]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35
36 #define VMW_RES_EVICT_ERR_COUNT 10
37
38 struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
41 };
42
43 struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
46 };
47
48 struct vmw_stream {
49 struct vmw_resource res;
50 uint32_t stream_id;
51 };
52
53 struct vmw_user_stream {
54 struct ttm_base_object base;
55 struct vmw_stream stream;
56 };
57
58
59 static uint64_t vmw_user_stream_size;
60
61 static const struct vmw_res_func vmw_stream_func = {
62 .res_type = vmw_res_stream,
63 .needs_backup = false,
64 .may_evict = false,
65 .type_name = "video streams",
66 .backup_placement = NULL,
67 .create = NULL,
68 .destroy = NULL,
69 .bind = NULL,
70 .unbind = NULL
71 };
72
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76 return container_of(bo, struct vmw_dma_buffer, base);
77 }
78
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88 kref_get(&res->kref);
89 return res;
90 }
91
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95 return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97
98 /**
99 * vmw_resource_release_id - release a resource id to the id manager.
100 *
101 * @res: Pointer to the resource.
102 *
103 * Release the resource id to the resource id manager and set it to -1
104 */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107 struct vmw_private *dev_priv = res->dev_priv;
108 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109
110 write_lock(&dev_priv->resource_lock);
111 if (res->id != -1)
112 idr_remove(idr, res->id);
113 res->id = -1;
114 write_unlock(&dev_priv->resource_lock);
115 }
116
117 static void vmw_resource_release(struct kref *kref)
118 {
119 struct vmw_resource *res =
120 container_of(kref, struct vmw_resource, kref);
121 struct vmw_private *dev_priv = res->dev_priv;
122 int id;
123 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124
125 write_lock(&dev_priv->resource_lock);
126 res->avail = false;
127 list_del_init(&res->lru_head);
128 write_unlock(&dev_priv->resource_lock);
129 if (res->backup) {
130 struct ttm_buffer_object *bo = &res->backup->base;
131
132 ttm_bo_reserve(bo, false, false, NULL);
133 if (!list_empty(&res->mob_head) &&
134 res->func->unbind != NULL) {
135 struct ttm_validate_buffer val_buf;
136
137 val_buf.bo = bo;
138 val_buf.shared = false;
139 res->func->unbind(res, false, &val_buf);
140 }
141 res->backup_dirty = false;
142 list_del_init(&res->mob_head);
143 ttm_bo_unreserve(bo);
144 vmw_dmabuf_unreference(&res->backup);
145 }
146
147 if (likely(res->hw_destroy != NULL)) {
148 mutex_lock(&dev_priv->binding_mutex);
149 vmw_binding_res_list_kill(&res->binding_head);
150 mutex_unlock(&dev_priv->binding_mutex);
151 res->hw_destroy(res);
152 }
153
154 id = res->id;
155 if (res->res_free != NULL)
156 res->res_free(res);
157 else
158 kfree(res);
159
160 write_lock(&dev_priv->resource_lock);
161 if (id != -1)
162 idr_remove(idr, id);
163 write_unlock(&dev_priv->resource_lock);
164 }
165
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168 struct vmw_resource *res = *p_res;
169
170 *p_res = NULL;
171 kref_put(&res->kref, vmw_resource_release);
172 }
173
174
175 /**
176 * vmw_resource_alloc_id - release a resource id to the id manager.
177 *
178 * @res: Pointer to the resource.
179 *
180 * Allocate the lowest free resource from the resource manager, and set
181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182 */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185 struct vmw_private *dev_priv = res->dev_priv;
186 int ret;
187 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189 BUG_ON(res->id != -1);
190
191 idr_preload(GFP_KERNEL);
192 write_lock(&dev_priv->resource_lock);
193
194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 if (ret >= 0)
196 res->id = ret;
197
198 write_unlock(&dev_priv->resource_lock);
199 idr_preload_end();
200 return ret < 0 ? ret : 0;
201 }
202
203 /**
204 * vmw_resource_init - initialize a struct vmw_resource
205 *
206 * @dev_priv: Pointer to a device private struct.
207 * @res: The struct vmw_resource to initialize.
208 * @obj_type: Resource object type.
209 * @delay_id: Boolean whether to defer device id allocation until
210 * the first validation.
211 * @res_free: Resource destructor.
212 * @func: Resource function table.
213 */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 bool delay_id,
216 void (*res_free) (struct vmw_resource *res),
217 const struct vmw_res_func *func)
218 {
219 kref_init(&res->kref);
220 res->hw_destroy = NULL;
221 res->res_free = res_free;
222 res->avail = false;
223 res->dev_priv = dev_priv;
224 res->func = func;
225 INIT_LIST_HEAD(&res->lru_head);
226 INIT_LIST_HEAD(&res->mob_head);
227 INIT_LIST_HEAD(&res->binding_head);
228 res->id = -1;
229 res->backup = NULL;
230 res->backup_offset = 0;
231 res->backup_dirty = false;
232 res->res_dirty = false;
233 if (delay_id)
234 return 0;
235 else
236 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240 * vmw_resource_activate
241 *
242 * @res: Pointer to the newly created resource
243 * @hw_destroy: Destroy function. NULL if none.
244 *
245 * Activate a resource after the hardware has been made aware of it.
246 * Set tye destroy function to @destroy. Typically this frees the
247 * resource and destroys the hardware resources associated with it.
248 * Activate basically means that the function vmw_resource_lookup will
249 * find it.
250 */
251 void vmw_resource_activate(struct vmw_resource *res,
252 void (*hw_destroy) (struct vmw_resource *))
253 {
254 struct vmw_private *dev_priv = res->dev_priv;
255
256 write_lock(&dev_priv->resource_lock);
257 res->avail = true;
258 res->hw_destroy = hw_destroy;
259 write_unlock(&dev_priv->resource_lock);
260 }
261
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 struct idr *idr, int id)
264 {
265 struct vmw_resource *res;
266
267 read_lock(&dev_priv->resource_lock);
268 res = idr_find(idr, id);
269 if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270 res = NULL;
271
272 read_unlock(&dev_priv->resource_lock);
273
274 if (unlikely(res == NULL))
275 return NULL;
276
277 return res;
278 }
279
280 /**
281 * vmw_user_resource_lookup_handle - lookup a struct resource from a
282 * TTM user-space handle and perform basic type checks
283 *
284 * @dev_priv: Pointer to a device private struct
285 * @tfile: Pointer to a struct ttm_object_file identifying the caller
286 * @handle: The TTM user-space handle
287 * @converter: Pointer to an object describing the resource type
288 * @p_res: On successful return the location pointed to will contain
289 * a pointer to a refcounted struct vmw_resource.
