]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/hid/hid-core.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / hid / hid-core.c
1 /*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
9
10 /*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 #include <linux/async.h>
34
35 #include <linux/hid.h>
36 #include <linux/hiddev.h>
37 #include <linux/hid-debug.h>
38 #include <linux/hidraw.h>
39
40 #include "hid-ids.h"
41
42 /*
43 * Version Information
44 */
45
46 #define DRIVER_DESC "HID core driver"
47
48 int hid_debug = 0;
49 module_param_named(debug, hid_debug, int, 0600);
50 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
51 EXPORT_SYMBOL_GPL(hid_debug);
52
53 static int hid_ignore_special_drivers = 0;
54 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
55 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
56
57 /*
58 * Register a new report for a device.
59 */
60
61 struct hid_report *hid_register_report(struct hid_device *device,
62 unsigned int type, unsigned int id,
63 unsigned int application)
64 {
65 struct hid_report_enum *report_enum = device->report_enum + type;
66 struct hid_report *report;
67
68 if (id >= HID_MAX_IDS)
69 return NULL;
70 if (report_enum->report_id_hash[id])
71 return report_enum->report_id_hash[id];
72
73 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
74 if (!report)
75 return NULL;
76
77 if (id != 0)
78 report_enum->numbered = 1;
79
80 report->id = id;
81 report->type = type;
82 report->size = 0;
83 report->device = device;
84 report->application = application;
85 report_enum->report_id_hash[id] = report;
86
87 list_add_tail(&report->list, &report_enum->report_list);
88
89 return report;
90 }
91 EXPORT_SYMBOL_GPL(hid_register_report);
92
93 /*
94 * Register a new field for this report.
95 */
96
97 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
98 {
99 struct hid_field *field;
100
101 if (report->maxfield == HID_MAX_FIELDS) {
102 hid_err(report->device, "too many fields in report\n");
103 return NULL;
104 }
105
106 field = kzalloc((sizeof(struct hid_field) +
107 usages * sizeof(struct hid_usage) +
108 values * sizeof(unsigned)), GFP_KERNEL);
109 if (!field)
110 return NULL;
111
112 field->index = report->maxfield++;
113 report->field[field->index] = field;
114 field->usage = (struct hid_usage *)(field + 1);
115 field->value = (s32 *)(field->usage + usages);
116 field->report = report;
117
118 return field;
119 }
120
121 /*
122 * Open a collection. The type/usage is pushed on the stack.
123 */
124
125 static int open_collection(struct hid_parser *parser, unsigned type)
126 {
127 struct hid_collection *collection;
128 unsigned usage;
129 int collection_index;
130
131 usage = parser->local.usage[0];
132
133 if (parser->collection_stack_ptr == parser->collection_stack_size) {
134 unsigned int *collection_stack;
135 unsigned int new_size = parser->collection_stack_size +
136 HID_COLLECTION_STACK_SIZE;
137
138 collection_stack = krealloc(parser->collection_stack,
139 new_size * sizeof(unsigned int),
140 GFP_KERNEL);
141 if (!collection_stack)
142 return -ENOMEM;
143
144 parser->collection_stack = collection_stack;
145 parser->collection_stack_size = new_size;
146 }
147
148 if (parser->device->maxcollection == parser->device->collection_size) {
149 collection = kmalloc(
150 array3_size(sizeof(struct hid_collection),
151 parser->device->collection_size,
152 2),
153 GFP_KERNEL);
154 if (collection == NULL) {
155 hid_err(parser->device, "failed to reallocate collection array\n");
156 return -ENOMEM;
157 }
158 memcpy(collection, parser->device->collection,
159 sizeof(struct hid_collection) *
160 parser->device->collection_size);
161 memset(collection + parser->device->collection_size, 0,
162 sizeof(struct hid_collection) *
163 parser->device->collection_size);
164 kfree(parser->device->collection);
165 parser->device->collection = collection;
166 parser->device->collection_size *= 2;
167 }
168
169 parser->collection_stack[parser->collection_stack_ptr++] =
170 parser->device->maxcollection;
171
172 collection_index = parser->device->maxcollection++;
173 collection = parser->device->collection + collection_index;
174 collection->type = type;
175 collection->usage = usage;
176 collection->level = parser->collection_stack_ptr - 1;
177 collection->parent_idx = (collection->level == 0) ? -1 :
178 parser->collection_stack[collection->level - 1];
179
180 if (type == HID_COLLECTION_APPLICATION)
181 parser->device->maxapplication++;
182
183 return 0;
184 }
185
186 /*
187 * Close a collection.
188 */
189
190 static int close_collection(struct hid_parser *parser)
191 {
192 if (!parser->collection_stack_ptr) {
193 hid_err(parser->device, "collection stack underflow\n");
194 return -EINVAL;
195 }
196 parser->collection_stack_ptr--;
197 return 0;
198 }
199
200 /*
201 * Climb up the stack, search for the specified collection type
202 * and return the usage.
203 */
204
205 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
206 {
207 struct hid_collection *collection = parser->device->collection;
208 int n;
209
210 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
211 unsigned index = parser->collection_stack[n];
212 if (collection[index].type == type)
213 return collection[index].usage;
214 }
215 return 0; /* we know nothing about this usage type */
216 }
217
218 /*
219 * Add a usage to the temporary parser table.
