for (i = 0; i < vmw_priv->num_displays; ++i) {
1921 save = &vmw_priv->vga_save[i];
1922 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1923 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1924 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1925 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1926 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1927 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1928 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1929 }
1930
1931 return 0;
1932 }
1933
1934 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1935 uint32_t pitch,
1936 uint32_t height)
1937 {
1938 return ((u64) pitch * (u64) height) < (u64)
1939 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1940 dev_priv->prim_bb_mem : dev_priv->vram_size);
1941 }
1942
1943
1944 /**
1945 * Function called by DRM code called with vbl_lock held.
1946 */
1947 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1948 {
1949 return 0;
1950 }
1951
1952 /**
1953 * Function called by DRM code called with vbl_lock held.
1954 */
1955 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1956 {
1957 return -ENOSYS;
1958 }
1959
1960 /**
1961 * Function called by DRM code called with vbl_lock held.
1962 */
1963 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1964 {
1965 }
1966
1967
1968 /*
1969 * Small shared kms functions.
1970 */
1971
1972 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1973 struct drm_vmw_rect *rects)
1974 {
1975 struct drm_device *dev = dev_priv->dev;
1976 struct vmw_display_unit *du;
1977 struct drm_connector *con;
1978
1979 mutex_lock(&dev->mode_config.mutex);
1980
1981 #if 0
1982 {
1983 unsigned int i;
1984
1985 DRM_INFO("%s: new layout ", __func__);
1986 for (i = 0; i < num; i++)
1987 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1988 rects[i].w, rects[i].h);
1989 DRM_INFO("\n");
1990 }
1991 #endif
1992
1993 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1994 du = vmw_connector_to_du(con);
1995 if (num > du->unit) {
1996 du->pref_width = rects[du->unit].w;
1997 du->pref_height = rects[du->unit].h;
1998 du->pref_active = true;
1999 du->gui_x = rects[du->unit].x;
2000 du->gui_y = rects[du->unit].y;
2001 drm_object_property_set_value
2002 (&con->base, dev->mode_config.suggested_x_property,
2003 du->gui_x);
2004 drm_object_property_set_value
2005 (&con->base, dev->mode_config.suggested_y_property,
2006 du->gui_y);
2007 } else {
2008 du->pref_width = 800;
2009 du->pref_height = 600;
2010 du->pref_active = false;
2011 drm_object_property_set_value
2012 (&con->base, dev->mode_config.suggested_x_property,
2013 0);
2014 drm_object_property_set_value
2015 (&con->base, dev->mode_config.suggested_y_property,
2016 0);
2017 }
2018 con->status = vmw_du_connector_detect(con, true);
2019 }
2020
2021 mutex_unlock(&dev->mode_config.mutex);
2022 drm_sysfs_hotplug_event(dev);
2023
2024 return 0;
2025 }
2026
2027 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2028 u16 *r, u16 *g, u16 *b,
2029 uint32_t size,
2030 struct drm_modeset_acquire_ctx *ctx)
2031 {
2032 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2033 int i;
2034
2035 for (i = 0; i < size; i++) {
2036 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2037 r[i], g[i], b[i]);
2038 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2039 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2040 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2041 }
2042
2043 return 0;
2044 }
2045
2046 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2047 {
2048 return 0;
2049 }
2050
2051 enum drm_connector_status
2052 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2053 {
2054 uint32_t num_displays;
2055 struct drm_device *dev = connector->dev;
2056 struct vmw_private *dev_priv = vmw_priv(dev);
2057 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2058
2059 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2060
2061 return ((vmw_connector_to_du(connector)->unit < num_displays &&
2062 du->pref_active) ?