290 *
291 * If the handle can't be found or is associated with an incorrect resource
292 * type, -EINVAL will be returned.
293 */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 const struct vmw_user_resource_conv
298 *converter,
299 struct vmw_resource **p_res)
300 {
301 struct ttm_base_object *base;
302 struct vmw_resource *res;
303 int ret = -EINVAL;
304
305 base = ttm_base_object_lookup(tfile, handle);
306 if (unlikely(base == NULL))
307 return -EINVAL;
308
309 if (unlikely(ttm_base_object_type(base) != converter->object_type))
310 goto out_bad_resource;
311
312 res = converter->base_obj_to_res(base);
313
314 read_lock(&dev_priv->resource_lock);
315 if (!res->avail || res->res_free != converter->res_free) {
316 read_unlock(&dev_priv->resource_lock);
317 goto out_bad_resource;
318 }
319
320 kref_get(&res->kref);
321 read_unlock(&dev_priv->resource_lock);
322
323 *p_res = res;
324 ret = 0;
325
326 out_bad_resource:
327 ttm_base_object_unref(&base);
328
329 return ret;
330 }
331
332 /**
333 * Helper function that looks either a surface or dmabuf.
334 *
335 * The pointer this pointed at by out_surf and out_buf needs to be null.
336 */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338 struct ttm_object_file *tfile,
339 uint32_t handle,
340 struct vmw_surface **out_surf,
341 struct vmw_dma_buffer **out_buf)
342 {
343 struct vmw_resource *res;
344 int ret;
345
346 BUG_ON(*out_surf || *out_buf);
347
348 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349 user_surface_converter,
350 &res);
351 if (!ret) {
352 *out_surf = vmw_res_to_srf(res);
353 return 0;
354 }
355
356 *out_surf = NULL;
357 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358 return ret;
359 }
360
361 /**
362 * Buffer management.
363 */
364
365 /**
366 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367 *
368 * @dev_priv: Pointer to a struct vmw_private identifying the device.
369 * @size: The requested buffer size.
370 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371 */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373 bool user)
374 {
375 static size_t struct_size, user_struct_size;
376 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378
379 if (unlikely(struct_size == 0)) {
380 size_t backend_size = ttm_round_pot(vmw_tt_size);
381
382 struct_size = backend_size +
383 ttm_round_pot(sizeof(struct vmw_dma_buffer));
384 user_struct_size = backend_size +
385 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386 }
387
388 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389 page_array_size +=
390 ttm_round_pot(num_pages * sizeof(dma_addr_t));
391
392 return ((user) ? user_struct_size : struct_size) +
393 page_array_size;
394 }
395
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399
400 kfree(vmw_bo);
401 }
402
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406
407 ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411 struct vmw_dma_buffer *vmw_bo,
412 size_t size, struct ttm_placement *placement,
413 bool interruptible,
414 void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416 struct ttm_bo_device *bdev = &dev_priv->bdev;
417 size_t acc_size;
418 int ret;
419 bool user = (bo_free == &vmw_user_dmabuf_destroy);
420
421 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422
423 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424 memset(vmw_bo, 0, sizeof(*vmw_bo));
425
426 INIT_LIST_HEAD(&vmw_bo->res_list);
427
428 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429 ttm_bo_type_device, placement,
430 0, interruptible,
431 NULL, acc_size, NULL, NULL, bo_free);
432 return ret;
433 }
434
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437 struct vmw_user_dma_buffer *vmw_user_bo;
438 struct ttm_base_object *base = *p_base;
439 struct ttm_buffer_object *bo;
440
441 *p_base = NULL;
442
443 if (unlikely(base == NULL))
444 return;
445
446 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447 prime.base);
448 bo = &vmw_user_bo->dma.base;
449 ttm_bo_unref(&bo);
450 }
451
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453 enum ttm_ref_type ref_type)
454 {
455 struct vmw_user_dma_buffer *user_bo;
456 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457
458 switch (ref_type) {
459 case TTM_REF_SYNCCPU_WRITE:
460 ttm_bo_synccpu_write_release(&user_bo->dma.base);
461 break;
462 default:
463 BUG();
464 }
465 }
466
467 /**
468 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469 *
470 * @dev_priv: Pointer to a struct device private.
471 * @tfile: Pointer to a struct ttm_object_file on which to register the user
472 * object.
473 * @size: Size of the dma buffer.
474 * @shareable: Boolean whether the buffer is shareable with other open files.
475 * @handle: Pointer to where the handle value should be assigned.
476 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477 * should be assigned.
478 */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480 struct ttm_object_file *tfile,
481 uint32_t size,
482 bool shareable,
483 uint32_t *handle,
484 struct vmw_dma_buffer **p_dma_buf,
485 struct ttm_base_object **p_base)
486 {
487 struct vmw_user_dma_buffer *user_bo;
488 struct ttm_buffer_object *tmp;
489 int ret;
490
491 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492 if (unlikely(user_bo == NULL)) {
493 DRM_ERROR("Failed to allocate a buffer.\n");
494 return -ENOMEM;
495 }
496
497 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498 (dev_priv->has_mob) ?
499 &vmw_sys_placement :
500 &vmw_vram_sys_placement, true,
501 &vmw_user_dmabuf_destroy);
502 if (unlikely(ret != 0))
503 return ret;
504
505 tmp = ttm_bo_reference(&user_bo->dma.base);
506 ret = ttm_prime_object_init(tfile,
507 size,
508 &user_bo->prime,
509 shareable,
510 ttm_buffer_type,
511 &vmw_user_dmabuf_release,
512 &vmw_user_dmabuf_ref_obj_release);
513 if (unlikely(ret != 0)) {
514 ttm_bo_unref(&tmp);
515 goto out_no_base_object;
516 }
517
518 *p_dma_buf = &user_bo->dma;
519 if (p_base) {
520 *p_base = &user_bo->prime.base;
521 kref_get(&(*p_base)->refcount);
522 }
523 *handle = user_bo->prime.base.hash.key;
524
525 out_no_base_object:
526 return ret;
527 }
528
529 /**
530 * vmw_user_dmabuf_verify_access - verify access permissions on this
531 * buffer object.
