]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35
36 #define VMW_RES_EVICT_ERR_COUNT 10
37
38 struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
41 };
42
43 struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
46 };
47
48 static inline struct vmw_dma_buffer *
49 vmw_dma_buffer(struct ttm_buffer_object *bo)
50 {
51 return container_of(bo, struct vmw_dma_buffer, base);
52 }
53
54 static inline struct vmw_user_dma_buffer *
55 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
56 {
57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
59 }
60
61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
62 {
63 kref_get(&res->kref);
64 return res;
65 }
66
67 struct vmw_resource *
68 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
69 {
70 return kref_get_unless_zero(&res->kref) ? res : NULL;
71 }
72
73 /**
74 * vmw_resource_release_id - release a resource id to the id manager.
75 *
76 * @res: Pointer to the resource.
77 *
78 * Release the resource id to the resource id manager and set it to -1
79 */
80 void vmw_resource_release_id(struct vmw_resource *res)
81 {
82 struct vmw_private *dev_priv = res->dev_priv;
83 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
84
85 write_lock(&dev_priv->resource_lock);
86 if (res->id != -1)
87 idr_remove(idr, res->id);
88 res->id = -1;
89 write_unlock(&dev_priv->resource_lock);
90 }
91
92 static void vmw_resource_release(struct kref *kref)
93 {
94 struct vmw_resource *res =
95 container_of(kref, struct vmw_resource, kref);
96 struct vmw_private *dev_priv = res->dev_priv;
97 int id;
98 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
99
100 write_lock(&dev_priv->resource_lock);
101 res->avail = false;
102 list_del_init(&res->lru_head);
103 write_unlock(&dev_priv->resource_lock);
104 if (res->backup) {
105 struct ttm_buffer_object *bo = &res->backup->base;
106
107 ttm_bo_reserve(bo, false, false, NULL);
108 if (!list_empty(&res->mob_head) &&
109 res->func->unbind != NULL) {
110 struct ttm_validate_buffer val_buf;
111
112 val_buf.bo = bo;
113 val_buf.shared = false;
114 res->func->unbind(res, false, &val_buf);
115 }
116 res->backup_dirty = false;
117 list_del_init(&res->mob_head);
118 ttm_bo_unreserve(bo);
119 vmw_dmabuf_unreference(&res->backup);
120 }
121
122 if (likely(res->hw_destroy != NULL)) {
123 mutex_lock(&dev_priv->binding_mutex);
124 vmw_binding_res_list_kill(&res->binding_head);
125 mutex_unlock(&dev_priv->binding_mutex);
126 res->hw_destroy(res);
127 }
128
129 id = res->id;
130 if (res->res_free != NULL)
131 res->res_free(res);
132 else
133 kfree(res);
134
135 write_lock(&dev_priv->resource_lock);
136 if (id != -1)
137 idr_remove(idr, id);
138 write_unlock(&dev_priv->resource_lock);
139 }
140
141 void vmw_resource_unreference(struct vmw_resource **p_res)
142 {
143 struct vmw_resource *res = *p_res;
144
145 *p_res = NULL;
146 kref_put(&res->kref, vmw_resource_release);
147 }
148
149
150 /**
151 * vmw_resource_alloc_id - release a resource id to the id manager.
152 *
153 * @res: Pointer to the resource.
154 *
155 * Allocate the lowest free resource from the resource manager, and set
156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
157 */
158 int vmw_resource_alloc_id(struct vmw_resource *res)
159 {
160 struct vmw_private *dev_priv = res->dev_priv;
161 int ret;
162 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
163
164 BUG_ON(res->id != -1);
165
166 idr_preload(GFP_KERNEL);
167 write_lock(&dev_priv->resource_lock);
168
169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 if (ret >= 0)
171 res->id = ret;
172
173 write_unlock(&dev_priv->resource_lock);
174 idr_preload_end();
175 return ret < 0 ? ret : 0;
176 }
177
178 /**
179 * vmw_resource_init - initialize a struct vmw_resource
180 *
181 * @dev_priv: Pointer to a device private struct.
182 * @res: The struct vmw_resource to initialize.
183 * @obj_type: Resource object type.
184 * @delay_id: Boolean whether to defer device id allocation until
185 * the first validation.
186 * @res_free: Resource destructor.
187 * @func: Resource function table.
188 */
189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 bool delay_id,
191 void (*res_free) (struct vmw_resource *res),
192 const struct vmw_res_func *func)
193 {
194 kref_init(&res->kref);
195 res->hw_destroy = NULL;
196 res->res_free = res_free;
197 res->avail = false;
198 res->dev_priv = dev_priv;
199 res->func = func;
200 INIT_LIST_HEAD(&res->lru_head);
201 INIT_LIST_HEAD(&res->mob_head);
202 INIT_LIST_HEAD(&res->binding_head);
203 res->id = -1;
204 res->backup = NULL;
205 res->backup_offset = 0;
206 res->backup_dirty = false;
207 res->res_dirty = false;
208 if (delay_id)
209 return 0;
210 else
211 return vmw_resource_alloc_id(res);
212 }
213
214 /**
215 * vmw_resource_activate
216 *
217 * @res: Pointer to the newly created resource
218 * @hw_destroy: Destroy function. NULL if none.
219 *
220 * Activate a resource after the hardware has been made aware of it.
221 * Set tye destroy function to @destroy. Typically this frees the
222 * resource and destroys the hardware resources associated with it.
223 * Activate basically means that the function vmw_resource_lookup will
224 * find it.