2063 connector_status_connected : connector_status_disconnected);
2064 }
2065
2066 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2067 /* 640x480@60Hz */
2068 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2069 752, 800, 0, 480, 489, 492, 525, 0,
2070 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2071 /* 800x600@60Hz */
2072 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2073 968, 1056, 0, 600, 601, 605, 628, 0,
2074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2075 /* 1024x768@60Hz */
2076 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2077 1184, 1344, 0, 768, 771, 777, 806, 0,
2078 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2079 /* 1152x864@75Hz */
2080 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2081 1344, 1600, 0, 864, 865, 868, 900, 0,
2082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2083 /* 1280x768@60Hz */
2084 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2085 1472, 1664, 0, 768, 771, 778, 798, 0,
2086 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2087 /* 1280x800@60Hz */
2088 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2089 1480, 1680, 0, 800, 803, 809, 831, 0,
2090 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2091 /* 1280x960@60Hz */
2092 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2093 1488, 1800, 0, 960, 961, 964, 1000, 0,
2094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2095 /* 1280x1024@60Hz */
2096 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2097 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2099 /* 1360x768@60Hz */
2100 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2101 1536, 1792, 0, 768, 771, 777, 795, 0,
2102 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2103 /* 1440x1050@60Hz */
2104 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2105 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2106 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2107 /* 1440x900@60Hz */
2108 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2109 1672, 1904, 0, 900, 903, 909, 934, 0,
2110 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2111 /* 1600x1200@60Hz */
2112 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2113 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2115 /* 1680x1050@60Hz */
2116 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2117 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2118 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2119 /* 1792x1344@60Hz */
2120 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2121 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2122 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2123 /* 1853x1392@60Hz */
2124 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2125 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2126 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2127 /* 1920x1200@60Hz */
2128 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2129 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2130 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2131 /* 1920x1440@60Hz */
2132 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2133 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2134 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2135 /* 2560x1600@60Hz */
2136 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2137 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2138 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2139 /* Terminate */
2140 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2141 };
2142
2143 /**
2144 * vmw_guess_mode_timing - Provide fake timings for a
2145 * 60Hz vrefresh mode.
2146 *
2147 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2148 * members filled in.
2149 */
2150 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2151 {
2152 mode->hsync_start = mode->hdisplay + 50;
2153 mode->hsync_end = mode->hsync_start + 50;
2154 mode->htotal = mode->hsync_end + 50;
2155
2156 mode->vsync_start = mode->vdisplay + 50;
2157 mode->vsync_end = mode->vsync_start + 50;
2158 mode->vtotal = mode->vsync_end + 50;
2159
2160 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2161 mode->vrefresh = drm_mode_vrefresh(mode);
2162 }
2163
2164
2165 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2166 uint32_t max_width, uint32_t max_height)
2167 {
2168 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2169 struct drm_device *dev = connector->dev;
2170 struct vmw_private *dev_priv = vmw_priv(dev);
2171 struct drm_display_mode *mode = NULL;
2172 struct drm_display_mode *bmode;
2173 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2174 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2176 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2177 };
2178 int i;
2179 u32 assumed_bpp = 4;
2180
2181 if (dev_priv->assume_16bpp)
2182 assumed_bpp = 2;
2183
2184 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2185 max_width = min(max_width, dev_priv->stdu_max_width);
2186 max_width = min(max_width, dev_priv->texture_max_width);
2187
2188 max_height = min(max_height, dev_priv->stdu_max_height);
2189 max_height = min(max_height, dev_priv->texture_max_height);
2190 }
2191
2192 /* Add preferred mode */
2193 mode = drm_mode_duplicate(dev, &prefmode);
2194 if (!mode)
2195 return 0;
2196 mode->hdisplay = du->pref_width;
2197 mode->vdisplay = du->pref_height;
2198 vmw_guess_mode_timing(mode);
2199
2200 if (vmw_kms_validate_mode_vram(dev_priv,
2201 mode->hdisplay * assumed_bpp,
2202 mode->vdisplay)) {
2203 drm_mode_probed_add(connector, mode);
2204 } else {
2205 drm_mode_destroy(dev, mode);
2206 mode = NULL;
2207 }
2208
2209 if (du->pref_mode) {
2210 list_del_init(&du->pref_mode->head);
2211 drm_mode_destroy(dev, du->pref_mode);
2212 }
2213
2214 /* mode might be null here, this is intended */
2215 du->pref_mode = mode;
2216
2217 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2218 bmode = &vmw_kms_connector_builtin[i];
2219 if (bmode->hdisplay > max_width ||
2220 bmode->vdisplay > max_height)
2221 continue;
2222
2223 if (!vmw_kms_validate_mode_vram(dev_priv,
2224 bmode->hdisplay * assumed_bpp,
2225 bmode->vdisplay))
2226 continue;
2227
2228 mode = drm_mode_duplicate(dev, bmode);
2229 if (!mode)
2230 return 0;
2231 mode->vrefresh = drm_mode_vrefresh(mode);
2232
2233 drm_mode_probed_add(connector, mode);
2234 }
2235
2236 drm_mode_connector_list_update(connector);
2237 /* Move the prefered mode first, help apps pick the right mode. */
2238 drm_mode_sort(&connector->modes);
2239
2240 return 1;
2241 }
2242
2243 int vmw_du_connector_set_property(struct drm_connector *connector,
2244 struct drm_property *property,
2245 uint64_t val)
2246 {
2247 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2248 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2249
2250 if (property == dev_priv->implicit_placement_property)
2251 du->is_implicit = val;
2252
2253 return 0;
2254 }
2255
2256
2257
2258 /**
2259 * vmw_du_connector_atomic_set_property - Atomic version of get property
2260 *
2261 * @crtc - crtc the property is associated with
2262 *
2263 * Returns:
2264 * Zero on success, negative errno on failure.
