]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static const struct ttm_place vram_placement_flags = {
34 .fpfn = 0,
35 .lpfn = 0,
36 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
37 };
38
39 static const struct ttm_place vram_ne_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
43 };
44
45 static const struct ttm_place sys_placement_flags = {
46 .fpfn = 0,
47 .lpfn = 0,
48 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
49 };
50
51 static const struct ttm_place sys_ne_placement_flags = {
52 .fpfn = 0,
53 .lpfn = 0,
54 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
55 };
56
57 static const struct ttm_place gmr_placement_flags = {
58 .fpfn = 0,
59 .lpfn = 0,
60 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
61 };
62
63 static const struct ttm_place gmr_ne_placement_flags = {
64 .fpfn = 0,
65 .lpfn = 0,
66 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
67 };
68
69 static const struct ttm_place mob_placement_flags = {
70 .fpfn = 0,
71 .lpfn = 0,
72 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
73 };
74
75 static const struct ttm_place mob_ne_placement_flags = {
76 .fpfn = 0,
77 .lpfn = 0,
78 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
79 };
80
81 struct ttm_placement vmw_vram_placement = {
82 .num_placement = 1,
83 .placement = &vram_placement_flags,
84 .num_busy_placement = 1,
85 .busy_placement = &vram_placement_flags
86 };
87
88 static const struct ttm_place vram_gmr_placement_flags[] = {
89 {
90 .fpfn = 0,
91 .lpfn = 0,
92 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
93 }, {
94 .fpfn = 0,
95 .lpfn = 0,
96 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
97 }
98 };
99
100 static const struct ttm_place gmr_vram_placement_flags[] = {
101 {
102 .fpfn = 0,
103 .lpfn = 0,
104 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
105 }, {
106 .fpfn = 0,
107 .lpfn = 0,
108 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
109 }
110 };
111
112 struct ttm_placement vmw_vram_gmr_placement = {
113 .num_placement = 2,
114 .placement = vram_gmr_placement_flags,
115 .num_busy_placement = 1,
116 .busy_placement = &gmr_placement_flags
117 };
118
119 static const struct ttm_place vram_gmr_ne_placement_flags[] = {
120 {
121 .fpfn = 0,
122 .lpfn = 0,
123 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
124 TTM_PL_FLAG_NO_EVICT
125 }, {
126 .fpfn = 0,
127 .lpfn = 0,
128 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
129 TTM_PL_FLAG_NO_EVICT
130 }
131 };
132
133 struct ttm_placement vmw_vram_gmr_ne_placement = {
134 .num_placement = 2,
135 .placement = vram_gmr_ne_placement_flags,
136 .num_busy_placement = 1,
137 .busy_placement = &gmr_ne_placement_flags
138 };
139
140 struct ttm_placement vmw_vram_sys_placement = {
141 .num_placement = 1,
142 .placement = &vram_placement_flags,
143 .num_busy_placement = 1,
144 .busy_placement = &sys_placement_flags
145 };
146
147 struct ttm_placement vmw_vram_ne_placement = {
148 .num_placement = 1,
149 .placement = &vram_ne_placement_flags,
150 .num_busy_placement = 1,
151 .busy_placement = &vram_ne_placement_flags
152 };
153
154 struct ttm_placement vmw_sys_placement = {
155 .num_placement = 1,
156 .placement = &sys_placement_flags,
157 .num_busy_placement = 1,
158 .busy_placement = &sys_placement_flags
159 };
160
161 struct ttm_placement vmw_sys_ne_placement = {
162 .num_placement = 1,
163 .placement = &sys_ne_placement_flags,
164 .num_busy_placement = 1,
165 .busy_placement = &sys_ne_placement_flags
166 };
167
168 static const struct ttm_place evictable_placement_flags[] = {
169 {
170 .fpfn = 0,
171 .lpfn = 0,
172 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
173 }, {
174 .fpfn = 0,
175 .lpfn = 0,
176 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
177 }, {
178 .fpfn = 0,
179 .lpfn = 0,
180 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
181 }, {
182 .fpfn = 0,
183 .lpfn = 0,
184 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
185 }
186 };
187
188 static const struct ttm_place nonfixed_placement_flags[] = {
189 {
190 .fpfn = 0,
191 .lpfn = 0,
192 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
193 }, {
194 .fpfn = 0,
195 .lpfn = 0,
196 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
197 }, {
198 .fpfn = 0,
199 .lpfn = 0,
200 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
201 }
202 };
203
204 struct ttm_placement vmw_evictable_placement = {
205 .num_placement = 4,
206 .placement = evictable_placement_flags,
207 .num_busy_placement = 1,
208 .busy_placement = &sys_placement_flags
209 };
210
211 struct ttm_placement vmw_srf_placement = {
212 .num_placement = 1,