225 */
226 void vmw_resource_activate(struct vmw_resource *res,
227 void (*hw_destroy) (struct vmw_resource *))
228 {
229 struct vmw_private *dev_priv = res->dev_priv;
230
231 write_lock(&dev_priv->resource_lock);
232 res->avail = true;
233 res->hw_destroy = hw_destroy;
234 write_unlock(&dev_priv->resource_lock);
235 }
236
237 /**
238 * vmw_user_resource_lookup_handle - lookup a struct resource from a
239 * TTM user-space handle and perform basic type checks
240 *
241 * @dev_priv: Pointer to a device private struct
242 * @tfile: Pointer to a struct ttm_object_file identifying the caller
243 * @handle: The TTM user-space handle
244 * @converter: Pointer to an object describing the resource type
245 * @p_res: On successful return the location pointed to will contain
246 * a pointer to a refcounted struct vmw_resource.
247 *
248 * If the handle can't be found or is associated with an incorrect resource
249 * type, -EINVAL will be returned.
250 */
251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 struct ttm_object_file *tfile,
253 uint32_t handle,
254 const struct vmw_user_resource_conv
255 *converter,
256 struct vmw_resource **p_res)
257 {
258 struct ttm_base_object *base;
259 struct vmw_resource *res;
260 int ret = -EINVAL;
261
262 base = ttm_base_object_lookup(tfile, handle);
263 if (unlikely(base == NULL))
264 return -EINVAL;
265
266 if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 goto out_bad_resource;
268
269 res = converter->base_obj_to_res(base);
270
271 read_lock(&dev_priv->resource_lock);
272 if (!res->avail || res->res_free != converter->res_free) {
273 read_unlock(&dev_priv->resource_lock);
274 goto out_bad_resource;
275 }
276
277 kref_get(&res->kref);
278 read_unlock(&dev_priv->resource_lock);
279
280 *p_res = res;
281 ret = 0;
282
283 out_bad_resource:
284 ttm_base_object_unref(&base);
285
286 return ret;
287 }
288
289 /**
290 * Helper function that looks either a surface or dmabuf.
291 *
292 * The pointer this pointed at by out_surf and out_buf needs to be null.
293 */
294 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 struct vmw_surface **out_surf,
298 struct vmw_dma_buffer **out_buf)
299 {
300 struct vmw_resource *res;
301 int ret;
302
303 BUG_ON(*out_surf || *out_buf);
304
305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 user_surface_converter,
307 &res);
308 if (!ret) {
309 *out_surf = vmw_res_to_srf(res);
310 return 0;
311 }
312
313 *out_surf = NULL;
314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 return ret;
316 }
317
318 /**
319 * Buffer management.
320 */
321
322 /**
323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
324 *
325 * @dev_priv: Pointer to a struct vmw_private identifying the device.
326 * @size: The requested buffer size.
327 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
328 */
329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 bool user)
331 {
332 static size_t struct_size, user_struct_size;
333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
335
336 if (unlikely(struct_size == 0)) {
337 size_t backend_size = ttm_round_pot(vmw_tt_size);
338
339 struct_size = backend_size +
340 ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 user_struct_size = backend_size +
342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
343 }
344
345 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 page_array_size +=
347 ttm_round_pot(num_pages * sizeof(dma_addr_t));
348
349 return ((user) ? user_struct_size : struct_size) +
350 page_array_size;
351 }
352
353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
354 {
355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
356
357 kfree(vmw_bo);
358 }
359
360 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
361 {
362 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
363
364 ttm_prime_object_kfree(vmw_user_bo, prime);
365 }
366
367 int vmw_dmabuf_init(struct vmw_private *dev_priv,
368 struct vmw_dma_buffer *vmw_bo,
369 size_t size, struct ttm_placement *placement,
370 bool interruptible,
371 void (*bo_free) (struct ttm_buffer_object *bo))
372 {
373 struct ttm_bo_device *bdev = &dev_priv->bdev;
374 size_t acc_size;
375 int ret;
376 bool user = (bo_free == &vmw_user_dmabuf_destroy);
377
378 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
379
380 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
381 memset(vmw_bo, 0, sizeof(*vmw_bo));
382
383 INIT_LIST_HEAD(&vmw_bo->res_list);
384
385 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
386 ttm_bo_type_device, placement,
387 0, interruptible,
388 NULL, acc_size, NULL, NULL, bo_free);
389 return ret;
390 }
391
392 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
393 {
394 struct vmw_user_dma_buffer *vmw_user_bo;
395 struct ttm_base_object *base = *p_base;
396 struct ttm_buffer_object *bo;
397
398 *p_base = NULL;
399
400 if (unlikely(base == NULL))
401 return;
402
403 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
404 prime.base);
405 bo = &vmw_user_bo->dma.base;
406 ttm_bo_unref(&bo);
407 }
408
409 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
410 enum ttm_ref_type ref_type)
411 {
412 struct vmw_user_dma_buffer *user_bo;
413 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
414
415 switch (ref_type) {
416 case TTM_REF_SYNCCPU_WRITE:
417 ttm_bo_synccpu_write_release(&user_bo->dma.base);
418 break;
419 default:
420 BUG();
421 }
422 }
423
424 /**
425 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
426 *
427 * @dev_priv: Pointer to a struct device private.
428 * @tfile: Pointer to a struct ttm_object_file on which to register the user
429 * object.
430 * @size: Size of the dma buffer.
431 * @shareable: Boolean whether the buffer is shareable with other open files.
432 * @handle: Pointer to where the handle value should be assigned.
433 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
434 * should be assigned.