2265 */
2266 int
2267 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2268 struct drm_connector_state *state,
2269 struct drm_property *property,
2270 uint64_t val)
2271 {
2272 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2273 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2274 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2275
2276
2277 if (property == dev_priv->implicit_placement_property) {
2278 vcs->is_implicit = val;
2279
2280 /*
2281 * We should really be doing a drm_atomic_commit() to
2282 * commit the new state, but since this doesn't cause
2283 * an immedate state change, this is probably ok
2284 */
2285 du->is_implicit = vcs->is_implicit;
2286 } else {
2287 return -EINVAL;
2288 }
2289
2290 return 0;
2291 }
2292
2293
2294 /**
2295 * vmw_du_connector_atomic_get_property - Atomic version of get property
2296 *
2297 * @connector - connector the property is associated with
2298 *
2299 * Returns:
2300 * Zero on success, negative errno on failure.
2301 */
2302 int
2303 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2304 const struct drm_connector_state *state,
2305 struct drm_property *property,
2306 uint64_t *val)
2307 {
2308 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2309 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2310
2311 if (property == dev_priv->implicit_placement_property)
2312 *val = vcs->is_implicit;
2313 else {
2314 DRM_ERROR("Invalid Property %s\n", property->name);
2315 return -EINVAL;
2316 }
2317
2318 return 0;
2319 }
2320
2321
2322 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2323 struct drm_file *file_priv)
2324 {
2325 struct vmw_private *dev_priv = vmw_priv(dev);
2326 struct drm_vmw_update_layout_arg *arg =
2327 (struct drm_vmw_update_layout_arg *)data;
2328 void __user *user_rects;
2329 struct drm_vmw_rect *rects;
2330 unsigned rects_size;
2331 int ret;
2332 int i;
2333 u64 total_pixels = 0;
2334 struct drm_mode_config *mode_config = &dev->mode_config;
2335 struct drm_vmw_rect bounding_box = {0};
2336
2337 if (!arg->num_outputs) {
2338 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2339 vmw_du_update_layout(dev_priv, 1, &def_rect);
2340 return 0;
2341 }
2342
2343 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2344 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2345 GFP_KERNEL);
2346 if (unlikely(!rects))
2347 return -ENOMEM;
2348
2349 user_rects = (void __user *)(unsigned long)arg->rects;
2350 ret = copy_from_user(rects, user_rects, rects_size);
2351 if (unlikely(ret != 0)) {
2352 DRM_ERROR("Failed to get rects.\n");
2353 ret = -EFAULT;
2354 goto out_free;
2355 }
2356
2357 for (i = 0; i < arg->num_outputs; ++i) {
2358 if (rects[i].x < 0 ||
2359 rects[i].y < 0 ||
2360 rects[i].x + rects[i].w > mode_config->max_width ||
2361 rects[i].y + rects[i].h > mode_config->max_height) {
2362 DRM_ERROR("Invalid GUI layout.\n");
2363 ret = -EINVAL;
2364 goto out_free;
2365 }
2366
2367 /*
2368 * bounding_box.w and bunding_box.h are used as
2369 * lower-right coordinates
2370 */
2371 if (rects[i].x + rects[i].w > bounding_box.w)
2372 bounding_box.w = rects[i].x + rects[i].w;
2373
2374 if (rects[i].y + rects[i].h > bounding_box.h)
2375 bounding_box.h = rects[i].y + rects[i].h;
2376
2377 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2378 }
2379
2380 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2381 /*
2382 * For Screen Targets, the limits for a toplogy are:
2383 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2384 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2385 */
2386 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4;
2387 u64 pixel_mem = total_pixels * 4;
2388
2389 if (bb_mem > dev_priv->prim_bb_mem) {
2390 DRM_ERROR("Topology is beyond supported limits.\n");
2391 ret = -EINVAL;
2392 goto out_free;
2393 }
2394
2395 if (pixel_mem > dev_priv->prim_bb_mem) {
2396 DRM_ERROR("Combined output size too large\n");
2397 ret = -EINVAL;
2398 goto out_free;
2399 }
2400 }
2401
2402 vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2403
2404 out_free:
2405 kfree(rects);
2406 return ret;
2407 }
2408
2409 /**
2410 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2411 * on a set of cliprects and a set of display units.