213 .num_busy_placement = 2,
214 .placement = &gmr_placement_flags,
215 .busy_placement = gmr_vram_placement_flags
216 };
217
218 struct ttm_placement vmw_mob_placement = {
219 .num_placement = 1,
220 .num_busy_placement = 1,
221 .placement = &mob_placement_flags,
222 .busy_placement = &mob_placement_flags
223 };
224
225 struct ttm_placement vmw_mob_ne_placement = {
226 .num_placement = 1,
227 .num_busy_placement = 1,
228 .placement = &mob_ne_placement_flags,
229 .busy_placement = &mob_ne_placement_flags
230 };
231
232 struct ttm_placement vmw_nonfixed_placement = {
233 .num_placement = 3,
234 .placement = nonfixed_placement_flags,
235 .num_busy_placement = 1,
236 .busy_placement = &sys_placement_flags
237 };
238
239 struct vmw_ttm_tt {
240 struct ttm_dma_tt dma_ttm;
241 struct vmw_private *dev_priv;
242 int gmr_id;
243 struct vmw_mob *mob;
244 int mem_type;
245 struct sg_table sgt;
246 struct vmw_sg_table vsgt;
247 uint64_t sg_alloc_size;
248 bool mapped;
249 };
250
251 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
252
253 /**
254 * Helper functions to advance a struct vmw_piter iterator.
255 *
256 * @viter: Pointer to the iterator.
257 *
258 * These functions return false if past the end of the list,
259 * true otherwise. Functions are selected depending on the current
260 * DMA mapping mode.
261 */
262 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
263 {
264 return ++(viter->i) < viter->num_pages;
265 }
266
267 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
268 {
269 bool ret = __vmw_piter_non_sg_next(viter);
270
271 return __sg_page_iter_dma_next(&viter->iter) && ret;
272 }
273
274
275 /**
276 * Helper functions to return a pointer to the current page.
277 *
278 * @viter: Pointer to the iterator
279 *
280 * These functions return a pointer to the page currently
281 * pointed to by @viter. Functions are selected depending on the
282 * current mapping mode.
283 */
284 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
285 {
286 return viter->pages[viter->i];
287 }
288
289 /**
290 * Helper functions to return the DMA address of the current page.
291 *
292 * @viter: Pointer to the iterator
293 *
294 * These functions return the DMA address of the page currently
295 * pointed to by @viter. Functions are selected depending on the
296 * current mapping mode.
297 */
298 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
299 {
300 return page_to_phys(viter->pages[viter->i]);
301 }
302
303 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
304 {
305 return viter->addrs[viter->i];
306 }
307
308 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
309 {
310 return sg_page_iter_dma_address(&viter->iter);
311 }
312
313
314 /**
315 * vmw_piter_start - Initialize a struct vmw_piter.
316 *
317 * @viter: Pointer to the iterator to initialize
318 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
319 *
320 * Note that we're following the convention of __sg_page_iter_start, so that
321 * the iterator doesn't point to a valid page after initialization; it has
322 * to be advanced one step first.
323 */
324 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
325 unsigned long p_offset)
326 {
327 viter->i = p_offset - 1;
328 viter->num_pages = vsgt->num_pages;
329 viter->page = &__vmw_piter_non_sg_page;
330 viter->pages = vsgt->pages;
331 switch (vsgt->mode) {
332 case vmw_dma_phys:
333 viter->next = &__vmw_piter_non_sg_next;
334 viter->dma_address = &__vmw_piter_phys_addr;
335 break;
336 case vmw_dma_alloc_coherent:
337 viter->next = &__vmw_piter_non_sg_next;
338 viter->dma_address = &__vmw_piter_dma_addr;
339 viter->addrs = vsgt->addrs;
340 break;
341 case vmw_dma_map_populate:
342 case vmw_dma_map_bind:
343 viter->next = &__vmw_piter_sg_next;
344 viter->dma_address = &__vmw_piter_sg_addr;
345 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
346 vsgt->sgt->orig_nents, p_offset);
347 break;
348 default:
349 BUG();
350 }
351 }
352
353 /**
354 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
355 * TTM pages
356 *
357 * @vmw_tt: Pointer to a struct vmw_ttm_backend
358 *
359 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
360 */
361 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
362 {
363 struct device *dev = vmw_tt->dev_priv->dev->dev;
364
365 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
366 DMA_BIDIRECTIONAL);
367 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
368 }
369
370 /**
371 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
372 *
373 * @vmw_tt: Pointer to a struct vmw_ttm_backend
374 *
375 * This function is used to get device addresses from the kernel DMA layer.