220 */
221
222 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
223 {
224 if (parser->local.usage_index >= HID_MAX_USAGES) {
225 hid_err(parser->device, "usage index exceeded\n");
226 return -1;
227 }
228 parser->local.usage[parser->local.usage_index] = usage;
229 parser->local.usage_size[parser->local.usage_index] = size;
230 parser->local.collection_index[parser->local.usage_index] =
231 parser->collection_stack_ptr ?
232 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
233 parser->local.usage_index++;
234 return 0;
235 }
236
237 /*
238 * Register a new field for this report.
239 */
240
241 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
242 {
243 struct hid_report *report;
244 struct hid_field *field;
245 unsigned int usages;
246 unsigned int offset;
247 unsigned int i;
248 unsigned int application;
249
250 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
251
252 report = hid_register_report(parser->device, report_type,
253 parser->global.report_id, application);
254 if (!report) {
255 hid_err(parser->device, "hid_register_report failed\n");
256 return -1;
257 }
258
259 /* Handle both signed and unsigned cases properly */
260 if ((parser->global.logical_minimum < 0 &&
261 parser->global.logical_maximum <
262 parser->global.logical_minimum) ||
263 (parser->global.logical_minimum >= 0 &&
264 (__u32)parser->global.logical_maximum <
265 (__u32)parser->global.logical_minimum)) {
266 dbg_hid("logical range invalid 0x%x 0x%x\n",
267 parser->global.logical_minimum,
268 parser->global.logical_maximum);
269 return -1;
270 }
271
272 offset = report->size;
273 report->size += parser->global.report_size * parser->global.report_count;
274
275 if (!parser->local.usage_index) /* Ignore padding fields */
276 return 0;
277
278 usages = max_t(unsigned, parser->local.usage_index,
279 parser->global.report_count);
280
281 field = hid_register_field(report, usages, parser->global.report_count);
282 if (!field)
283 return 0;
284
285 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
286 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
287 field->application = application;
288
289 for (i = 0; i < usages; i++) {
290 unsigned j = i;
291 /* Duplicate the last usage we parsed if we have excess values */
292 if (i >= parser->local.usage_index)
293 j = parser->local.usage_index - 1;
294 field->usage[i].hid = parser->local.usage[j];
295 field->usage[i].collection_index =
296 parser->local.collection_index[j];
297 field->usage[i].usage_index = i;
298 field->usage[i].resolution_multiplier = 1;
299 }
300
301 field->maxusage = usages;
302 field->flags = flags;
303 field->report_offset = offset;
304 field->report_type = report_type;
305 field->report_size = parser->global.report_size;
306 field->report_count = parser->global.report_count;
307 field->logical_minimum = parser->global.logical_minimum;
308 field->logical_maximum = parser->global.logical_maximum;
309 field->physical_minimum = parser->global.physical_minimum;
310 field->physical_maximum = parser->global.physical_maximum;
311 field->unit_exponent = parser->global.unit_exponent;
312 field->unit = parser->global.unit;
313
314 return 0;
315 }
316
317 /*
318 * Read data value from item.
319 */
320
321 static u32 item_udata(struct hid_item *item)
322 {
323 switch (item->size) {
324 case 1: return item->data.u8;
325 case 2: return item->data.u16;
326 case 4: return item->data.u32;
327 }
328 return 0;
329 }
330
331 static s32 item_sdata(struct hid_item *item)
332 {
333 switch (item->size) {
334 case 1: return item->data.s8;
335 case 2: return item->data.s16;
336 case 4: return item->data.s32;
337 }
338 return 0;
339 }
340
341 /*
342 * Process a global item.
343 */
344
345 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
346 {
347 __s32 raw_value;
348 switch (item->tag) {
349 case HID_GLOBAL_ITEM_TAG_PUSH:
350
351 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
352 hid_err(parser->device, "global environment stack overflow\n");
353 return -1;
354 }
355
356 memcpy(parser->global_stack + parser->global_stack_ptr++,
357 &parser->global, sizeof(struct hid_global));
358 return 0;
359
360 case HID_GLOBAL_ITEM_TAG_POP:
361
362 if (!parser->global_stack_ptr) {
363 hid_err(parser->device, "global environment stack underflow\n");
364 return -1;
365 }
366
367 memcpy(&parser->global, parser->global_stack +
368 --parser->global_stack_ptr, sizeof(struct hid_global));
369 return 0;
370
371 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
372 parser->global.usage_page = item_udata(item);
373 return 0;
374
375 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
376 parser->global.logical_minimum = item_sdata(item);
377 return 0;
378
379 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
380 if (parser->global.logical_minimum < 0)
381 parser->global.logical_maximum = item_sdata(item);
382 else
383 parser->global.logical_maximum = item_udata(item);
384 return 0;
385
386 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
387 parser->global.physical_minimum = item_sdata(item);
388 return 0;
389
390 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
391 if (parser->global.physical_minimum < 0)
392 parser->global.physical_maximum = item_sdata(item);
393 else
394 parser->global.physical_maximum = item_udata(item);
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
398 /* Many devices provide unit exponent as a two's complement
399 * nibble due to the common misunderstanding of HID
400 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
401 * both this and the standard encoding. */
402 raw_value = item_sdata(item);
403 if (!(raw_value & 0xfffffff0))
404 parser->global.unit_exponent = hid_snto32(raw_value, 4);
405 else
406 parser->global.unit_exponent = raw_value;
407 return 0;
408
409 case HID_GLOBAL_ITEM_TAG_UNIT:
410 parser->global.unit = item_udata(item);
411 return 0;
412
413 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
414 parser->global.report_size = item_udata(item);
415 if (parser->global.report_size > 256) {
416 hid_err(parser->device, "invalid report_size %d\n",
417 parser->global.report_size);
418 return -1;
419 }
420 return 0;
421
422 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
423 parser->global.report_count = item_udata(item);
424 if (parser->global.report_count > HID_MAX_USAGES) {
425 hid_err(parser->device, "invalid report_count %d\n",
426 parser->global.report_count);
427 return -1;
428 }
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
432 parser->global.report_id = item_udata(item);
433 if (parser->global.report_id == 0 ||
434 parser->global.report_id >= HID_MAX_IDS) {
435 hid_err(parser->device, "report_id %u is invalid\n",
436 parser->global.report_id);
437 return -1;
438 }
439 return 0;
440
441 default:
442 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
443 return -1;
444 }
445 }
446
447 /*
448 * Process a local item.