2412 *
2413 * @dev_priv: Pointer to a device private structure.
2414 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2415 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2416 * Cliprects are given in framebuffer coordinates.
2417 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2418 * be NULL. Cliprects are given in source coordinates.
2419 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2420 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2421 * @num_clips: Number of cliprects in the @clips or @vclips array.
2422 * @increment: Integer with which to increment the clip counter when looping.
2423 * Used to skip a predetermined number of clip rects.
2424 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2425 */
2426 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2427 struct vmw_framebuffer *framebuffer,
2428 const struct drm_clip_rect *clips,
2429 const struct drm_vmw_rect *vclips,
2430 s32 dest_x, s32 dest_y,
2431 int num_clips,
2432 int increment,
2433 struct vmw_kms_dirty *dirty)
2434 {
2435 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2436 struct drm_crtc *crtc;
2437 u32 num_units = 0;
2438 u32 i, k;
2439
2440 dirty->dev_priv = dev_priv;
2441
2442 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2443 if (crtc->primary->fb != &framebuffer->base)
2444 continue;
2445 units[num_units++] = vmw_crtc_to_du(crtc);
2446 }
2447
2448 for (k = 0; k < num_units; k++) {
2449 struct vmw_display_unit *unit = units[k];
2450 s32 crtc_x = unit->crtc.x;
2451 s32 crtc_y = unit->crtc.y;
2452 s32 crtc_width = unit->crtc.mode.hdisplay;
2453 s32 crtc_height = unit->crtc.mode.vdisplay;
2454 const struct drm_clip_rect *clips_ptr = clips;
2455 const struct drm_vmw_rect *vclips_ptr = vclips;
2456
2457 dirty->unit = unit;
2458 if (dirty->fifo_reserve_size > 0) {
2459 dirty->cmd = vmw_fifo_reserve(dev_priv,
2460 dirty->fifo_reserve_size);
2461 if (!dirty->cmd) {
2462 DRM_ERROR("Couldn't reserve fifo space "
2463 "for dirty blits.\n");
2464 return -ENOMEM;
2465 }
2466 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2467 }
2468 dirty->num_hits = 0;
2469 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2470 vclips_ptr += increment) {
2471 s32 clip_left;
2472 s32 clip_top;
2473
2474 /*
2475 * Select clip array type. Note that integer type
2476 * in @clips is unsigned short, whereas in @vclips
2477 * it's 32-bit.
2478 */
2479 if (clips) {
2480 dirty->fb_x = (s32) clips_ptr->x1;
2481 dirty->fb_y = (s32) clips_ptr->y1;
2482 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2483 crtc_x;
2484 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2485 crtc_y;
2486 } else {
2487 dirty->fb_x = vclips_ptr->x;
2488 dirty->fb_y = vclips_ptr->y;
2489 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2490 dest_x - crtc_x;
2491 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2492 dest_y - crtc_y;
2493 }
2494
2495 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2496 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2497
2498 /* Skip this clip if it's outside the crtc region */
2499 if (dirty->unit_x1 >= crtc_width ||
2500 dirty->unit_y1 >= crtc_height ||
2501 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2502 continue;
2503
2504 /* Clip right and bottom to crtc limits */
2505 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2506 crtc_width);
2507 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2508 crtc_height);
2509
2510 /* Clip left and top to crtc limits */
2511 clip_left = min_t(s32, dirty->unit_x1, 0);
2512 clip_top = min_t(s32, dirty->unit_y1, 0);
2513 dirty->unit_x1 -= clip_left;
2514 dirty->unit_y1 -= clip_top;
2515 dirty->fb_x -= clip_left;
2516 dirty->fb_y -= clip_top;
2517
2518 dirty->clip(dirty);
2519 }
2520
2521 dirty->fifo_commit(dirty);
2522 }
2523
2524 return 0;
2525 }
2526
2527 /**
2528 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2529 * command submission.