435 */
436 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
437 struct ttm_object_file *tfile,
438 uint32_t size,
439 bool shareable,
440 uint32_t *handle,
441 struct vmw_dma_buffer **p_dma_buf,
442 struct ttm_base_object **p_base)
443 {
444 struct vmw_user_dma_buffer *user_bo;
445 struct ttm_buffer_object *tmp;
446 int ret;
447
448 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
449 if (unlikely(user_bo == NULL)) {
450 DRM_ERROR("Failed to allocate a buffer.\n");
451 return -ENOMEM;
452 }
453
454 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
455 (dev_priv->has_mob) ?
456 &vmw_sys_placement :
457 &vmw_vram_sys_placement, true,
458 &vmw_user_dmabuf_destroy);
459 if (unlikely(ret != 0))
460 return ret;
461
462 tmp = ttm_bo_reference(&user_bo->dma.base);
463 ret = ttm_prime_object_init(tfile,
464 size,
465 &user_bo->prime,
466 shareable,
467 ttm_buffer_type,
468 &vmw_user_dmabuf_release,
469 &vmw_user_dmabuf_ref_obj_release);
470 if (unlikely(ret != 0)) {
471 ttm_bo_unref(&tmp);
472 goto out_no_base_object;
473 }
474
475 *p_dma_buf = &user_bo->dma;
476 if (p_base) {
477 *p_base = &user_bo->prime.base;
478 kref_get(&(*p_base)->refcount);
479 }
480 *handle = user_bo->prime.base.hash.key;
481
482 out_no_base_object:
483 return ret;
484 }
485
486 /**
487 * vmw_user_dmabuf_verify_access - verify access permissions on this
488 * buffer object.
489 *
490 * @bo: Pointer to the buffer object being accessed
491 * @tfile: Identifying the caller.
492 */
493 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
494 struct ttm_object_file *tfile)
495 {
496 struct vmw_user_dma_buffer *vmw_user_bo;
497
498 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
499 return -EPERM;
500
501 vmw_user_bo = vmw_user_dma_buffer(bo);
502
503 /* Check that the caller has opened the object. */
504 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
505 return 0;
506
507 DRM_ERROR("Could not grant buffer access.\n");
508 return -EPERM;
509 }
510
511 /**
512 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
513 * access, idling previous GPU operations on the buffer and optionally
514 * blocking it for further command submissions.
515 *
516 * @user_bo: Pointer to the buffer object being grabbed for CPU access
517 * @tfile: Identifying the caller.
518 * @flags: Flags indicating how the grab should be performed.
519 *
520 * A blocking grab will be automatically released when @tfile is closed.
521 */
522 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
523 struct ttm_object_file *tfile,
524 uint32_t flags)
525 {
526 struct ttm_buffer_object *bo = &user_bo->dma.base;
527 bool existed;
528 int ret;
529
530 if (flags & drm_vmw_synccpu_allow_cs) {
531 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
532 long lret;
533
534 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
535 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
536 if (!lret)
537 return -EBUSY;
538 else if (lret < 0)
539 return lret;
540 return 0;
541 }
542
543 ret = ttm_bo_synccpu_write_grab
544 (bo, !!(flags & drm_vmw_synccpu_dontblock));
545 if (unlikely(ret != 0))
546 return ret;
547
548 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
549 TTM_REF_SYNCCPU_WRITE, &existed, false);
550 if (ret != 0 || existed)
551 ttm_bo_synccpu_write_release(&user_bo->dma.base);
552
553 return ret;
554 }
555
556 /**
557 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
558 * and unblock command submission on the buffer if blocked.
559 *
560 * @handle: Handle identifying the buffer object.
561 * @tfile: Identifying the caller.
562 * @flags: Flags indicating the type of release.
563 */
564 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
565 struct ttm_object_file *tfile,
566 uint32_t flags)
567 {
568 if (!(flags & drm_vmw_synccpu_allow_cs))
569 return ttm_ref_object_base_unref(tfile, handle,
570 TTM_REF_SYNCCPU_WRITE);
571
572 return 0;
573 }
574
575 /**
576 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
577 * functionality.
578 *
579 * @dev: Identifies the drm device.
580 * @data: Pointer to the ioctl argument.
581 * @file_priv: Identifies the caller.
582 *
583 * This function checks the ioctl arguments for validity and calls the
584 * relevant synccpu functions.