449 */
450
451 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
452 {
453 __u32 data;
454 unsigned n;
455 __u32 count;
456
457 data = item_udata(item);
458
459 switch (item->tag) {
460 case HID_LOCAL_ITEM_TAG_DELIMITER:
461
462 if (data) {
463 /*
464 * We treat items before the first delimiter
465 * as global to all usage sets (branch 0).
466 * In the moment we process only these global
467 * items and the first delimiter set.
468 */
469 if (parser->local.delimiter_depth != 0) {
470 hid_err(parser->device, "nested delimiters\n");
471 return -1;
472 }
473 parser->local.delimiter_depth++;
474 parser->local.delimiter_branch++;
475 } else {
476 if (parser->local.delimiter_depth < 1) {
477 hid_err(parser->device, "bogus close delimiter\n");
478 return -1;
479 }
480 parser->local.delimiter_depth--;
481 }
482 return 0;
483
484 case HID_LOCAL_ITEM_TAG_USAGE:
485
486 if (parser->local.delimiter_branch > 1) {
487 dbg_hid("alternative usage ignored\n");
488 return 0;
489 }
490
491 return hid_add_usage(parser, data, item->size);
492
493 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
494
495 if (parser->local.delimiter_branch > 1) {
496 dbg_hid("alternative usage ignored\n");
497 return 0;
498 }
499
500 parser->local.usage_minimum = data;
501 return 0;
502
503 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
504
505 if (parser->local.delimiter_branch > 1) {
506 dbg_hid("alternative usage ignored\n");
507 return 0;
508 }
509
510 count = data - parser->local.usage_minimum;
511 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
512 /*
513 * We do not warn if the name is not set, we are
514 * actually pre-scanning the device.
515 */
516 if (dev_name(&parser->device->dev))
517 hid_warn(parser->device,
518 "ignoring exceeding usage max\n");
519 data = HID_MAX_USAGES - parser->local.usage_index +
520 parser->local.usage_minimum - 1;
521 if (data <= 0) {
522 hid_err(parser->device,
523 "no more usage index available\n");
524 return -1;
525 }
526 }
527
528 for (n = parser->local.usage_minimum; n <= data; n++)
529 if (hid_add_usage(parser, n, item->size)) {
530 dbg_hid("hid_add_usage failed\n");
531 return -1;
532 }
533 return 0;
534
535 default:
536
537 dbg_hid("unknown local item tag 0x%x\n", item->tag);
538 return 0;
539 }
540 return 0;
541 }
542
543 /*
544 * Concatenate Usage Pages into Usages where relevant:
545 * As per specification, 6.2.2.8: "When the parser encounters a main item it
546 * concatenates the last declared Usage Page with a Usage to form a complete
547 * usage value."
548 */
549
550 static void hid_concatenate_usage_page(struct hid_parser *parser)
551 {
552 int i;
553
554 for (i = 0; i < parser->local.usage_index; i++)
555 if (parser->local.usage_size[i] <= 2)
556 parser->local.usage[i] += parser->global.usage_page << 16;
557 }
558
559 /*
560 * Process a main item.
561 */
562
563 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
564 {
565 __u32 data;
566 int ret;
567
568 hid_concatenate_usage_page(parser);
569
570 data = item_udata(item);
571
572 switch (item->tag) {
573 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
574 ret = open_collection(parser, data & 0xff);
575 break;
576 case HID_MAIN_ITEM_TAG_END_COLLECTION:
577 ret = close_collection(parser);
578 break;
579 case HID_MAIN_ITEM_TAG_INPUT:
580 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
581 break;
582 case HID_MAIN_ITEM_TAG_OUTPUT:
583 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
584 break;
585 case HID_MAIN_ITEM_TAG_FEATURE:
586 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
587 break;
588 default:
589 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
590 ret = 0;
591 }
592
593 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
594
595 return ret;
596 }
597
598 /*
599 * Process a reserved item.