2530 *
2531 * @dev_priv. Pointer to a device private structure.
2532 * @buf: The buffer object
2533 * @interruptible: Whether to perform waits as interruptible.
2534 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2535 * The buffer will be validated as a GMR. Already pinned buffers will not be
2536 * validated.
2537 *
2538 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2539 * interrupted by a signal.
2540 */
2541 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2542 struct vmw_dma_buffer *buf,
2543 bool interruptible,
2544 bool validate_as_mob)
2545 {
2546 struct ttm_buffer_object *bo = &buf->base;
2547 int ret;
2548
2549 ttm_bo_reserve(bo, false, false, NULL);
2550 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2551 validate_as_mob);
2552 if (ret)
2553 ttm_bo_unreserve(bo);
2554
2555 return ret;
2556 }
2557
2558 /**
2559 * vmw_kms_helper_buffer_revert - Undo the actions of
2560 * vmw_kms_helper_buffer_prepare.
2561 *
2562 * @res: Pointer to the buffer object.
2563 *
2564 * Helper to be used if an error forces the caller to undo the actions of
2565 * vmw_kms_helper_buffer_prepare.
2566 */
2567 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2568 {
2569 if (buf)
2570 ttm_bo_unreserve(&buf->base);
2571 }
2572
2573 /**
2574 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2575 * kms command submission.
2576 *
2577 * @dev_priv: Pointer to a device private structure.
2578 * @file_priv: Pointer to a struct drm_file representing the caller's
2579 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2580 * if non-NULL, @user_fence_rep must be non-NULL.
2581 * @buf: The buffer object.
2582 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2583 * ref-counted fence pointer is returned here.
2584 * @user_fence_rep: Optional pointer to a user-space provided struct
2585 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2586 * function copies fence data to user-space in a fail-safe manner.
2587 */
2588 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2589 struct drm_file *file_priv,
2590 struct vmw_dma_buffer *buf,
2591 struct vmw_fence_obj **out_fence,
2592 struct drm_vmw_fence_rep __user *
2593 user_fence_rep)
2594 {
2595 struct vmw_fence_obj *fence;
2596 uint32_t handle;
2597 int ret;
2598
2599 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2600 file_priv ? &handle : NULL);
2601 if (buf)
2602 vmw_fence_single_bo(&buf->base, fence);
2603 if (file_priv)
2604 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2605 ret, user_fence_rep, fence,
2606 handle);
2607 if (out_fence)
2608 *out_fence = fence;
2609 else
2610 vmw_fence_obj_unreference(&fence);
2611
2612 vmw_kms_helper_buffer_revert(buf);
2613 }
2614
2615
2616 /**
2617 * vmw_kms_helper_resource_revert - Undo the actions of
2618 * vmw_kms_helper_resource_prepare.
2619 *
2620 * @res: Pointer to the resource. Typically a surface.
2621 *
2622 * Helper to be used if an error forces the caller to undo the actions of
2623 * vmw_kms_helper_resource_prepare.
2624 */
2625 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2626 {
2627 vmw_kms_helper_buffer_revert(res->backup);
2628 vmw_resource_unreserve(res, false, NULL, 0);
2629 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2630 }
2631
2632 /**
2633 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2634 * command submission.
2635 *
2636 * @res: Pointer to the resource. Typically a surface.
2637 * @interruptible: Whether to perform waits as interruptible.
2638 *
2639 * Reserves and validates also the backup buffer if a guest-backed resource.
2640 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2641 * interrupted by a signal.
2642 */
2643 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2644 bool interruptible)
2645 {
2646 int ret = 0;
2647
2648 if (interruptible)
2649 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2650 else
2651 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2652
2653 if (unlikely(ret != 0))
2654 return -ERESTARTSYS;
2655
2656 ret = vmw_resource_reserve(res, interruptible, false);
2657 if (ret)
2658 goto out_unlock;
2659
2660 if (res->backup) {
2661 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2662 interruptible,
2663 res->dev_priv->has_mob);
2664 if (ret)
2665 goto out_unreserve;
2666 }
2667 ret = vmw_resource_validate(res);
2668 if (ret)
2669 goto out_revert;
2670 return 0;
2671
2672 out_revert:
2673 vmw_kms_helper_buffer_revert(res->backup);
2674 out_unreserve:
2675 vmw_resource_unreserve(res, false, NULL, 0);
2676 out_unlock:
2677 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2678 return ret;
2679 }
2680
2681 /**
2682 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2683 * kms command submission.