585 */
586 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
587 struct drm_file *file_priv)
588 {
589 struct drm_vmw_synccpu_arg *arg =
590 (struct drm_vmw_synccpu_arg *) data;
591 struct vmw_dma_buffer *dma_buf;
592 struct vmw_user_dma_buffer *user_bo;
593 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
594 struct ttm_base_object *buffer_base;
595 int ret;
596
597 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
598 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
599 drm_vmw_synccpu_dontblock |
600 drm_vmw_synccpu_allow_cs)) != 0) {
601 DRM_ERROR("Illegal synccpu flags.\n");
602 return -EINVAL;
603 }
604
605 switch (arg->op) {
606 case drm_vmw_synccpu_grab:
607 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
608 &buffer_base);
609 if (unlikely(ret != 0))
610 return ret;
611
612 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
613 dma);
614 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
615 vmw_dmabuf_unreference(&dma_buf);
616 ttm_base_object_unref(&buffer_base);
617 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
618 ret != -EBUSY)) {
619 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
620 (unsigned int) arg->handle);
621 return ret;
622 }
623 break;
624 case drm_vmw_synccpu_release:
625 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
626 arg->flags);
627 if (unlikely(ret != 0)) {
628 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
629 (unsigned int) arg->handle);
630 return ret;
631 }
632 break;
633 default:
634 DRM_ERROR("Invalid synccpu operation.\n");
635 return -EINVAL;
636 }
637
638 return 0;
639 }
640
641 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
642 struct drm_file *file_priv)
643 {
644 struct vmw_private *dev_priv = vmw_priv(dev);
645 union drm_vmw_alloc_dmabuf_arg *arg =
646 (union drm_vmw_alloc_dmabuf_arg *)data;
647 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
648 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
649 struct vmw_dma_buffer *dma_buf;
650 uint32_t handle;
651 int ret;
652
653 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
654 if (unlikely(ret != 0))
655 return ret;
656
657 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
658 req->size, false, &handle, &dma_buf,
659 NULL);
660 if (unlikely(ret != 0))
661 goto out_no_dmabuf;
662
663 rep->handle = handle;
664 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
665 rep->cur_gmr_id = handle;
666 rep->cur_gmr_offset = 0;
667
668 vmw_dmabuf_unreference(&dma_buf);
669
670 out_no_dmabuf:
671 ttm_read_unlock(&dev_priv->reservation_sem);
672
673 return ret;
674 }
675
676 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
677 struct drm_file *file_priv)
678 {
679 struct drm_vmw_unref_dmabuf_arg *arg =
680 (struct drm_vmw_unref_dmabuf_arg *)data;
681
682 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
683 arg->handle,
684 TTM_REF_USAGE);
685 }
686
687 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
688 uint32_t handle, struct vmw_dma_buffer **out,
689 struct ttm_base_object **p_base)
690 {
691 struct vmw_user_dma_buffer *vmw_user_bo;
692 struct ttm_base_object *base;
693
694 base = ttm_base_object_lookup(tfile, handle);
695 if (unlikely(base == NULL)) {
696 pr_err("Invalid buffer object handle 0x%08lx\n",
697 (unsigned long)handle);
698 return -ESRCH;
699 }
700
701 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
702 ttm_base_object_unref(&base);
703 pr_err("Invalid buffer object handle 0x%08lx\n",
704 (unsigned long)handle);
705 return -EINVAL;
706 }
707
708 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
709 prime.base);
710 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
711 if (p_base)
712 *p_base = base;
713 else
714 ttm_base_object_unref(&base);
715 *out = &vmw_user_bo->dma;
716
717 return 0;
718 }
719
720 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
721 struct vmw_dma_buffer *dma_buf,
722 uint32_t *handle)
723 {
724 struct vmw_user_dma_buffer *user_bo;
725
726 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
727 return -EINVAL;
728
729 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
730
731 *handle = user_bo->prime.base.hash.key;
732 return ttm_ref_object_add(tfile, &user_bo->prime.base,
733 TTM_REF_USAGE, NULL, false);
734 }
735
736 /**
737 * vmw_dumb_create - Create a dumb kms buffer
738 *
739 * @file_priv: Pointer to a struct drm_file identifying the caller.
740 * @dev: Pointer to the drm device.
741 * @args: Pointer to a struct drm_mode_create_dumb structure
742 *
743 * This is a driver callback for the core drm create_dumb functionality.
744 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
745 * that the arguments have a different format.
746 */
747 int vmw_dumb_create(struct drm_file *file_priv,
748 struct drm_device *dev,
749 struct drm_mode_create_dumb *args)
750 {
751 struct vmw_private *dev_priv = vmw_priv(dev);
752 struct vmw_dma_buffer *dma_buf;
753 int ret;
754
755 args->pitch = args->width * ((args->bpp + 7) / 8);
756 args->size = args->pitch * args->height;
757
758 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
759 if (unlikely(ret != 0))
760 return ret;
761
762 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
763 args->size, false, &args->handle,
764 &dma_buf, NULL);
765 if (unlikely(ret != 0))
766 goto out_no_dmabuf;
767
768 vmw_dmabuf_unreference(&dma_buf);
769 out_no_dmabuf:
770 ttm_read_unlock(&dev_priv->reservation_sem);
771 return ret;
772 }
773
774 /**
775 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
776 *
777 * @file_priv: Pointer to a struct drm_file identifying the caller.
778 * @dev: Pointer to the drm device.
779 * @handle: Handle identifying the dumb buffer.
780 * @offset: The address space offset returned.
781 *
782 * This is a driver callback for the core drm dumb_map_offset functionality.
783 */
784 int vmw_dumb_map_offset(struct drm_file *file_priv,
785 struct drm_device *dev, uint32_t handle,
786 uint64_t *offset)
787 {
788 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
789 struct vmw_dma_buffer *out_buf;
790 int ret;
791
792 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
793 if (ret != 0)
794 return -EINVAL;
795
796 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
797 vmw_dmabuf_unreference(&out_buf);
798 return 0;
799 }
800
801 /**
802 * vmw_dumb_destroy - Destroy a dumb boffer
803 *
804 * @file_priv: Pointer to a struct drm_file identifying the caller.
805 * @dev: Pointer to the drm device.
806 * @handle: Handle identifying the dumb buffer.
807 *
808 * This is a driver callback for the core drm dumb_destroy functionality.
809 */
810 int vmw_dumb_destroy(struct drm_file *file_priv,
811 struct drm_device *dev,
812 uint32_t handle)
813 {
814 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
815 handle, TTM_REF_USAGE);
816 }
817
818 /**
819 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
820 *
821 * @res: The resource for which to allocate a backup buffer.
822 * @interruptible: Whether any sleeps during allocation should be
823 * performed while interruptible.