600 */
601
602 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
603 {
604 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
605 return 0;
606 }
607
608 /*
609 * Free a report and all registered fields. The field->usage and
610 * field->value table's are allocated behind the field, so we need
611 * only to free(field) itself.
612 */
613
614 static void hid_free_report(struct hid_report *report)
615 {
616 unsigned n;
617
618 for (n = 0; n < report->maxfield; n++)
619 kfree(report->field[n]);
620 kfree(report);
621 }
622
623 /*
624 * Close report. This function returns the device
625 * state to the point prior to hid_open_report().
626 */
627 static void hid_close_report(struct hid_device *device)
628 {
629 unsigned i, j;
630
631 for (i = 0; i < HID_REPORT_TYPES; i++) {
632 struct hid_report_enum *report_enum = device->report_enum + i;
633
634 for (j = 0; j < HID_MAX_IDS; j++) {
635 struct hid_report *report = report_enum->report_id_hash[j];
636 if (report)
637 hid_free_report(report);
638 }
639 memset(report_enum, 0, sizeof(*report_enum));
640 INIT_LIST_HEAD(&report_enum->report_list);
641 }
642
643 kfree(device->rdesc);
644 device->rdesc = NULL;
645 device->rsize = 0;
646
647 kfree(device->collection);
648 device->collection = NULL;
649 device->collection_size = 0;
650 device->maxcollection = 0;
651 device->maxapplication = 0;
652
653 device->status &= ~HID_STAT_PARSED;
654 }
655
656 /*
657 * Free a device structure, all reports, and all fields.
658 */
659
660 static void hid_device_release(struct device *dev)
661 {
662 struct hid_device *hid = to_hid_device(dev);
663
664 hid_close_report(hid);
665 kfree(hid->dev_rdesc);
666 kfree(hid);
667 }
668
669 /*
670 * Fetch a report description item from the data stream. We support long
671 * items, though they are not used yet.
672 */
673
674 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
675 {
676 u8 b;
677
678 if ((end - start) <= 0)
679 return NULL;
680
681 b = *start++;
682
683 item->type = (b >> 2) & 3;
684 item->tag = (b >> 4) & 15;
685
686 if (item->tag == HID_ITEM_TAG_LONG) {
687
688 item->format = HID_ITEM_FORMAT_LONG;
689
690 if ((end - start) < 2)
691 return NULL;
692
693 item->size = *start++;
694 item->tag = *start++;
695
696 if ((end - start) < item->size)
697 return NULL;
698
699 item->data.longdata = start;
700 start += item->size;
701 return start;
702 }
703
704 item->format = HID_ITEM_FORMAT_SHORT;
705 item->size = b & 3;
706
707 switch (item->size) {
708 case 0:
709 return start;
710
711 case 1:
712 if ((end - start) < 1)
713 return NULL;
714 item->data.u8 = *start++;
715 return start;
716
717 case 2:
718 if ((end - start) < 2)
719 return NULL;
720 item->data.u16 = get_unaligned_le16(start);
721 start = (__u8 *)((__le16 *)start + 1);
722 return start;
723
724 case 3:
725 item->size++;
726 if ((end - start) < 4)
727 return NULL;
728 item->data.u32 = get_unaligned_le32(start);
729 start = (__u8 *)((__le32 *)start + 1);
730 return start;
731 }
732
733 return NULL;
734 }
735
736 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
737 {
738 struct hid_device *hid = parser->device;
739
740 if (usage == HID_DG_CONTACTID)
741 hid->group = HID_GROUP_MULTITOUCH;
742 }
743
744 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
745 {
746 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
747 parser->global.report_size == 8)
748 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
749 }
750
751 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
752 {
753 struct hid_device *hid = parser->device;
754 int i;
755
756 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
757 type == HID_COLLECTION_PHYSICAL)
758 hid->group = HID_GROUP_SENSOR_HUB;
759
760 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
761 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
762 hid->group == HID_GROUP_MULTITOUCH)
763 hid->group = HID_GROUP_GENERIC;
764
765 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
766 for (i = 0; i < parser->local.usage_index; i++)
767 if (parser->local.usage[i] == HID_GD_POINTER)
768 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
769
770 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
771 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
772 }
773
774 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
775 {
776 __u32 data;
777 int i;
778
779 hid_concatenate_usage_page(parser);
780
781 data = item_udata(item);
782
783 switch (item->tag) {
784 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
785 hid_scan_collection(parser, data & 0xff);
786 break;
787 case HID_MAIN_ITEM_TAG_END_COLLECTION:
788 break;
789 case HID_MAIN_ITEM_TAG_INPUT:
790 /* ignore constant inputs, they will be ignored by hid-input */
791 if (data & HID_MAIN_ITEM_CONSTANT)
792 break;
793 for (i = 0; i < parser->local.usage_index; i++)
794 hid_scan_input_usage(parser, parser->local.usage[i]);
795 break;
796 case HID_MAIN_ITEM_TAG_OUTPUT:
797 break;
798 case HID_MAIN_ITEM_TAG_FEATURE:
799 for (i = 0; i < parser->local.usage_index; i++)
800 hid_scan_feature_usage(parser, parser->local.usage[i]);
801 break;
802 }
803
804 /* Reset the local parser environment */
805 memset(&parser->local, 0, sizeof(parser->local));
806
807 return 0;
808 }
809
810 /*
811 * Scan a report descriptor before the device is added to the bus.