532 *
533 * @bo: Pointer to the buffer object being accessed
534 * @tfile: Identifying the caller.
535 */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537 struct ttm_object_file *tfile)
538 {
539 struct vmw_user_dma_buffer *vmw_user_bo;
540
541 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542 return -EPERM;
543
544 vmw_user_bo = vmw_user_dma_buffer(bo);
545
546 /* Check that the caller has opened the object. */
547 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548 return 0;
549
550 DRM_ERROR("Could not grant buffer access.\n");
551 return -EPERM;
552 }
553
554 /**
555 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556 * access, idling previous GPU operations on the buffer and optionally
557 * blocking it for further command submissions.
558 *
559 * @user_bo: Pointer to the buffer object being grabbed for CPU access
560 * @tfile: Identifying the caller.
561 * @flags: Flags indicating how the grab should be performed.
562 *
563 * A blocking grab will be automatically released when @tfile is closed.
564 */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566 struct ttm_object_file *tfile,
567 uint32_t flags)
568 {
569 struct ttm_buffer_object *bo = &user_bo->dma.base;
570 bool existed;
571 int ret;
572
573 if (flags & drm_vmw_synccpu_allow_cs) {
574 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575 long lret;
576
577 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
578 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
579 if (!lret)
580 return -EBUSY;
581 else if (lret < 0)
582 return lret;
583 return 0;
584 }
585
586 ret = ttm_bo_synccpu_write_grab
587 (bo, !!(flags & drm_vmw_synccpu_dontblock));
588 if (unlikely(ret != 0))
589 return ret;
590
591 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
592 TTM_REF_SYNCCPU_WRITE, &existed);
593 if (ret != 0 || existed)
594 ttm_bo_synccpu_write_release(&user_bo->dma.base);
595
596 return ret;
597 }
598
599 /**
600 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
601 * and unblock command submission on the buffer if blocked.
602 *
603 * @handle: Handle identifying the buffer object.
604 * @tfile: Identifying the caller.
605 * @flags: Flags indicating the type of release.
606 */
607 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
608 struct ttm_object_file *tfile,
609 uint32_t flags)
610 {
611 if (!(flags & drm_vmw_synccpu_allow_cs))
612 return ttm_ref_object_base_unref(tfile, handle,
613 TTM_REF_SYNCCPU_WRITE);
614
615 return 0;
616 }
617
618 /**
619 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
620 * functionality.
621 *
622 * @dev: Identifies the drm device.
623 * @data: Pointer to the ioctl argument.
624 * @file_priv: Identifies the caller.
625 *
626 * This function checks the ioctl arguments for validity and calls the
627 * relevant synccpu functions.
628 */
629 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
630 struct drm_file *file_priv)
631 {
632 struct drm_vmw_synccpu_arg *arg =
633 (struct drm_vmw_synccpu_arg *) data;
634 struct vmw_dma_buffer *dma_buf;
635 struct vmw_user_dma_buffer *user_bo;
636 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
637 struct ttm_base_object *buffer_base;
638 int ret;
639
640 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
641 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
642 drm_vmw_synccpu_dontblock |
643 drm_vmw_synccpu_allow_cs)) != 0) {
644 DRM_ERROR("Illegal synccpu flags.\n");
645 return -EINVAL;
646 }
647
648 switch (arg->op) {
649 case drm_vmw_synccpu_grab:
650 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
651 &buffer_base);
652 if (unlikely(ret != 0))
653 return ret;
654
655 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
656 dma);
657 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
658 vmw_dmabuf_unreference(&dma_buf);
659 ttm_base_object_unref(&buffer_base);
660 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
661 ret != -EBUSY)) {
662 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
663 (unsigned int) arg->handle);
664 return ret;
665 }
666 break;
667 case drm_vmw_synccpu_release:
668 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
669 arg->flags);
670 if (unlikely(ret != 0)) {
671 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
672 (unsigned int) arg->handle);
673 return ret;
674 }
675 break;
676 default:
677 DRM_ERROR("Invalid synccpu operation.\n");
678 return -EINVAL;
679 }
680
681 return 0;
682 }
683
684 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file_priv)
686 {
687 struct vmw_private *dev_priv = vmw_priv(dev);
688 union drm_vmw_alloc_dmabuf_arg *arg =
689 (union drm_vmw_alloc_dmabuf_arg *)data;
690 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
691 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
692 struct vmw_dma_buffer *dma_buf;
693 uint32_t handle;
694 int ret;
695
696 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
697 if (unlikely(ret != 0))
698 return ret;
699
700 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
701 req->size, false, &handle, &dma_buf,
702 NULL);
703 if (unlikely(ret != 0))
704 goto out_no_dmabuf;
705
706 rep->handle = handle;
707 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
708 rep->cur_gmr_id = handle;
709 rep->cur_gmr_offset = 0;
710
711 vmw_dmabuf_unreference(&dma_buf);
712
713 out_no_dmabuf:
714 ttm_read_unlock(&dev_priv->reservation_sem);
715
716 return ret;
717 }
718
719 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
720 struct drm_file *file_priv)
721 {
722 struct drm_vmw_unref_dmabuf_arg *arg =
723 (struct drm_vmw_unref_dmabuf_arg *)data;
724
725 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
726 arg->handle,
727 TTM_REF_USAGE);
728 }
729
730 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
731 uint32_t handle, struct vmw_dma_buffer **out,
732 struct ttm_base_object **p_base)
733 {
734 struct vmw_user_dma_buffer *vmw_user_bo;
735 struct ttm_base_object *base;
736
737 base = ttm_base_object_lookup(tfile, handle);
738 if (unlikely(base == NULL)) {
739 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
740 (unsigned long)handle);
741 return -ESRCH;
742 }
743
744 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
745 ttm_base_object_unref(&base);
746 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
747 (unsigned long)handle);
748 return -EINVAL;
749 }
750
751 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
752 prime.base);
753 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
754 if (p_base)
755 *p_base = base;