824 */
825 static int vmw_resource_buf_alloc(struct vmw_resource *res,
826 bool interruptible)
827 {
828 unsigned long size =
829 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
830 struct vmw_dma_buffer *backup;
831 int ret;
832
833 if (likely(res->backup)) {
834 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
835 return 0;
836 }
837
838 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
839 if (unlikely(backup == NULL))
840 return -ENOMEM;
841
842 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
843 res->func->backup_placement,
844 interruptible,
845 &vmw_dmabuf_bo_free);
846 if (unlikely(ret != 0))
847 goto out_no_dmabuf;
848
849 res->backup = backup;
850
851 out_no_dmabuf:
852 return ret;
853 }
854
855 /**
856 * vmw_resource_do_validate - Make a resource up-to-date and visible
857 * to the device.
858 *
859 * @res: The resource to make visible to the device.
860 * @val_buf: Information about a buffer possibly
861 * containing backup data if a bind operation is needed.
862 *
863 * On hardware resource shortage, this function returns -EBUSY and
864 * should be retried once resources have been freed up.
865 */
866 static int vmw_resource_do_validate(struct vmw_resource *res,
867 struct ttm_validate_buffer *val_buf)
868 {
869 int ret = 0;
870 const struct vmw_res_func *func = res->func;
871
872 if (unlikely(res->id == -1)) {
873 ret = func->create(res);
874 if (unlikely(ret != 0))
875 return ret;
876 }
877
878 if (func->bind &&
879 ((func->needs_backup && list_empty(&res->mob_head) &&
880 val_buf->bo != NULL) ||
881 (!func->needs_backup && val_buf->bo != NULL))) {
882 ret = func->bind(res, val_buf);
883 if (unlikely(ret != 0))
884 goto out_bind_failed;
885 if (func->needs_backup)
886 list_add_tail(&res->mob_head, &res->backup->res_list);
887 }
888
889 /*
890 * Only do this on write operations, and move to
891 * vmw_resource_unreserve if it can be called after
892 * backup buffers have been unreserved. Otherwise
893 * sort out locking.
894 */
895 res->res_dirty = true;
896
897 return 0;
898
899 out_bind_failed:
900 func->destroy(res);
901
902 return ret;
903 }
904
905 /**
906 * vmw_resource_unreserve - Unreserve a resource previously reserved for
907 * command submission.
908 *
909 * @res: Pointer to the struct vmw_resource to unreserve.
910 * @switch_backup: Backup buffer has been switched.
911 * @new_backup: Pointer to new backup buffer if command submission
912 * switched. May be NULL.
913 * @new_backup_offset: New backup offset if @switch_backup is true.
914 *
915 * Currently unreserving a resource means putting it back on the device's
916 * resource lru list, so that it can be evicted if necessary.
917 */
918 void vmw_resource_unreserve(struct vmw_resource *res,
919 bool switch_backup,
920 struct vmw_dma_buffer *new_backup,
921 unsigned long new_backup_offset)
922 {
923 struct vmw_private *dev_priv = res->dev_priv;
924
925 if (!list_empty(&res->lru_head))
926 return;
927
928 if (switch_backup && new_backup != res->backup) {
929 if (res->backup) {
930 lockdep_assert_held(&res->backup->base.resv->lock.base);
931 list_del_init(&res->mob_head);
932 vmw_dmabuf_unreference(&res->backup);
933 }
934
935 if (new_backup) {
936 res->backup = vmw_dmabuf_reference(new_backup);
937 lockdep_assert_held(&new_backup->base.resv->lock.base);
938 list_add_tail(&res->mob_head, &new_backup->res_list);
939 } else {
940 res->backup = NULL;
941 }
942 }
943 if (switch_backup)
944 res->backup_offset = new_backup_offset;
945
946 if (!res->func->may_evict || res->id == -1 || res->pin_count)
947 return;
948
949 write_lock(&dev_priv->resource_lock);
950 list_add_tail(&res->lru_head,
951 &res->dev_priv->res_lru[res->func->res_type]);
952 write_unlock(&dev_priv->resource_lock);
953 }
954
955 /**
956 * vmw_resource_check_buffer - Check whether a backup buffer is needed
957 * for a resource and in that case, allocate
958 * one, reserve and validate it.
959 *
960 * @res: The resource for which to allocate a backup buffer.
961 * @interruptible: Whether any sleeps during allocation should be
962 * performed while interruptible.
963 * @val_buf: On successful return contains data about the
964 * reserved and validated backup buffer.
965 */
966 static int
967 vmw_resource_check_buffer(struct vmw_resource *res,
968 bool interruptible,
969 struct ttm_validate_buffer *val_buf)
970 {
971 struct list_head val_list;
972 bool backup_dirty = false;
973 int ret;
974
975 if (unlikely(res->backup == NULL)) {
976 ret = vmw_resource_buf_alloc(res, interruptible);
977 if (unlikely(ret != 0))
978 return ret;
979 }
980
981 INIT_LIST_HEAD(&val_list);
982 val_buf->bo = ttm_bo_reference(&res->backup->base);
983 val_buf->shared = false;
984 list_add_tail(&val_buf->head, &val_list);
985 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
986 if (unlikely(ret != 0))
987 goto out_no_reserve;
988
989 if (res->func->needs_backup && list_empty(&res->mob_head))
990 return 0;
991
992 backup_dirty = res->backup_dirty;
993 ret = ttm_bo_validate(&res->backup->base,
994 res->func->backup_placement,
995 true, false);
996
997 if (unlikely(ret != 0))
998 goto out_no_validate;
999
1000 return 0;
1001
1002 out_no_validate:
1003 ttm_eu_backoff_reservation(NULL, &val_list);
1004 out_no_reserve:
1005 ttm_bo_unref(&val_buf->bo);
1006 if (backup_dirty)
1007 vmw_dmabuf_unreference(&res->backup);
1008
1009 return ret;
1010 }
1011
1012 /**
1013 * vmw_resource_reserve - Reserve a resource for command submission
1014 *
1015 * @res: The resource to reserve.