812 * Sets device groups and other properties that determine what driver
813 * to load.
814 */
815 static int hid_scan_report(struct hid_device *hid)
816 {
817 struct hid_parser *parser;
818 struct hid_item item;
819 __u8 *start = hid->dev_rdesc;
820 __u8 *end = start + hid->dev_rsize;
821 static int (*dispatch_type[])(struct hid_parser *parser,
822 struct hid_item *item) = {
823 hid_scan_main,
824 hid_parser_global,
825 hid_parser_local,
826 hid_parser_reserved
827 };
828
829 parser = vzalloc(sizeof(struct hid_parser));
830 if (!parser)
831 return -ENOMEM;
832
833 parser->device = hid;
834 hid->group = HID_GROUP_GENERIC;
835
836 /*
837 * The parsing is simpler than the one in hid_open_report() as we should
838 * be robust against hid errors. Those errors will be raised by
839 * hid_open_report() anyway.
840 */
841 while ((start = fetch_item(start, end, &item)) != NULL)
842 dispatch_type[item.type](parser, &item);
843
844 /*
845 * Handle special flags set during scanning.
846 */
847 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
848 (hid->group == HID_GROUP_MULTITOUCH))
849 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
850
851 /*
852 * Vendor specific handlings
853 */
854 switch (hid->vendor) {
855 case USB_VENDOR_ID_WACOM:
856 hid->group = HID_GROUP_WACOM;
857 break;
858 case USB_VENDOR_ID_SYNAPTICS:
859 if (hid->group == HID_GROUP_GENERIC)
860 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
861 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
862 /*
863 * hid-rmi should take care of them,
864 * not hid-generic
865 */
866 hid->group = HID_GROUP_RMI;
867 break;
868 }
869
870 kfree(parser->collection_stack);
871 vfree(parser);
872 return 0;
873 }
874
875 /**
876 * hid_parse_report - parse device report
877 *
878 * @device: hid device
879 * @start: report start
880 * @size: report size
881 *
882 * Allocate the device report as read by the bus driver. This function should
883 * only be called from parse() in ll drivers.
884 */
885 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
886 {
887 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
888 if (!hid->dev_rdesc)
889 return -ENOMEM;
890 hid->dev_rsize = size;
891 return 0;
892 }
893 EXPORT_SYMBOL_GPL(hid_parse_report);
894
895 static const char * const hid_report_names[] = {
896 "HID_INPUT_REPORT",
897 "HID_OUTPUT_REPORT",
898 "HID_FEATURE_REPORT",
899 };
900 /**
901 * hid_validate_values - validate existing device report's value indexes
902 *
903 * @device: hid device
904 * @type: which report type to examine
905 * @id: which report ID to examine (0 for first)
906 * @field_index: which report field to examine
907 * @report_counts: expected number of values
908 *
909 * Validate the number of values in a given field of a given report, after
910 * parsing.
911 */
912 struct hid_report *hid_validate_values(struct hid_device *hid,
913 unsigned int type, unsigned int id,
914 unsigned int field_index,
915 unsigned int report_counts)
916 {
917 struct hid_report *report;
918
919 if (type > HID_FEATURE_REPORT) {
920 hid_err(hid, "invalid HID report type %u\n", type);
921 return NULL;
922 }
923
924 if (id >= HID_MAX_IDS) {
925 hid_err(hid, "invalid HID report id %u\n", id);
926 return NULL;
927 }
928
929 /*
930 * Explicitly not using hid_get_report() here since it depends on
931 * ->numbered being checked, which may not always be the case when
932 * drivers go to access report values.
933 */
934 if (id == 0) {
935 /*
936 * Validating on id 0 means we should examine the first
937 * report in the list.
938 */
939 report = list_entry(
940 hid->report_enum[type].report_list.next,
941 struct hid_report, list);
942 } else {
943 report = hid->report_enum[type].report_id_hash[id];
944 }
945 if (!report) {
946 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
947 return NULL;
948 }
949 if (report->maxfield <= field_index) {
950 hid_err(hid, "not enough fields in %s %u\n",
951 hid_report_names[type], id);
952 return NULL;
953 }
954 if (report->field[field_index]->report_count < report_counts) {
955 hid_err(hid, "not enough values in %s %u field %u\n",
956 hid_report_names[type], id, field_index);
957 return NULL;
958 }
959 return report;
960 }
961 EXPORT_SYMBOL_GPL(hid_validate_values);
962
963 static int hid_calculate_multiplier(struct hid_device *hid,
964 struct hid_field *multiplier)
965 {
966 int m;
967 __s32 v = *multiplier->value;
968 __s32 lmin = multiplier->logical_minimum;
969 __s32 lmax = multiplier->logical_maximum;
970 __s32 pmin = multiplier->physical_minimum;
971 __s32 pmax = multiplier->physical_maximum;
972
973 /*
974 * "Because OS implementations will generally divide the control's
975 * reported count by the Effective Resolution Multiplier, designers
976 * should take care not to establish a potential Effective
977 * Resolution Multiplier of zero."