756 else
757 ttm_base_object_unref(&base);
758 *out = &vmw_user_bo->dma;
759
760 return 0;
761 }
762
763 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
764 struct vmw_dma_buffer *dma_buf,
765 uint32_t *handle)
766 {
767 struct vmw_user_dma_buffer *user_bo;
768
769 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
770 return -EINVAL;
771
772 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
773
774 *handle = user_bo->prime.base.hash.key;
775 return ttm_ref_object_add(tfile, &user_bo->prime.base,
776 TTM_REF_USAGE, NULL);
777 }
778
779 /*
780 * Stream management
781 */
782
783 static void vmw_stream_destroy(struct vmw_resource *res)
784 {
785 struct vmw_private *dev_priv = res->dev_priv;
786 struct vmw_stream *stream;
787 int ret;
788
789 DRM_INFO("%s: unref\n", __func__);
790 stream = container_of(res, struct vmw_stream, res);
791
792 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
793 WARN_ON(ret != 0);
794 }
795
796 static int vmw_stream_init(struct vmw_private *dev_priv,
797 struct vmw_stream *stream,
798 void (*res_free) (struct vmw_resource *res))
799 {
800 struct vmw_resource *res = &stream->res;
801 int ret;
802
803 ret = vmw_resource_init(dev_priv, res, false, res_free,
804 &vmw_stream_func);
805
806 if (unlikely(ret != 0)) {
807 if (res_free == NULL)
808 kfree(stream);
809 else
810 res_free(&stream->res);
811 return ret;
812 }
813
814 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
815 if (ret) {
816 vmw_resource_unreference(&res);
817 return ret;
818 }
819
820 DRM_INFO("%s: claimed\n", __func__);
821
822 vmw_resource_activate(&stream->res, vmw_stream_destroy);
823 return 0;
824 }
825
826 static void vmw_user_stream_free(struct vmw_resource *res)
827 {
828 struct vmw_user_stream *stream =
829 container_of(res, struct vmw_user_stream, stream.res);
830 struct vmw_private *dev_priv = res->dev_priv;
831
832 ttm_base_object_kfree(stream, base);
833 ttm_mem_global_free(vmw_mem_glob(dev_priv),
834 vmw_user_stream_size);
835 }
836
837 /**
838 * This function is called when user space has no more references on the
839 * base object. It releases the base-object's reference on the resource object.
840 */
841
842 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
843 {
844 struct ttm_base_object *base = *p_base;
845 struct vmw_user_stream *stream =
846 container_of(base, struct vmw_user_stream, base);
847 struct vmw_resource *res = &stream->stream.res;
848
849 *p_base = NULL;
850 vmw_resource_unreference(&res);
851 }
852
853 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
854 struct drm_file *file_priv)
855 {
856 struct vmw_private *dev_priv = vmw_priv(dev);
857 struct vmw_resource *res;
858 struct vmw_user_stream *stream;
859 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
860 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
861 struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
862 int ret = 0;
863
864
865 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
866 if (unlikely(res == NULL))
867 return -EINVAL;
868
869 if (res->res_free != &vmw_user_stream_free) {
870 ret = -EINVAL;
871 goto out;
872 }
873
874 stream = container_of(res, struct vmw_user_stream, stream.res);
875 if (stream->base.tfile != tfile) {
876 ret = -EINVAL;
877 goto out;
878 }
879
880 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
881 out:
882 vmw_resource_unreference(&res);
883 return ret;
884 }
885
886 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
887 struct drm_file *file_priv)
888 {
889 struct vmw_private *dev_priv = vmw_priv(dev);
890 struct vmw_user_stream *stream;
891 struct vmw_resource *res;
892 struct vmw_resource *tmp;
893 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
894 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
895 int ret;
896
897 /*
898 * Approximate idr memory usage with 128 bytes. It will be limited
899 * by maximum number_of streams anyway?
900 */
901
902 if (unlikely(vmw_user_stream_size == 0))
903 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
904
905 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
906 if (unlikely(ret != 0))
907 return ret;
908
909 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
910 vmw_user_stream_size,
911 false, true);
912 ttm_read_unlock(&dev_priv->reservation_sem);
913 if (unlikely(ret != 0)) {
914 if (ret != -ERESTARTSYS)
915 DRM_ERROR("Out of graphics memory for stream"
916 " creation.\n");
917
918 goto out_ret;
919 }
920
921 stream = kmalloc(sizeof(*stream), GFP_KERNEL);
922 if (unlikely(stream == NULL)) {
923 ttm_mem_global_free(vmw_mem_glob(dev_priv),
924 vmw_user_stream_size);
925 ret = -ENOMEM;
926 goto out_ret;
927 }
928
929 res = &stream->stream.res;
930 stream->base.shareable = false;
931 stream->base.tfile = NULL;
932
933 /*
934 * From here on, the destructor takes over resource freeing.
935 */
936
937 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
938 if (unlikely(ret != 0))
939 goto out_ret;
940
941 tmp = vmw_resource_reference(res);
942 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
943 &vmw_user_stream_base_release, NULL);
944
945 if (unlikely(ret != 0)) {
946 vmw_resource_unreference(&tmp);
947 goto out_err;
948 }
949
950 arg->stream_id = res->id;
951 out_err:
952 vmw_resource_unreference(&res);
953 out_ret:
954 return ret;
955 }
956
957 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
958 struct ttm_object_file *tfile,
959 uint32_t *inout_id, struct vmw_resource **out)
960 {
961 struct vmw_user_stream *stream;
962 struct vmw_resource *res;
963 int ret;
964
965 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
966 *inout_id);
967 if (unlikely(res == NULL))
968 return -EINVAL;
969
970 if (res->res_free != &vmw_user_stream_free) {
971 ret = -EINVAL;
972 goto err_ref;
973 }
974
975 stream = container_of(res, struct vmw_user_stream, stream.res);
976 if (stream->base.tfile != tfile) {
977 ret = -EPERM;
978 goto err_ref;
979 }
980
981 *inout_id = stream->stream.stream_id;
982 *out = res;
983 return 0;
984 err_ref:
985 vmw_resource_unreference(&res);
986 return ret;
987 }
988
989
990 /**
991 * vmw_dumb_create - Create a dumb kms buffer
992 *
993 * @file_priv: Pointer to a struct drm_file identifying the caller.
994 * @dev: Pointer to the drm device.
995 * @args: Pointer to a struct drm_mode_create_dumb structure
996 *
997 * This is a driver callback for the core drm create_dumb functionality.
998 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
999 * that the arguments have a different format.