376 * However, it's violating the DMA API in that when this operation has been
377 * performed, it's illegal for the CPU to write to the pages without first
378 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
379 * therefore only legal to call this function if we know that the function
380 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
381 * a CPU write buffer flush.
382 */
383 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
384 {
385 struct device *dev = vmw_tt->dev_priv->dev->dev;
386 int ret;
387
388 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
389 DMA_BIDIRECTIONAL);
390 if (unlikely(ret == 0))
391 return -ENOMEM;
392
393 vmw_tt->sgt.nents = ret;
394
395 return 0;
396 }
397
398 /**
399 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
400 *
401 * @vmw_tt: Pointer to a struct vmw_ttm_tt
402 *
403 * Select the correct function for and make sure the TTM pages are
404 * visible to the device. Allocate storage for the device mappings.
405 * If a mapping has already been performed, indicated by the storage
406 * pointer being non NULL, the function returns success.
407 */
408 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
409 {
410 struct vmw_private *dev_priv = vmw_tt->dev_priv;
411 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
412 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
413 struct ttm_operation_ctx ctx = {
414 .interruptible = true,
415 .no_wait_gpu = false
416 };
417 struct vmw_piter iter;
418 dma_addr_t old;
419 int ret = 0;
420 static size_t sgl_size;
421 static size_t sgt_size;
422
423 if (vmw_tt->mapped)
424 return 0;
425
426 vsgt->mode = dev_priv->map_mode;
427 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
428 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
429 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
430 vsgt->sgt = &vmw_tt->sgt;
431
432 switch (dev_priv->map_mode) {
433 case vmw_dma_map_bind:
434 case vmw_dma_map_populate:
435 if (unlikely(!sgl_size)) {
436 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
437 sgt_size = ttm_round_pot(sizeof(struct sg_table));
438 }
439 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
440 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
441 if (unlikely(ret != 0))
442 return ret;
443
444 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
445 vsgt->num_pages, 0,
446 (unsigned long)
447 vsgt->num_pages << PAGE_SHIFT,
448 GFP_KERNEL);
449 if (unlikely(ret != 0))
450 goto out_sg_alloc_fail;
451
452 if (vsgt->num_pages > vmw_tt->sgt.nents) {
453 uint64_t over_alloc =
454 sgl_size * (vsgt->num_pages -
455 vmw_tt->sgt.nents);
456
457 ttm_mem_global_free(glob, over_alloc);
458 vmw_tt->sg_alloc_size -= over_alloc;
459 }
460
461 ret = vmw_ttm_map_for_dma(vmw_tt);
462 if (unlikely(ret != 0))
463 goto out_map_fail;
464
465 break;
466 default:
467 break;
468 }
469
470 old = ~((dma_addr_t) 0);
471 vmw_tt->vsgt.num_regions = 0;
472 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
473 dma_addr_t cur = vmw_piter_dma_addr(&iter);
474
475 if (cur != old + PAGE_SIZE)
476 vmw_tt->vsgt.num_regions++;
477 old = cur;
478 }
479
480 vmw_tt->mapped = true;
481 return 0;
482
483 out_map_fail:
484 sg_free_table(vmw_tt->vsgt.sgt);
485 vmw_tt->vsgt.sgt = NULL;
486 out_sg_alloc_fail:
487 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
488 return ret;
489 }
490
491 /**
492 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
493 *
494 * @vmw_tt: Pointer to a struct vmw_ttm_tt
495 *
496 * Tear down any previously set up device DMA mappings and free
497 * any storage space allocated for them. If there are no mappings set up,
498 * this function is a NOP.
499 */
500 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
501 {
502 struct vmw_private *dev_priv = vmw_tt->dev_priv;
503
504 if (!vmw_tt->vsgt.sgt)
505 return;
506
507 switch (dev_priv->map_mode) {
508 case vmw_dma_map_bind:
509 case vmw_dma_map_populate:
510 vmw_ttm_unmap_from_dma(vmw_tt);
511 sg_free_table(vmw_tt->vsgt.sgt);
512 vmw_tt->vsgt.sgt = NULL;
513 ttm_mem_global_free(vmw_mem_glob(dev_priv),
514 vmw_tt->sg_alloc_size);
515 break;
516 default:
517 break;
518 }
519 vmw_tt->mapped = false;
520 }
521
522
523 /**
524 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
525 *
526 * @bo: Pointer to a struct ttm_buffer_object
527 *
528 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
529 * instead of a pointer to a struct vmw_ttm_backend as argument.