978 * HID Usage Table, v1.12, Section 4.3.1, p31
979 */
980 if (lmax - lmin == 0)
981 return 1;
982 /*
983 * Handling the unit exponent is left as an exercise to whoever
984 * finds a device where that exponent is not 0.
985 */
986 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
987 if (unlikely(multiplier->unit_exponent != 0)) {
988 hid_warn(hid,
989 "unsupported Resolution Multiplier unit exponent %d\n",
990 multiplier->unit_exponent);
991 }
992
993 /* There are no devices with an effective multiplier > 255 */
994 if (unlikely(m == 0 || m > 255 || m < -255)) {
995 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
996 m = 1;
997 }
998
999 return m;
1000 }
1001
1002 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1003 struct hid_field *field,
1004 struct hid_collection *multiplier_collection,
1005 int effective_multiplier)
1006 {
1007 struct hid_collection *collection;
1008 struct hid_usage *usage;
1009 int i;
1010
1011 /*
1012 * If multiplier_collection is NULL, the multiplier applies
1013 * to all fields in the report.
1014 * Otherwise, it is the Logical Collection the multiplier applies to
1015 * but our field may be in a subcollection of that collection.
1016 */
1017 for (i = 0; i < field->maxusage; i++) {
1018 usage = &field->usage[i];
1019
1020 collection = &hid->collection[usage->collection_index];
1021 while (collection->parent_idx != -1 &&
1022 collection != multiplier_collection)
1023 collection = &hid->collection[collection->parent_idx];
1024
1025 if (collection->parent_idx != -1 ||
1026 multiplier_collection == NULL)
1027 usage->resolution_multiplier = effective_multiplier;
1028
1029 }
1030 }
1031
1032 static void hid_apply_multiplier(struct hid_device *hid,
1033 struct hid_field *multiplier)
1034 {
1035 struct hid_report_enum *rep_enum;
1036 struct hid_report *rep;
1037 struct hid_field *field;
1038 struct hid_collection *multiplier_collection;
1039 int effective_multiplier;
1040 int i;
1041
1042 /*
1043 * "The Resolution Multiplier control must be contained in the same
1044 * Logical Collection as the control(s) to which it is to be applied.
1045 * If no Resolution Multiplier is defined, then the Resolution
1046 * Multiplier defaults to 1. If more than one control exists in a
1047 * Logical Collection, the Resolution Multiplier is associated with
1048 * all controls in the collection. If no Logical Collection is
1049 * defined, the Resolution Multiplier is associated with all
1050 * controls in the report."
1051 * HID Usage Table, v1.12, Section 4.3.1, p30
1052 *
1053 * Thus, search from the current collection upwards until we find a
1054 * logical collection. Then search all fields for that same parent
1055 * collection. Those are the fields the multiplier applies to.
1056 *
1057 * If we have more than one multiplier, it will overwrite the
1058 * applicable fields later.
1059 */
1060 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1061 while (multiplier_collection->parent_idx != -1 &&
1062 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1063 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1064
1065 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1066
1067 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1068 list_for_each_entry(rep, &rep_enum->report_list, list) {
1069 for (i = 0; i < rep->maxfield; i++) {
1070 field = rep->field[i];
1071 hid_apply_multiplier_to_field(hid, field,
1072 multiplier_collection,
1073 effective_multiplier);
1074 }
1075 }
1076 }
1077
1078 /*
1079 * hid_setup_resolution_multiplier - set up all resolution multipliers
1080 *
1081 * @device: hid device
1082 *
1083 * Search for all Resolution Multiplier Feature Reports and apply their
1084 * value to all matching Input items. This only updates the internal struct
1085 * fields.
1086 *
1087 * The Resolution Multiplier is applied by the hardware. If the multiplier
1088 * is anything other than 1, the hardware will send pre-multiplied events
1089 * so that the same physical interaction generates an accumulated
1090 * accumulated_value = value * * multiplier
1091 * This may be achieved by sending
1092 * - "value * multiplier" for each event, or
1093 * - "value" but "multiplier" times as frequently, or
1094 * - a combination of the above
1095 * The only guarantee is that the same physical interaction always generates
1096 * an accumulated 'value * multiplier'.
1097 *
1098 * This function must be called before any event processing and after
1099 * any SetRequest to the Resolution Multiplier.
1100 */
1101 void hid_setup_resolution_multiplier(struct hid_device *hid)
1102 {
1103 struct hid_report_enum *rep_enum;
1104 struct hid_report *rep;
1105 struct hid_usage *usage;
1106 int i, j;
1107
1108 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1109 list_for_each_entry(rep, &rep_enum->report_list, list) {
1110 for (i = 0; i < rep->maxfield; i++) {
1111 /* Ignore if report count is out of bounds. */
1112 if (rep->field[i]->report_count < 1)
1113 continue;
1114
1115 for (j = 0; j < rep->field[i]->maxusage; j++) {
1116 usage = &rep->field[i]->usage[j];
1117 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1118 hid_apply_multiplier(hid,
1119 rep->field[i]);
1120 }
1121 }
1122 }
1123 }
1124 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1125
1126 /**
1127 * hid_open_report - open a driver-specific device report
1128 *
1129 * @device: hid device
1130 *
1131 * Parse a report description into a hid_device structure. Reports are
1132 * enumerated, fields are attached to these reports.