1000 */
1001 int vmw_dumb_create(struct drm_file *file_priv,
1002 struct drm_device *dev,
1003 struct drm_mode_create_dumb *args)
1004 {
1005 struct vmw_private *dev_priv = vmw_priv(dev);
1006 struct vmw_dma_buffer *dma_buf;
1007 int ret;
1008
1009 args->pitch = args->width * ((args->bpp + 7) / 8);
1010 args->size = args->pitch * args->height;
1011
1012 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1013 if (unlikely(ret != 0))
1014 return ret;
1015
1016 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1017 args->size, false, &args->handle,
1018 &dma_buf, NULL);
1019 if (unlikely(ret != 0))
1020 goto out_no_dmabuf;
1021
1022 vmw_dmabuf_unreference(&dma_buf);
1023 out_no_dmabuf:
1024 ttm_read_unlock(&dev_priv->reservation_sem);
1025 return ret;
1026 }
1027
1028 /**
1029 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1030 *
1031 * @file_priv: Pointer to a struct drm_file identifying the caller.
1032 * @dev: Pointer to the drm device.
1033 * @handle: Handle identifying the dumb buffer.
1034 * @offset: The address space offset returned.
1035 *
1036 * This is a driver callback for the core drm dumb_map_offset functionality.
1037 */
1038 int vmw_dumb_map_offset(struct drm_file *file_priv,
1039 struct drm_device *dev, uint32_t handle,
1040 uint64_t *offset)
1041 {
1042 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1043 struct vmw_dma_buffer *out_buf;
1044 int ret;
1045
1046 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1047 if (ret != 0)
1048 return -EINVAL;
1049
1050 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1051 vmw_dmabuf_unreference(&out_buf);
1052 return 0;
1053 }
1054
1055 /**
1056 * vmw_dumb_destroy - Destroy a dumb boffer
1057 *
1058 * @file_priv: Pointer to a struct drm_file identifying the caller.
1059 * @dev: Pointer to the drm device.
1060 * @handle: Handle identifying the dumb buffer.
1061 *
1062 * This is a driver callback for the core drm dumb_destroy functionality.
1063 */
1064 int vmw_dumb_destroy(struct drm_file *file_priv,
1065 struct drm_device *dev,
1066 uint32_t handle)
1067 {
1068 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1069 handle, TTM_REF_USAGE);
1070 }
1071
1072 /**
1073 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1074 *
1075 * @res: The resource for which to allocate a backup buffer.
1076 * @interruptible: Whether any sleeps during allocation should be
1077 * performed while interruptible.
1078 */
1079 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1080 bool interruptible)
1081 {
1082 unsigned long size =
1083 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1084 struct vmw_dma_buffer *backup;
1085 int ret;
1086
1087 if (likely(res->backup)) {
1088 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1089 return 0;
1090 }
1091
1092 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1093 if (unlikely(backup == NULL))
1094 return -ENOMEM;
1095
1096 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1097 res->func->backup_placement,
1098 interruptible,
1099 &vmw_dmabuf_bo_free);
1100 if (unlikely(ret != 0))
1101 goto out_no_dmabuf;
1102
1103 res->backup = backup;
1104
1105 out_no_dmabuf:
1106 return ret;
1107 }
1108
1109 /**
1110 * vmw_resource_do_validate - Make a resource up-to-date and visible
1111 * to the device.
1112 *
1113 * @res: The resource to make visible to the device.
1114 * @val_buf: Information about a buffer possibly
1115 * containing backup data if a bind operation is needed.
1116 *
1117 * On hardware resource shortage, this function returns -EBUSY and
1118 * should be retried once resources have been freed up.
1119 */
1120 static int vmw_resource_do_validate(struct vmw_resource *res,
1121 struct ttm_validate_buffer *val_buf)
1122 {
1123 int ret = 0;
1124 const struct vmw_res_func *func = res->func;
1125
1126 if (unlikely(res->id == -1)) {
1127 ret = func->create(res);
1128 if (unlikely(ret != 0))
1129 return ret;
1130 }
1131
1132 if (func->bind &&
1133 ((func->needs_backup && list_empty(&res->mob_head) &&
1134 val_buf->bo != NULL) ||
1135 (!func->needs_backup && val_buf->bo != NULL))) {
1136 ret = func->bind(res, val_buf);
1137 if (unlikely(ret != 0))
1138 goto out_bind_failed;
1139 if (func->needs_backup)
1140 list_add_tail(&res->mob_head, &res->backup->res_list);
1141 }
1142
1143 /*
1144 * Only do this on write operations, and move to
1145 * vmw_resource_unreserve if it can be called after
1146 * backup buffers have been unreserved. Otherwise
1147 * sort out locking.
1148 */
1149 res->res_dirty = true;
1150
1151 return 0;
1152
1153 out_bind_failed:
1154 func->destroy(res);
1155
1156 return ret;
1157 }
1158
1159 /**
1160 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1161 * command submission.
1162 *
1163 * @res: Pointer to the struct vmw_resource to unreserve.
1164 * @switch_backup: Backup buffer has been switched.
1165 * @new_backup: Pointer to new backup buffer if command submission
1166 * switched. May be NULL.
1167 * @new_backup_offset: New backup offset if @switch_backup is true.
1168 *
1169 * Currently unreserving a resource means putting it back on the device's
1170 * resource lru list, so that it can be evicted if necessary.
1171 */
1172 void vmw_resource_unreserve(struct vmw_resource *res,
1173 bool switch_backup,
1174 struct vmw_dma_buffer *new_backup,
1175 unsigned long new_backup_offset)
1176 {
1177 struct vmw_private *dev_priv = res->dev_priv;
1178
1179 if (!list_empty(&res->lru_head))
1180 return;
1181
1182 if (switch_backup && new_backup != res->backup) {
1183 if (res->backup) {
1184 lockdep_assert_held(&res->backup->base.resv->lock.base);
1185 list_del_init(&res->mob_head);
1186 vmw_dmabuf_unreference(&res->backup);
1187 }
1188
1189 if (new_backup) {
1190 res->backup = vmw_dmabuf_reference(new_backup);
1191 lockdep_assert_held(&new_backup->base.resv->lock.base);
1192 list_add_tail(&res->mob_head, &new_backup->res_list);
1193 } else {
1194 res->backup = NULL;
1195 }
1196 }
1197 if (switch_backup)
1198 res->backup_offset = new_backup_offset;
1199
1200 if (!res->func->may_evict || res->id == -1 || res->pin_count)
1201 return;
1202
1203 write_lock(&dev_priv->resource_lock);
1204 list_add_tail(&res->lru_head,
1205 &res->dev_priv->res_lru[res->func->res_type]);
1206 write_unlock(&dev_priv->resource_lock);
1207 }
1208
1209 /**
1210 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1211 * for a resource and in that case, allocate
1212 * one, reserve and validate it.