530 * Note that the buffer object must be either pinned or reserved before
531 * calling this function.
532 */
533 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
534 {
535 struct vmw_ttm_tt *vmw_tt =
536 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
537
538 return vmw_ttm_map_dma(vmw_tt);
539 }
540
541
542 /**
543 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
544 *
545 * @bo: Pointer to a struct ttm_buffer_object
546 *
547 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
548 * instead of a pointer to a struct vmw_ttm_backend as argument.
549 */
550 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
551 {
552 struct vmw_ttm_tt *vmw_tt =
553 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
554
555 vmw_ttm_unmap_dma(vmw_tt);
556 }
557
558
559 /**
560 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
561 * TTM buffer object
562 *
563 * @bo: Pointer to a struct ttm_buffer_object
564 *
565 * Returns a pointer to a struct vmw_sg_table object. The object should
566 * not be freed after use.
567 * Note that for the device addresses to be valid, the buffer object must
568 * either be reserved or pinned.
569 */
570 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
571 {
572 struct vmw_ttm_tt *vmw_tt =
573 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
574
575 return &vmw_tt->vsgt;
576 }
577
578
579 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
580 {
581 struct vmw_ttm_tt *vmw_be =
582 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
583 int ret;
584
585 ret = vmw_ttm_map_dma(vmw_be);
586 if (unlikely(ret != 0))
587 return ret;
588
589 vmw_be->gmr_id = bo_mem->start;
590 vmw_be->mem_type = bo_mem->mem_type;
591
592 switch (bo_mem->mem_type) {
593 case VMW_PL_GMR:
594 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
595 ttm->num_pages, vmw_be->gmr_id);
596 case VMW_PL_MOB:
597 if (unlikely(vmw_be->mob == NULL)) {
598 vmw_be->mob =
599 vmw_mob_create(ttm->num_pages);
600 if (unlikely(vmw_be->mob == NULL))
601 return -ENOMEM;
602 }
603
604 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
605 &vmw_be->vsgt, ttm->num_pages,
606 vmw_be->gmr_id);
607 default:
608 BUG();
609 }
610 return 0;
611 }
612
613 static int vmw_ttm_unbind(struct ttm_tt *ttm)
614 {
615 struct vmw_ttm_tt *vmw_be =
616 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
617
618 switch (vmw_be->mem_type) {
619 case VMW_PL_GMR:
620 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
621 break;
622 case VMW_PL_MOB:
623 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
624 break;
625 default:
626 BUG();
627 }
628
629 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
630 vmw_ttm_unmap_dma(vmw_be);
631
632 return 0;
633 }
634
635
636 static void vmw_ttm_destroy(struct ttm_tt *ttm)
637 {
638 struct vmw_ttm_tt *vmw_be =
639 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
640
641 vmw_ttm_unmap_dma(vmw_be);
642 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
643 ttm_dma_tt_fini(&vmw_be->dma_ttm);
644 else
645 ttm_tt_fini(ttm);
646
647 if (vmw_be->mob)
648 vmw_mob_destroy(vmw_be->mob);
649
650 kfree(vmw_be);
651 }
652
653
654 static int vmw_ttm_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
655 {
656 struct vmw_ttm_tt *vmw_tt =
657 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
658 struct vmw_private *dev_priv = vmw_tt->dev_priv;
659 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
660 int ret;
661
662 if (ttm->state != tt_unpopulated)
663 return 0;
664
665 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
666 size_t size =
667 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
668 ret = ttm_mem_global_alloc(glob, size, ctx);
669 if (unlikely(ret != 0))
670 return ret;
671
672 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
673 ctx);
674 if (unlikely(ret != 0))
675 ttm_mem_global_free(glob, size);
676 } else
677 ret = ttm_pool_populate(ttm, ctx);
678
679 return ret;
680 }
681
682 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
683 {
684 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
685 dma_ttm.ttm);
686 struct vmw_private *dev_priv = vmw_tt->dev_priv;
687 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
688
689
690 if (vmw_tt->mob) {
691 vmw_mob_destroy(vmw_tt->mob);
692 vmw_tt->mob = NULL;
693 }
694
695 vmw_ttm_unmap_dma(vmw_tt);
696 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
697 size_t size =
698 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
699
700 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
701 ttm_mem_global_free(glob, size);
702 } else
703 ttm_pool_unpopulate(ttm);
704 }
705
706 static struct ttm_backend_func vmw_ttm_func = {
707 .bind = vmw_ttm_bind,
708 .unbind = vmw_ttm_unbind,
709 .destroy = vmw_ttm_destroy,
710 };
711
712 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
713 uint32_t page_flags)
714 {
715 struct vmw_ttm_tt *vmw_be;
716 int ret;
717
718 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
719 if (!vmw_be)
720 return NULL;
721
722 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
723 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
724 vmw_be->mob = NULL;
725
726 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
727 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
728 else
729 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
730 if (unlikely(ret != 0))
731 goto out_no_init;
732
733 return &vmw_be->dma_ttm.ttm;
734 out_no_init:
735 kfree(vmw_be);
736 return NULL;
737 }
738
739 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
740 {
741 return 0;
742 }
743
744 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
745 struct ttm_mem_type_manager *man)
746 {
747 switch (type) {
748 case TTM_PL_SYSTEM:
749 /* System memory */
750
751 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
752 man->available_caching = TTM_PL_FLAG_CACHED;
753 man->default_caching = TTM_PL_FLAG_CACHED;
754 break;
755 case TTM_PL_VRAM:
756 /* "On-card" video ram */
757 man->func = &ttm_bo_manager_func;
758 man->gpu_offset = 0;
759 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
760 man->available_caching = TTM_PL_FLAG_CACHED;
761 man->default_caching = TTM_PL_FLAG_CACHED;
762 break;
763 case VMW_PL_GMR:
764 case VMW_PL_MOB:
765 /*
766 * "Guest Memory Regions" is an aperture like feature with
767 * one slot per bo. There is an upper limit of the number of
768 * slots as well as the bo size.