1133 * 0 returned on success, otherwise nonzero error value.
1134 *
1135 * This function (or the equivalent hid_parse() macro) should only be
1136 * called from probe() in drivers, before starting the device.
1137 */
1138 int hid_open_report(struct hid_device *device)
1139 {
1140 struct hid_parser *parser;
1141 struct hid_item item;
1142 unsigned int size;
1143 __u8 *start;
1144 __u8 *buf;
1145 __u8 *end;
1146 int ret;
1147 static int (*dispatch_type[])(struct hid_parser *parser,
1148 struct hid_item *item) = {
1149 hid_parser_main,
1150 hid_parser_global,
1151 hid_parser_local,
1152 hid_parser_reserved
1153 };
1154
1155 if (WARN_ON(device->status & HID_STAT_PARSED))
1156 return -EBUSY;
1157
1158 start = device->dev_rdesc;
1159 if (WARN_ON(!start))
1160 return -ENODEV;
1161 size = device->dev_rsize;
1162
1163 buf = kmemdup(start, size, GFP_KERNEL);
1164 if (buf == NULL)
1165 return -ENOMEM;
1166
1167 if (device->driver->report_fixup)
1168 start = device->driver->report_fixup(device, buf, &size);
1169 else
1170 start = buf;
1171
1172 start = kmemdup(start, size, GFP_KERNEL);
1173 kfree(buf);
1174 if (start == NULL)
1175 return -ENOMEM;
1176
1177 device->rdesc = start;
1178 device->rsize = size;
1179
1180 parser = vzalloc(sizeof(struct hid_parser));
1181 if (!parser) {
1182 ret = -ENOMEM;
1183 goto alloc_err;
1184 }
1185
1186 parser->device = device;
1187
1188 end = start + size;
1189
1190 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1191 sizeof(struct hid_collection), GFP_KERNEL);
1192 if (!device->collection) {
1193 ret = -ENOMEM;
1194 goto err;
1195 }
1196 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1197
1198 ret = -EINVAL;
1199 while ((start = fetch_item(start, end, &item)) != NULL) {
1200
1201 if (item.format != HID_ITEM_FORMAT_SHORT) {
1202 hid_err(device, "unexpected long global item\n");
1203 goto err;
1204 }
1205
1206 if (dispatch_type[item.type](parser, &item)) {
1207 hid_err(device, "item %u %u %u %u parsing failed\n",
1208 item.format, (unsigned)item.size,
1209 (unsigned)item.type, (unsigned)item.tag);
1210 goto err;
1211 }
1212
1213 if (start == end) {
1214 if (parser->collection_stack_ptr) {
1215 hid_err(device, "unbalanced collection at end of report description\n");
1216 goto err;
1217 }
1218 if (parser->local.delimiter_depth) {
1219 hid_err(device, "unbalanced delimiter at end of report description\n");
1220 goto err;
1221 }
1222
1223 /*
1224 * fetch initial values in case the device's
1225 * default multiplier isn't the recommended 1
1226 */
1227 hid_setup_resolution_multiplier(device);
1228
1229 kfree(parser->collection_stack);
1230 vfree(parser);
1231 device->status |= HID_STAT_PARSED;
1232
1233 return 0;
1234 }
1235 }
1236
1237 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1238 err:
1239 kfree(parser->collection_stack);
1240 alloc_err:
1241 vfree(parser);
1242 hid_close_report(device);
1243 return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(hid_open_report);
1246
1247 /*
1248 * Convert a signed n-bit integer to signed 32-bit integer. Common
1249 * cases are done through the compiler, the screwed things has to be
1250 * done by hand.
1251 */
1252
1253 static s32 snto32(__u32 value, unsigned n)
1254 {
1255 switch (n) {
1256 case 8: return ((__s8)value);
1257 case 16: return ((__s16)value);
1258 case 32: return ((__s32)value);
1259 }
1260 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1261 }
1262
1263 s32 hid_snto32(__u32 value, unsigned n)
1264 {
1265 return snto32(value, n);
1266 }
1267 EXPORT_SYMBOL_GPL(hid_snto32);
1268
1269 /*
1270 * Convert a signed 32-bit integer to a signed n-bit integer.
1271 */
1272
1273 static u32 s32ton(__s32 value, unsigned n)
1274 {
1275 s32 a = value >> (n - 1);
1276 if (a && a != -1)
1277 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1278 return value & ((1 << n) - 1);
1279 }
1280
1281 /*
1282 * Extract/implement a data field from/to a little endian report (bit array).
1283 *
1284 * Code sort-of follows HID spec:
1285 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1286 *
1287 * While the USB HID spec allows unlimited length bit fields in "report
1288 * descriptors", most devices never use more than 16 bits.