1213 *
1214 * @res: The resource for which to allocate a backup buffer.
1215 * @interruptible: Whether any sleeps during allocation should be
1216 * performed while interruptible.
1217 * @val_buf: On successful return contains data about the
1218 * reserved and validated backup buffer.
1219 */
1220 static int
1221 vmw_resource_check_buffer(struct vmw_resource *res,
1222 bool interruptible,
1223 struct ttm_validate_buffer *val_buf)
1224 {
1225 struct list_head val_list;
1226 bool backup_dirty = false;
1227 int ret;
1228
1229 if (unlikely(res->backup == NULL)) {
1230 ret = vmw_resource_buf_alloc(res, interruptible);
1231 if (unlikely(ret != 0))
1232 return ret;
1233 }
1234
1235 INIT_LIST_HEAD(&val_list);
1236 val_buf->bo = ttm_bo_reference(&res->backup->base);
1237 val_buf->shared = false;
1238 list_add_tail(&val_buf->head, &val_list);
1239 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1240 if (unlikely(ret != 0))
1241 goto out_no_reserve;
1242
1243 if (res->func->needs_backup && list_empty(&res->mob_head))
1244 return 0;
1245
1246 backup_dirty = res->backup_dirty;
1247 ret = ttm_bo_validate(&res->backup->base,
1248 res->func->backup_placement,
1249 true, false);
1250
1251 if (unlikely(ret != 0))
1252 goto out_no_validate;
1253
1254 return 0;
1255
1256 out_no_validate:
1257 ttm_eu_backoff_reservation(NULL, &val_list);
1258 out_no_reserve:
1259 ttm_bo_unref(&val_buf->bo);
1260 if (backup_dirty)
1261 vmw_dmabuf_unreference(&res->backup);
1262
1263 return ret;
1264 }
1265
1266 /**
1267 * vmw_resource_reserve - Reserve a resource for command submission
1268 *
1269 * @res: The resource to reserve.
1270 *
1271 * This function takes the resource off the LRU list and make sure
1272 * a backup buffer is present for guest-backed resources. However,
1273 * the buffer may not be bound to the resource at this point.
1274 *
1275 */
1276 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1277 bool no_backup)
1278 {
1279 struct vmw_private *dev_priv = res->dev_priv;
1280 int ret;
1281
1282 write_lock(&dev_priv->resource_lock);
1283 list_del_init(&res->lru_head);
1284 write_unlock(&dev_priv->resource_lock);
1285
1286 if (res->func->needs_backup && res->backup == NULL &&
1287 !no_backup) {
1288 ret = vmw_resource_buf_alloc(res, interruptible);
1289 if (unlikely(ret != 0)) {
1290 DRM_ERROR("Failed to allocate a backup buffer "
1291 "of size %lu. bytes\n",
1292 (unsigned long) res->backup_size);
1293 return ret;
1294 }
1295 }
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * vmw_resource_backoff_reservation - Unreserve and unreference a
1302 * backup buffer
1303 *.
1304 * @val_buf: Backup buffer information.
1305 */
1306 static void
1307 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1308 {
1309 struct list_head val_list;
1310
1311 if (likely(val_buf->bo == NULL))
1312 return;
1313
1314 INIT_LIST_HEAD(&val_list);
1315 list_add_tail(&val_buf->head, &val_list);
1316 ttm_eu_backoff_reservation(NULL, &val_list);
1317 ttm_bo_unref(&val_buf->bo);
1318 }
1319
1320 /**
1321 * vmw_resource_do_evict - Evict a resource, and transfer its data
1322 * to a backup buffer.
1323 *
1324 * @res: The resource to evict.
1325 * @interruptible: Whether to wait interruptible.
1326 */
1327 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1328 {
1329 struct ttm_validate_buffer val_buf;
1330 const struct vmw_res_func *func = res->func;
1331 int ret;
1332
1333 BUG_ON(!func->may_evict);
1334
1335 val_buf.bo = NULL;
1336 val_buf.shared = false;
1337 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1338 if (unlikely(ret != 0))
1339 return ret;
1340
1341 if (unlikely(func->unbind != NULL &&
1342 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1343 ret = func->unbind(res, res->res_dirty, &val_buf);
1344 if (unlikely(ret != 0))
1345 goto out_no_unbind;
1346 list_del_init(&res->mob_head);
1347 }
1348 ret = func->destroy(res);
1349 res->backup_dirty = true;
1350 res->res_dirty = false;
1351 out_no_unbind:
1352 vmw_resource_backoff_reservation(&val_buf);
1353
1354 return ret;
1355 }
1356
1357
1358 /**
1359 * vmw_resource_validate - Make a resource up-to-date and visible
1360 * to the device.
1361 *
1362 * @res: The resource to make visible to the device.
1363 *
1364 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1365 * be reserved and validated.
1366 * On hardware resource shortage, this function will repeatedly evict
1367 * resources of the same type until the validation succeeds.