769 */
770 man->func = &vmw_gmrid_manager_func;
771 man->gpu_offset = 0;
772 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
773 man->available_caching = TTM_PL_FLAG_CACHED;
774 man->default_caching = TTM_PL_FLAG_CACHED;
775 break;
776 default:
777 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
778 return -EINVAL;
779 }
780 return 0;
781 }
782
783 static void vmw_evict_flags(struct ttm_buffer_object *bo,
784 struct ttm_placement *placement)
785 {
786 *placement = vmw_sys_placement;
787 }
788
789 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
790 {
791 struct ttm_object_file *tfile =
792 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
793
794 return vmw_user_bo_verify_access(bo, tfile);
795 }
796
797 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
798 {
799 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
800 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
801
802 mem->bus.addr = NULL;
803 mem->bus.is_iomem = false;
804 mem->bus.offset = 0;
805 mem->bus.size = mem->num_pages << PAGE_SHIFT;
806 mem->bus.base = 0;
807 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
808 return -EINVAL;
809 switch (mem->mem_type) {
810 case TTM_PL_SYSTEM:
811 case VMW_PL_GMR:
812 case VMW_PL_MOB:
813 return 0;
814 case TTM_PL_VRAM:
815 mem->bus.offset = mem->start << PAGE_SHIFT;
816 mem->bus.base = dev_priv->vram_start;
817 mem->bus.is_iomem = true;
818 break;
819 default:
820 return -EINVAL;
821 }
822 return 0;
823 }
824
825 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
826 {
827 }
828
829 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
830 {
831 return 0;
832 }
833
834 /**
835 * vmw_move_notify - TTM move_notify_callback
836 *
837 * @bo: The TTM buffer object about to move.
838 * @mem: The struct ttm_mem_reg indicating to what memory
839 * region the move is taking place.
840 *
841 * Calls move_notify for all subsystems needing it.
842 * (currently only resources).
843 */
844 static void vmw_move_notify(struct ttm_buffer_object *bo,
845 bool evict,
846 struct ttm_mem_reg *mem)
847 {
848 vmw_bo_move_notify(bo, mem);
849 vmw_query_move_notify(bo, mem);
850 }
851
852
853 /**
854 * vmw_swap_notify - TTM move_notify_callback
855 *
856 * @bo: The TTM buffer object about to be swapped out.
857 */
858 static void vmw_swap_notify(struct ttm_buffer_object *bo)
859 {
860 vmw_bo_swap_notify(bo);
861 (void) ttm_bo_wait(bo, false, false);
862 }
863
864
865 struct ttm_bo_driver vmw_bo_driver = {
866 .ttm_tt_create = &vmw_ttm_tt_create,
867 .ttm_tt_populate = &vmw_ttm_populate,
868 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
869 .invalidate_caches = vmw_invalidate_caches,
870 .init_mem_type = vmw_init_mem_type,
871 .eviction_valuable = ttm_bo_eviction_valuable,
872 .evict_flags = vmw_evict_flags,
873 .move = NULL,
874 .verify_access = vmw_verify_access,
875 .move_notify = vmw_move_notify,
876 .swap_notify = vmw_swap_notify,
877 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
878 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
879 .io_mem_free = &vmw_ttm_io_mem_free,
880 };