1016 *
1017 * This function takes the resource off the LRU list and make sure
1018 * a backup buffer is present for guest-backed resources. However,
1019 * the buffer may not be bound to the resource at this point.
1020 *
1021 */
1022 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1023 bool no_backup)
1024 {
1025 struct vmw_private *dev_priv = res->dev_priv;
1026 int ret;
1027
1028 write_lock(&dev_priv->resource_lock);
1029 list_del_init(&res->lru_head);
1030 write_unlock(&dev_priv->resource_lock);
1031
1032 if (res->func->needs_backup && res->backup == NULL &&
1033 !no_backup) {
1034 ret = vmw_resource_buf_alloc(res, interruptible);
1035 if (unlikely(ret != 0)) {
1036 DRM_ERROR("Failed to allocate a backup buffer "
1037 "of size %lu. bytes\n",
1038 (unsigned long) res->backup_size);
1039 return ret;
1040 }
1041 }
1042
1043 return 0;
1044 }
1045
1046 /**
1047 * vmw_resource_backoff_reservation - Unreserve and unreference a
1048 * backup buffer
1049 *.
1050 * @val_buf: Backup buffer information.
1051 */
1052 static void
1053 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1054 {
1055 struct list_head val_list;
1056
1057 if (likely(val_buf->bo == NULL))
1058 return;
1059
1060 INIT_LIST_HEAD(&val_list);
1061 list_add_tail(&val_buf->head, &val_list);
1062 ttm_eu_backoff_reservation(NULL, &val_list);
1063 ttm_bo_unref(&val_buf->bo);
1064 }
1065
1066 /**
1067 * vmw_resource_do_evict - Evict a resource, and transfer its data
1068 * to a backup buffer.
1069 *
1070 * @res: The resource to evict.
1071 * @interruptible: Whether to wait interruptible.
1072 */
1073 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1074 {
1075 struct ttm_validate_buffer val_buf;
1076 const struct vmw_res_func *func = res->func;
1077 int ret;
1078
1079 BUG_ON(!func->may_evict);
1080
1081 val_buf.bo = NULL;
1082 val_buf.shared = false;
1083 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1084 if (unlikely(ret != 0))
1085 return ret;
1086
1087 if (unlikely(func->unbind != NULL &&
1088 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1089 ret = func->unbind(res, res->res_dirty, &val_buf);
1090 if (unlikely(ret != 0))
1091 goto out_no_unbind;
1092 list_del_init(&res->mob_head);
1093 }
1094 ret = func->destroy(res);
1095 res->backup_dirty = true;
1096 res->res_dirty = false;
1097 out_no_unbind:
1098 vmw_resource_backoff_reservation(&val_buf);
1099
1100 return ret;
1101 }
1102
1103
1104 /**
1105 * vmw_resource_validate - Make a resource up-to-date and visible
1106 * to the device.
1107 *
1108 * @res: The resource to make visible to the device.
1109 *
1110 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1111 * be reserved and validated.
1112 * On hardware resource shortage, this function will repeatedly evict
1113 * resources of the same type until the validation succeeds.
1114 */
1115 int vmw_resource_validate(struct vmw_resource *res)
1116 {
1117 int ret;
1118 struct vmw_resource *evict_res;
1119 struct vmw_private *dev_priv = res->dev_priv;
1120 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1121 struct ttm_validate_buffer val_buf;
1122 unsigned err_count = 0;
1123
1124 if (!res->func->create)
1125 return 0;
1126
1127 val_buf.bo = NULL;
1128 val_buf.shared = false;
1129 if (res->backup)
1130 val_buf.bo = &res->backup->base;
1131 do {
1132 ret = vmw_resource_do_validate(res, &val_buf);
1133 if (likely(ret != -EBUSY))
1134 break;
1135
1136 write_lock(&dev_priv->resource_lock);
1137 if (list_empty(lru_list) || !res->func->may_evict) {
1138 DRM_ERROR("Out of device device resources "
1139 "for %s.\n", res->func->type_name);
1140 ret = -EBUSY;
1141 write_unlock(&dev_priv->resource_lock);
1142 break;
1143 }
1144
1145 evict_res = vmw_resource_reference
1146 (list_first_entry(lru_list, struct vmw_resource,
1147 lru_head));
1148 list_del_init(&evict_res->lru_head);
1149
1150 write_unlock(&dev_priv->resource_lock);
1151
1152 ret = vmw_resource_do_evict(evict_res, true);
1153 if (unlikely(ret != 0)) {
1154 write_lock(&dev_priv->resource_lock);
1155 list_add_tail(&evict_res->lru_head, lru_list);
1156 write_unlock(&dev_priv->resource_lock);
1157 if (ret == -ERESTARTSYS ||
1158 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1159 vmw_resource_unreference(&evict_res);
1160 goto out_no_validate;
1161 }
1162 }
1163
1164 vmw_resource_unreference(&evict_res);
1165 } while (1);
1166
1167 if (unlikely(ret != 0))
1168 goto out_no_validate;
1169 else if (!res->func->needs_backup && res->backup) {
1170 list_del_init(&res->mob_head);
1171 vmw_dmabuf_unreference(&res->backup);
1172 }
1173
1174 return 0;
1175
1176 out_no_validate:
1177 return ret;
1178 }
1179
1180 /**
1181 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1182 * object without unreserving it.
1183 *
1184 * @bo: Pointer to the struct ttm_buffer_object to fence.
1185 * @fence: Pointer to the fence. If NULL, this function will
1186 * insert a fence into the command stream..