1368 */
1369 int vmw_resource_validate(struct vmw_resource *res)
1370 {
1371 int ret;
1372 struct vmw_resource *evict_res;
1373 struct vmw_private *dev_priv = res->dev_priv;
1374 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1375 struct ttm_validate_buffer val_buf;
1376 unsigned err_count = 0;
1377
1378 if (!res->func->create)
1379 return 0;
1380
1381 val_buf.bo = NULL;
1382 val_buf.shared = false;
1383 if (res->backup)
1384 val_buf.bo = &res->backup->base;
1385 do {
1386 ret = vmw_resource_do_validate(res, &val_buf);
1387 if (likely(ret != -EBUSY))
1388 break;
1389
1390 write_lock(&dev_priv->resource_lock);
1391 if (list_empty(lru_list) || !res->func->may_evict) {
1392 DRM_ERROR("Out of device device resources "
1393 "for %s.\n", res->func->type_name);
1394 ret = -EBUSY;
1395 write_unlock(&dev_priv->resource_lock);
1396 break;
1397 }
1398
1399 evict_res = vmw_resource_reference
1400 (list_first_entry(lru_list, struct vmw_resource,
1401 lru_head));
1402 list_del_init(&evict_res->lru_head);
1403
1404 write_unlock(&dev_priv->resource_lock);
1405
1406 ret = vmw_resource_do_evict(evict_res, true);
1407 if (unlikely(ret != 0)) {
1408 write_lock(&dev_priv->resource_lock);
1409 list_add_tail(&evict_res->lru_head, lru_list);
1410 write_unlock(&dev_priv->resource_lock);
1411 if (ret == -ERESTARTSYS ||
1412 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1413 vmw_resource_unreference(&evict_res);
1414 goto out_no_validate;
1415 }
1416 }
1417
1418 vmw_resource_unreference(&evict_res);
1419 } while (1);
1420
1421 if (unlikely(ret != 0))
1422 goto out_no_validate;
1423 else if (!res->func->needs_backup && res->backup) {
1424 list_del_init(&res->mob_head);
1425 vmw_dmabuf_unreference(&res->backup);
1426 }
1427
1428 return 0;
1429
1430 out_no_validate:
1431 return ret;
1432 }
1433
1434 /**
1435 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1436 * object without unreserving it.
1437 *
1438 * @bo: Pointer to the struct ttm_buffer_object to fence.
1439 * @fence: Pointer to the fence. If NULL, this function will
1440 * insert a fence into the command stream..
1441 *
1442 * Contrary to the ttm_eu version of this function, it takes only
1443 * a single buffer object instead of a list, and it also doesn't
1444 * unreserve the buffer object, which needs to be done separately.
1445 */
1446 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1447 struct vmw_fence_obj *fence)
1448 {
1449 struct ttm_bo_device *bdev = bo->bdev;
1450
1451 struct vmw_private *dev_priv =
1452 container_of(bdev, struct vmw_private, bdev);
1453
1454 if (fence == NULL) {
1455 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1456 reservation_object_add_excl_fence(bo->resv, &fence->base);
1457 dma_fence_put(&fence->base);
1458 } else
1459 reservation_object_add_excl_fence(bo->resv, &fence->base);
1460 }
1461
1462 /**
1463 * vmw_resource_move_notify - TTM move_notify_callback
1464 *
1465 * @bo: The TTM buffer object about to move.
1466 * @mem: The struct ttm_mem_reg indicating to what memory
1467 * region the move is taking place.
1468 *
1469 * Evicts the Guest Backed hardware resource if the backup
1470 * buffer is being moved out of MOB memory.
1471 * Note that this function should not race with the resource
1472 * validation code as long as it accesses only members of struct
1473 * resource that remain static while bo::res is !NULL and
1474 * while we have @bo reserved. struct resource::backup is *not* a
1475 * static member. The resource validation code will take care
1476 * to set @bo::res to NULL, while having @bo reserved when the
1477 * buffer is no longer bound to the resource, so @bo:res can be
1478 * used to determine whether there is a need to unbind and whether
1479 * it is safe to unbind.
1480 */
1481 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1482 struct ttm_mem_reg *mem)
1483 {
1484 struct vmw_dma_buffer *dma_buf;
1485
1486 if (mem == NULL)
1487 return;
1488
1489 if (bo->destroy != vmw_dmabuf_bo_free &&
1490 bo->destroy != vmw_user_dmabuf_destroy)
1491 return;
1492
1493 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1494
1495 if (mem->mem_type != VMW_PL_MOB) {
1496 struct vmw_resource *res, *n;
1497 struct ttm_validate_buffer val_buf;
1498
1499 val_buf.bo = bo;
1500 val_buf.shared = false;
1501
1502 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1503
1504 if (unlikely(res->func->unbind == NULL))
1505 continue;
1506
1507 (void) res->func->unbind(res, true, &val_buf);
1508 res->backup_dirty = true;
1509 res->res_dirty = false;
1510 list_del_init(&res->mob_head);
1511 }
1512
1513 (void) ttm_bo_wait(bo, false, false);
1514 }
1515 }
1516
1517
1518
1519 /**
1520 * vmw_query_readback_all - Read back cached query states
1521 *
1522 * @dx_query_mob: Buffer containing the DX query MOB
1523 *
1524 * Read back cached states from the device if they exist. This function
1525 * assumings binding_mutex is held.
1526 */
1527 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1528 {
1529 struct vmw_resource *dx_query_ctx;
1530 struct vmw_private *dev_priv;
1531 struct {
1532 SVGA3dCmdHeader header;
1533 SVGA3dCmdDXReadbackAllQuery body;
1534 } *cmd;
1535
1536
1537 /* No query bound, so do nothing */
1538 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1539 return 0;
1540
1541 dx_query_ctx = dx_query_mob->dx_query_ctx;
1542 dev_priv = dx_query_ctx->dev_priv;
1543
1544 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1545 if (unlikely(cmd == NULL)) {
1546 DRM_ERROR("Failed reserving FIFO space for "
1547 "query MOB read back.\n");
1548 return -ENOMEM;
1549 }
1550
1551 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1552 cmd->header.size = sizeof(cmd->body);
1553 cmd->body.cid = dx_query_ctx->id;
1554
1555 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1556
1557 /* Triggers a rebind the next time affected context is bound */
1558 dx_query_mob->dx_query_ctx = NULL;
1559
1560 return 0;
1561 }
1562
1563
1564
1565 /**
1566 * vmw_query_move_notify - Read back cached query states
1567 *
1568 * @bo: The TTM buffer object about to move.
1569 * @mem: The memory region @bo is moving to.
1570 *
1571 * Called before the query MOB is swapped out to read back cached query
1572 * states from the device.
1573 */
1574 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1575 struct ttm_mem_reg *mem)
1576 {
1577 struct vmw_dma_buffer *dx_query_mob;
1578 struct ttm_bo_device *bdev = bo->bdev;
1579 struct vmw_private *dev_priv;
1580
1581
1582 dev_priv = container_of(bdev, struct vmw_private, bdev);
1583
1584 mutex_lock(&dev_priv->binding_mutex);
1585
1586 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1587 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1588 mutex_unlock(&dev_priv->binding_mutex);
1589 return;
1590 }
1591
1592 /* If BO is being moved from MOB to system memory */
1593 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1594 struct vmw_fence_obj *fence;
1595
1596 (void) vmw_query_readback_all(dx_query_mob);
1597 mutex_unlock(&dev_priv->binding_mutex);
1598
1599 /* Create a fence and attach the BO to it */
1600 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1601 vmw_fence_single_bo(bo, fence);
1602
1603 if (fence != NULL)
1604 vmw_fence_obj_unreference(&fence);
1605
1606 (void) ttm_bo_wait(bo, false, false);
1607 } else
1608 mutex_unlock(&dev_priv->binding_mutex);
1609
1610 }
1611
1612 /**
1613 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1614 *
1615 * @res: The resource being queried.