2684 *
2685 * @res: Pointer to the resource. Typically a surface.
2686 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2687 * ref-counted fence pointer is returned here.
2688 */
2689 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2690 struct vmw_fence_obj **out_fence)
2691 {
2692 if (res->backup || out_fence)
2693 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2694 out_fence, NULL);
2695
2696 vmw_resource_unreserve(res, false, NULL, 0);
2697 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2698 }
2699
2700 /**
2701 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2702 * its backing MOB.
2703 *
2704 * @res: Pointer to the surface resource
2705 * @clips: Clip rects in framebuffer (surface) space.
2706 * @num_clips: Number of clips in @clips.
2707 * @increment: Integer with which to increment the clip counter when looping.
2708 * Used to skip a predetermined number of clip rects.
2709 *
2710 * This function makes sure the proxy surface is updated from its backing MOB
2711 * using the region given by @clips. The surface resource @res and its backing
2712 * MOB needs to be reserved and validated on call.
2713 */
2714 int vmw_kms_update_proxy(struct vmw_resource *res,
2715 const struct drm_clip_rect *clips,
2716 unsigned num_clips,
2717 int increment)
2718 {
2719 struct vmw_private *dev_priv = res->dev_priv;
2720 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2721 struct {
2722 SVGA3dCmdHeader header;
2723 SVGA3dCmdUpdateGBImage body;
2724 } *cmd;
2725 SVGA3dBox *box;
2726 size_t copy_size = 0;
2727 int i;
2728
2729 if (!clips)
2730 return 0;
2731
2732 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2733 if (!cmd) {
2734 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2735 "update.\n");
2736 return -ENOMEM;
2737 }
2738
2739 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2740 box = &cmd->body.box;
2741
2742 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2743 cmd->header.size = sizeof(cmd->body);
2744 cmd->body.image.sid = res->id;
2745 cmd->body.image.face = 0;
2746 cmd->body.image.mipmap = 0;
2747
2748 if (clips->x1 > size->width || clips->x2 > size->width ||
2749 clips->y1 > size->height || clips->y2 > size->height) {
2750 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2751 return -EINVAL;
2752 }
2753
2754 box->x = clips->x1;
2755 box->y = clips->y1;
2756 box->z = 0;
2757 box->w = clips->x2 - clips->x1;
2758 box->h = clips->y2 - clips->y1;
2759 box->d = 1;
2760
2761 copy_size += sizeof(*cmd);
2762 }
2763
2764 vmw_fifo_commit(dev_priv, copy_size);
2765
2766 return 0;
2767 }
2768
2769 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2770 unsigned unit,
2771 u32 max_width,
2772 u32 max_height,
2773 struct drm_connector **p_con,
2774 struct drm_crtc **p_crtc,
2775 struct drm_display_mode **p_mode)
2776 {
2777 struct drm_connector *con;
2778 struct vmw_display_unit *du;
2779 struct drm_display_mode *mode;
2780 int i = 0;
2781
2782 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2783 head) {
2784 if (i == unit)
2785 break;
2786
2787 ++i;
2788 }
2789
2790 if (i != unit) {
2791 DRM_ERROR("Could not find initial display unit.\n");
2792 return -EINVAL;
2793 }
2794
2795 if (list_empty(&con->modes))
2796 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2797
2798 if (list_empty(&con->modes)) {
2799 DRM_ERROR("Could not find initial display mode.\n");
2800 return -EINVAL;
2801 }
2802
2803 du = vmw_connector_to_du(con);
2804 *p_con = con;
2805 *p_crtc = &du->crtc;
2806
2807 list_for_each_entry(mode, &con->modes, head) {
2808 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2809 break;
2810 }
2811
2812 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2813 *p_mode = mode;
2814 else {
2815 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2816 *p_mode = list_first_entry(&con->modes,
2817 struct drm_display_mode,
2818 head);
2819 }
2820
2821 return 0;
2822 }
2823
2824 /**
2825 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2826 *
2827 * @dev_priv: Pointer to a device private struct.