1187 *
1188 * Contrary to the ttm_eu version of this function, it takes only
1189 * a single buffer object instead of a list, and it also doesn't
1190 * unreserve the buffer object, which needs to be done separately.
1191 */
1192 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1193 struct vmw_fence_obj *fence)
1194 {
1195 struct ttm_bo_device *bdev = bo->bdev;
1196
1197 struct vmw_private *dev_priv =
1198 container_of(bdev, struct vmw_private, bdev);
1199
1200 if (fence == NULL) {
1201 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1202 reservation_object_add_excl_fence(bo->resv, &fence->base);
1203 dma_fence_put(&fence->base);
1204 } else
1205 reservation_object_add_excl_fence(bo->resv, &fence->base);
1206 }
1207
1208 /**
1209 * vmw_resource_move_notify - TTM move_notify_callback
1210 *
1211 * @bo: The TTM buffer object about to move.
1212 * @mem: The struct ttm_mem_reg indicating to what memory
1213 * region the move is taking place.
1214 *
1215 * Evicts the Guest Backed hardware resource if the backup
1216 * buffer is being moved out of MOB memory.
1217 * Note that this function should not race with the resource
1218 * validation code as long as it accesses only members of struct
1219 * resource that remain static while bo::res is !NULL and
1220 * while we have @bo reserved. struct resource::backup is *not* a
1221 * static member. The resource validation code will take care
1222 * to set @bo::res to NULL, while having @bo reserved when the
1223 * buffer is no longer bound to the resource, so @bo:res can be
1224 * used to determine whether there is a need to unbind and whether
1225 * it is safe to unbind.
1226 */
1227 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1228 struct ttm_mem_reg *mem)
1229 {
1230 struct vmw_dma_buffer *dma_buf;
1231
1232 if (mem == NULL)
1233 return;
1234
1235 if (bo->destroy != vmw_dmabuf_bo_free &&
1236 bo->destroy != vmw_user_dmabuf_destroy)
1237 return;
1238
1239 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1240
1241 if (mem->mem_type != VMW_PL_MOB) {
1242 struct vmw_resource *res, *n;
1243 struct ttm_validate_buffer val_buf;
1244
1245 val_buf.bo = bo;
1246 val_buf.shared = false;
1247
1248 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1249
1250 if (unlikely(res->func->unbind == NULL))
1251 continue;
1252
1253 (void) res->func->unbind(res, true, &val_buf);
1254 res->backup_dirty = true;
1255 res->res_dirty = false;
1256 list_del_init(&res->mob_head);
1257 }
1258
1259 (void) ttm_bo_wait(bo, false, false);
1260 }
1261 }
1262
1263
1264
1265 /**
1266 * vmw_query_readback_all - Read back cached query states
1267 *
1268 * @dx_query_mob: Buffer containing the DX query MOB
1269 *
1270 * Read back cached states from the device if they exist. This function
1271 * assumings binding_mutex is held.
1272 */
1273 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1274 {
1275 struct vmw_resource *dx_query_ctx;
1276 struct vmw_private *dev_priv;
1277 struct {
1278 SVGA3dCmdHeader header;
1279 SVGA3dCmdDXReadbackAllQuery body;
1280 } *cmd;
1281
1282
1283 /* No query bound, so do nothing */
1284 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1285 return 0;
1286
1287 dx_query_ctx = dx_query_mob->dx_query_ctx;
1288 dev_priv = dx_query_ctx->dev_priv;
1289
1290 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1291 if (unlikely(cmd == NULL)) {
1292 DRM_ERROR("Failed reserving FIFO space for "
1293 "query MOB read back.\n");
1294 return -ENOMEM;
1295 }
1296
1297 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1298 cmd->header.size = sizeof(cmd->body);
1299 cmd->body.cid = dx_query_ctx->id;
1300
1301 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1302
1303 /* Triggers a rebind the next time affected context is bound */
1304 dx_query_mob->dx_query_ctx = NULL;
1305
1306 return 0;
1307 }
1308
1309
1310
1311 /**
1312 * vmw_query_move_notify - Read back cached query states
1313 *
1314 * @bo: The TTM buffer object about to move.
1315 * @mem: The memory region @bo is moving to.
1316 *
1317 * Called before the query MOB is swapped out to read back cached query
1318 * states from the device.
1319 */
1320 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1321 struct ttm_mem_reg *mem)
1322 {
1323 struct vmw_dma_buffer *dx_query_mob;
1324 struct ttm_bo_device *bdev = bo->bdev;
1325 struct vmw_private *dev_priv;
1326
1327
1328 dev_priv = container_of(bdev, struct vmw_private, bdev);
1329
1330 mutex_lock(&dev_priv->binding_mutex);
1331
1332 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1333 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1334 mutex_unlock(&dev_priv->binding_mutex);
1335 return;
1336 }
1337
1338 /* If BO is being moved from MOB to system memory */
1339 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1340 struct vmw_fence_obj *fence;
1341
1342 (void) vmw_query_readback_all(dx_query_mob);
1343 mutex_unlock(&dev_priv->binding_mutex);
1344
1345 /* Create a fence and attach the BO to it */
1346 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1347 vmw_fence_single_bo(bo, fence);
1348
1349 if (fence != NULL)
1350 vmw_fence_obj_unreference(&fence);
1351
1352 (void) ttm_bo_wait(bo, false, false);
1353 } else
1354 mutex_unlock(&dev_priv->binding_mutex);
1355
1356 }
1357
1358 /**
1359 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1360 *
1361 * @res: The resource being queried.