1616 */
1617 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1618 {
1619 return res->func->needs_backup;
1620 }
1621
1622 /**
1623 * vmw_resource_evict_type - Evict all resources of a specific type
1624 *
1625 * @dev_priv: Pointer to a device private struct
1626 * @type: The resource type to evict
1627 *
1628 * To avoid thrashing starvation or as part of the hibernation sequence,
1629 * try to evict all evictable resources of a specific type.
1630 */
1631 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1632 enum vmw_res_type type)
1633 {
1634 struct list_head *lru_list = &dev_priv->res_lru[type];
1635 struct vmw_resource *evict_res;
1636 unsigned err_count = 0;
1637 int ret;
1638
1639 do {
1640 write_lock(&dev_priv->resource_lock);
1641
1642 if (list_empty(lru_list))
1643 goto out_unlock;
1644
1645 evict_res = vmw_resource_reference(
1646 list_first_entry(lru_list, struct vmw_resource,
1647 lru_head));
1648 list_del_init(&evict_res->lru_head);
1649 write_unlock(&dev_priv->resource_lock);
1650
1651 ret = vmw_resource_do_evict(evict_res, false);
1652 if (unlikely(ret != 0)) {
1653 write_lock(&dev_priv->resource_lock);
1654 list_add_tail(&evict_res->lru_head, lru_list);
1655 write_unlock(&dev_priv->resource_lock);
1656 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1657 vmw_resource_unreference(&evict_res);
1658 return;
1659 }
1660 }
1661
1662 vmw_resource_unreference(&evict_res);
1663 } while (1);
1664
1665 out_unlock:
1666 write_unlock(&dev_priv->resource_lock);
1667 }
1668
1669 /**
1670 * vmw_resource_evict_all - Evict all evictable resources
1671 *
1672 * @dev_priv: Pointer to a device private struct
1673 *
1674 * To avoid thrashing starvation or as part of the hibernation sequence,
1675 * evict all evictable resources. In particular this means that all
1676 * guest-backed resources that are registered with the device are
1677 * evicted and the OTable becomes clean.
1678 */
1679 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1680 {
1681 enum vmw_res_type type;
1682
1683 mutex_lock(&dev_priv->cmdbuf_mutex);
1684
1685 for (type = 0; type < vmw_res_max; ++type)
1686 vmw_resource_evict_type(dev_priv, type);
1687
1688 mutex_unlock(&dev_priv->cmdbuf_mutex);
1689 }
1690
1691 /**
1692 * vmw_resource_pin - Add a pin reference on a resource
1693 *
1694 * @res: The resource to add a pin reference on
1695 *
1696 * This function adds a pin reference, and if needed validates the resource.
1697 * Having a pin reference means that the resource can never be evicted, and
1698 * its id will never change as long as there is a pin reference.
1699 * This function returns 0 on success and a negative error code on failure.
1700 */
1701 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1702 {
1703 struct vmw_private *dev_priv = res->dev_priv;
1704 int ret;
1705
1706 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1707 mutex_lock(&dev_priv->cmdbuf_mutex);
1708 ret = vmw_resource_reserve(res, interruptible, false);
1709 if (ret)
1710 goto out_no_reserve;
1711
1712 if (res->pin_count == 0) {
1713 struct vmw_dma_buffer *vbo = NULL;
1714
1715 if (res->backup) {
1716 vbo = res->backup;
1717
1718 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1719 if (!vbo->pin_count) {
1720 ret = ttm_bo_validate
1721 (&vbo->base,
1722 res->func->backup_placement,
1723 interruptible, false);
1724 if (ret) {
1725 ttm_bo_unreserve(&vbo->base);
1726 goto out_no_validate;
1727 }
1728 }
1729
1730 /* Do we really need to pin the MOB as well? */
1731 vmw_bo_pin_reserved(vbo, true);
1732 }
1733 ret = vmw_resource_validate(res);
1734 if (vbo)
1735 ttm_bo_unreserve(&vbo->base);
1736 if (ret)
1737 goto out_no_validate;
1738 }
1739 res->pin_count++;
1740
1741 out_no_validate:
1742 vmw_resource_unreserve(res, false, NULL, 0UL);
1743 out_no_reserve:
1744 mutex_unlock(&dev_priv->cmdbuf_mutex);
1745 ttm_write_unlock(&dev_priv->reservation_sem);
1746
1747 return ret;
1748 }
1749
1750 /**
1751 * vmw_resource_unpin - Remove a pin reference from a resource
1752 *
1753 * @res: The resource to remove a pin reference from
1754 *
1755 * Having a pin reference means that the resource can never be evicted, and
1756 * its id will never change as long as there is a pin reference.
1757 */
1758 void vmw_resource_unpin(struct vmw_resource *res)
1759 {
1760 struct vmw_private *dev_priv = res->dev_priv;
1761 int ret;
1762
1763 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1764 mutex_lock(&dev_priv->cmdbuf_mutex);
1765
1766 ret = vmw_resource_reserve(res, false, true);
1767 WARN_ON(ret);
1768
1769 WARN_ON(res->pin_count == 0);
1770 if (--res->pin_count == 0 && res->backup) {
1771 struct vmw_dma_buffer *vbo = res->backup;
1772
1773 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1774 vmw_bo_pin_reserved(vbo, false);
1775 ttm_bo_unreserve(&vbo->base);
1776 }
1777
1778 vmw_resource_unreserve(res, false, NULL, 0UL);
1779
1780 mutex_unlock(&dev_priv->cmdbuf_mutex);
1781 ttm_read_unlock(&dev_priv->reservation_sem);
1782 }
1783
1784 /**
1785 * vmw_res_type - Return the resource type
1786 *
1787 * @res: Pointer to the resource
1788 */
1789 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1790 {
1791 return res->func->res_type;
1792 }