2828 * @du: The display unit of the crtc.
2829 */
2830 void vmw_kms_del_active(struct vmw_private *dev_priv,
2831 struct vmw_display_unit *du)
2832 {
2833 mutex_lock(&dev_priv->global_kms_state_mutex);
2834 if (du->active_implicit) {
2835 if (--(dev_priv->num_implicit) == 0)
2836 dev_priv->implicit_fb = NULL;
2837 du->active_implicit = false;
2838 }
2839 mutex_unlock(&dev_priv->global_kms_state_mutex);
2840 }
2841
2842 /**
2843 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2844 *
2845 * @vmw_priv: Pointer to a device private struct.
2846 * @du: The display unit of the crtc.
2847 * @vfb: The implicit framebuffer
2848 *
2849 * Registers a binding to an implicit framebuffer.
2850 */
2851 void vmw_kms_add_active(struct vmw_private *dev_priv,
2852 struct vmw_display_unit *du,
2853 struct vmw_framebuffer *vfb)
2854 {
2855 mutex_lock(&dev_priv->global_kms_state_mutex);
2856 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2857
2858 if (!du->active_implicit && du->is_implicit) {
2859 dev_priv->implicit_fb = vfb;
2860 du->active_implicit = true;
2861 dev_priv->num_implicit++;
2862 }
2863 mutex_unlock(&dev_priv->global_kms_state_mutex);
2864 }
2865
2866 /**
2867 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2868 *
2869 * @dev_priv: Pointer to device-private struct.
2870 * @crtc: The crtc we want to flip.
2871 *
2872 * Returns true or false depending whether it's OK to flip this crtc
2873 * based on the criterion that we must not have more than one implicit
2874 * frame-buffer at any one time.
2875 */
2876 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2877 struct drm_crtc *crtc)
2878 {
2879 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2880 bool ret;
2881
2882 mutex_lock(&dev_priv->global_kms_state_mutex);
2883 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2884 mutex_unlock(&dev_priv->global_kms_state_mutex);
2885
2886 return ret;
2887 }
2888
2889 /**
2890 * vmw_kms_update_implicit_fb - Update the implicit fb.
2891 *
2892 * @dev_priv: Pointer to device-private struct.
2893 * @crtc: The crtc the new implicit frame-buffer is bound to.
2894 */
2895 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2896 struct drm_crtc *crtc)
2897 {
2898 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2899 struct vmw_framebuffer *vfb;
2900
2901 mutex_lock(&dev_priv->global_kms_state_mutex);
2902
2903 if (!du->is_implicit)
2904 goto out_unlock;
2905
2906 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2907 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2908 dev_priv->implicit_fb != vfb);
2909
2910 dev_priv->implicit_fb = vfb;
2911 out_unlock:
2912 mutex_unlock(&dev_priv->global_kms_state_mutex);
2913 }
2914
2915 /**
2916 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2917 * property.
2918 *
2919 * @dev_priv: Pointer to a device private struct.
2920 * @immutable: Whether the property is immutable.
2921 *
2922 * Sets up the implicit placement property unless it's already set up.
2923 */
2924 void
2925 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2926 bool immutable)
2927 {
2928 if (dev_priv->implicit_placement_property)
2929 return;
2930
2931 dev_priv->implicit_placement_property =
2932 drm_property_create_range(dev_priv->dev,
2933 immutable ?
2934 DRM_MODE_PROP_IMMUTABLE : 0,
2935 "implicit_placement", 0, 1);
2936
2937 }
2938
2939
2940 /**
2941 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2942 *
2943 * @set: The configuration to set.
2944 *
2945 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2946 * when drm_mode_set_crtcinfo is called as part of the configuration setting
2947 * causes it to return incorrect crtc dimensions causing severe problems in
2948 * the vmwgfx modesetting. So explicitly clear that member before calling
2949 * into drm_atomic_helper_set_config.
2950 */
2951 int vmw_kms_set_config(struct drm_mode_set *set,
2952 struct drm_modeset_acquire_ctx *ctx)
2953 {
2954 if (set && set->mode)
2955 set->mode->type = 0;
2956
2957 return drm_atomic_helper_set_config(set, ctx);
2958 }