1362 */
1363 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1364 {
1365 return res->func->needs_backup;
1366 }
1367
1368 /**
1369 * vmw_resource_evict_type - Evict all resources of a specific type
1370 *
1371 * @dev_priv: Pointer to a device private struct
1372 * @type: The resource type to evict
1373 *
1374 * To avoid thrashing starvation or as part of the hibernation sequence,
1375 * try to evict all evictable resources of a specific type.
1376 */
1377 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1378 enum vmw_res_type type)
1379 {
1380 struct list_head *lru_list = &dev_priv->res_lru[type];
1381 struct vmw_resource *evict_res;
1382 unsigned err_count = 0;
1383 int ret;
1384
1385 do {
1386 write_lock(&dev_priv->resource_lock);
1387
1388 if (list_empty(lru_list))
1389 goto out_unlock;
1390
1391 evict_res = vmw_resource_reference(
1392 list_first_entry(lru_list, struct vmw_resource,
1393 lru_head));
1394 list_del_init(&evict_res->lru_head);
1395 write_unlock(&dev_priv->resource_lock);
1396
1397 ret = vmw_resource_do_evict(evict_res, false);
1398 if (unlikely(ret != 0)) {
1399 write_lock(&dev_priv->resource_lock);
1400 list_add_tail(&evict_res->lru_head, lru_list);
1401 write_unlock(&dev_priv->resource_lock);
1402 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1403 vmw_resource_unreference(&evict_res);
1404 return;
1405 }
1406 }
1407
1408 vmw_resource_unreference(&evict_res);
1409 } while (1);
1410
1411 out_unlock:
1412 write_unlock(&dev_priv->resource_lock);
1413 }
1414
1415 /**
1416 * vmw_resource_evict_all - Evict all evictable resources
1417 *
1418 * @dev_priv: Pointer to a device private struct
1419 *
1420 * To avoid thrashing starvation or as part of the hibernation sequence,
1421 * evict all evictable resources. In particular this means that all
1422 * guest-backed resources that are registered with the device are
1423 * evicted and the OTable becomes clean.
1424 */
1425 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1426 {
1427 enum vmw_res_type type;
1428
1429 mutex_lock(&dev_priv->cmdbuf_mutex);
1430
1431 for (type = 0; type < vmw_res_max; ++type)
1432 vmw_resource_evict_type(dev_priv, type);
1433
1434 mutex_unlock(&dev_priv->cmdbuf_mutex);
1435 }
1436
1437 /**
1438 * vmw_resource_pin - Add a pin reference on a resource
1439 *
1440 * @res: The resource to add a pin reference on
1441 *
1442 * This function adds a pin reference, and if needed validates the resource.
1443 * Having a pin reference means that the resource can never be evicted, and
1444 * its id will never change as long as there is a pin reference.
1445 * This function returns 0 on success and a negative error code on failure.
1446 */
1447 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1448 {
1449 struct vmw_private *dev_priv = res->dev_priv;
1450 int ret;
1451
1452 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1453 mutex_lock(&dev_priv->cmdbuf_mutex);
1454 ret = vmw_resource_reserve(res, interruptible, false);
1455 if (ret)
1456 goto out_no_reserve;
1457
1458 if (res->pin_count == 0) {
1459 struct vmw_dma_buffer *vbo = NULL;
1460
1461 if (res->backup) {
1462 vbo = res->backup;
1463
1464 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1465 if (!vbo->pin_count) {
1466 ret = ttm_bo_validate
1467 (&vbo->base,
1468 res->func->backup_placement,
1469 interruptible, false);
1470 if (ret) {
1471 ttm_bo_unreserve(&vbo->base);
1472 goto out_no_validate;
1473 }
1474 }
1475
1476 /* Do we really need to pin the MOB as well? */
1477 vmw_bo_pin_reserved(vbo, true);
1478 }
1479 ret = vmw_resource_validate(res);
1480 if (vbo)
1481 ttm_bo_unreserve(&vbo->base);
1482 if (ret)
1483 goto out_no_validate;
1484 }
1485 res->pin_count++;
1486
1487 out_no_validate:
1488 vmw_resource_unreserve(res, false, NULL, 0UL);
1489 out_no_reserve:
1490 mutex_unlock(&dev_priv->cmdbuf_mutex);
1491 ttm_write_unlock(&dev_priv->reservation_sem);
1492
1493 return ret;
1494 }
1495
1496 /**
1497 * vmw_resource_unpin - Remove a pin reference from a resource
1498 *
1499 * @res: The resource to remove a pin reference from
1500 *
1501 * Having a pin reference means that the resource can never be evicted, and
1502 * its id will never change as long as there is a pin reference.
1503 */
1504 void vmw_resource_unpin(struct vmw_resource *res)
1505 {
1506 struct vmw_private *dev_priv = res->dev_priv;
1507 int ret;
1508
1509 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1510 mutex_lock(&dev_priv->cmdbuf_mutex);
1511
1512 ret = vmw_resource_reserve(res, false, true);
1513 WARN_ON(ret);
1514
1515 WARN_ON(res->pin_count == 0);
1516 if (--res->pin_count == 0 && res->backup) {
1517 struct vmw_dma_buffer *vbo = res->backup;
1518
1519 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1520 vmw_bo_pin_reserved(vbo, false);
1521 ttm_bo_unreserve(&vbo->base);
1522 }
1523
1524 vmw_resource_unreserve(res, false, NULL, 0UL);
1525
1526 mutex_unlock(&dev_priv->cmdbuf_mutex);
1527 ttm_read_unlock(&dev_priv->reservation_sem);
1528 }
1529
1530 /**
1531 * vmw_res_type - Return the resource type
1532 *
1533 * @res: Pointer to the resource
1534 */
1535 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1536 {
1537 return res->func->res_type;
1538 }