1289 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1290 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1291 */
1292
1293 static u32 __extract(u8 *report, unsigned offset, int n)
1294 {
1295 unsigned int idx = offset / 8;
1296 unsigned int bit_nr = 0;
1297 unsigned int bit_shift = offset % 8;
1298 int bits_to_copy = 8 - bit_shift;
1299 u32 value = 0;
1300 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1301
1302 while (n > 0) {
1303 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1304 n -= bits_to_copy;
1305 bit_nr += bits_to_copy;
1306 bits_to_copy = 8;
1307 bit_shift = 0;
1308 idx++;
1309 }
1310
1311 return value & mask;
1312 }
1313
1314 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1315 unsigned offset, unsigned n)
1316 {
1317 if (n > 256) {
1318 hid_warn(hid, "hid_field_extract() called with n (%d) > 256! (%s)\n",
1319 n, current->comm);
1320 n = 256;
1321 }
1322
1323 return __extract(report, offset, n);
1324 }
1325 EXPORT_SYMBOL_GPL(hid_field_extract);
1326
1327 /*
1328 * "implement" : set bits in a little endian bit stream.
1329 * Same concepts as "extract" (see comments above).
1330 * The data mangled in the bit stream remains in little endian
1331 * order the whole time. It make more sense to talk about
1332 * endianness of register values by considering a register
1333 * a "cached" copy of the little endian bit stream.
1334 */
1335
1336 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1337 {
1338 unsigned int idx = offset / 8;
1339 unsigned int bit_shift = offset % 8;
1340 int bits_to_set = 8 - bit_shift;
1341
1342 while (n - bits_to_set >= 0) {
1343 report[idx] &= ~(0xff << bit_shift);
1344 report[idx] |= value << bit_shift;
1345 value >>= bits_to_set;
1346 n -= bits_to_set;
1347 bits_to_set = 8;
1348 bit_shift = 0;
1349 idx++;
1350 }
1351
1352 /* last nibble */
1353 if (n) {
1354 u8 bit_mask = ((1U << n) - 1);
1355 report[idx] &= ~(bit_mask << bit_shift);
1356 report[idx] |= value << bit_shift;
1357 }
1358 }
1359
1360 static void implement(const struct hid_device *hid, u8 *report,
1361 unsigned offset, unsigned n, u32 value)
1362 {
1363 if (unlikely(n > 32)) {
1364 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1365 __func__, n, current->comm);
1366 n = 32;
1367 } else if (n < 32) {
1368 u32 m = (1U << n) - 1;
1369
1370 if (unlikely(value > m)) {
1371 hid_warn(hid,
1372 "%s() called with too large value %d (n: %d)! (%s)\n",
1373 __func__, value, n, current->comm);
1374 WARN_ON(1);
1375 value &= m;
1376 }
1377 }
1378
1379 __implement(report, offset, n, value);
1380 }
1381
1382 /*
1383 * Search an array for a value.
1384 */
1385
1386 static int search(__s32 *array, __s32 value, unsigned n)
1387 {
1388 while (n--) {
1389 if (*array++ == value)
1390 return 0;
1391 }
1392 return -1;
1393 }
1394
1395 /**
1396 * hid_match_report - check if driver's raw_event should be called
1397 *
1398 * @hid: hid device
1399 * @report_type: type to match against
1400 *
1401 * compare hid->driver->report_table->report_type to report->type
1402 */
1403 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1404 {
1405 const struct hid_report_id *id = hid->driver->report_table;
1406
1407 if (!id) /* NULL means all */
1408 return 1;
1409
1410 for (; id->report_type != HID_TERMINATOR; id++)
1411 if (id->report_type == HID_ANY_ID ||
1412 id->report_type == report->type)
1413 return 1;
1414 return 0;
1415 }
1416
1417 /**
1418 * hid_match_usage - check if driver's event should be called
1419 *
1420 * @hid: hid device
1421 * @usage: usage to match against
1422 *
1423 * compare hid->driver->usage_table->usage_{type,code} to
1424 * usage->usage_{type,code}
1425 */
1426 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1427 {
1428 const struct hid_usage_id *id = hid->driver->usage_table;
1429
1430 if (!id) /* NULL means all */
1431 return 1;
1432
1433 for (; id->usage_type != HID_ANY_ID - 1; id++)
1434 if ((id->usage_hid == HID_ANY_ID ||
1435 id->usage_hid == usage->hid) &&
1436 (id->usage_type == HID_ANY_ID ||
1437 id->usage_type == usage->type) &&
1438 (id->usage_code == HID_ANY_ID ||
1439 id->usage_code == usage->code))
1440 return 1;
1441 return 0;
1442 }
1443
1444 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1445 struct hid_usage *usage, __s32 value, int interrupt)
1446 {
1447 struct hid_driver *hdrv = hid->driver;
1448 int ret;
1449
1450 if (!list_empty(&hid->debug_list))
1451 hid_dump_input(hid, usage, value);
1452
1453 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1454 ret = hdrv->event(hid, field, usage, value);
1455 if (ret != 0) {
1456 if (ret < 0)
1457 hid_err(hid, "%s's event failed with %d\n",
1458 hdrv->name, ret);
1459 return;
1460 }
1461 }
1462
1463 if (hid->claimed & HID_CLAIMED_INPUT)
1464 hidinput_hid_event(hid, field, usage, value);
1465 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1466 hid->hiddev_hid_event(hid, field, usage, value);
1467 }
1468
1469 /*
1470 * Analyse a received field, and fetch the data from it. The field
1471 * content is stored for next report processing (we do differential
1472 * reporting to the layer).
1473 */
1474
1475 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1476 __u8 *data, int interrupt)
1477 {
1478 unsigned n;
1479 unsigned count = field->report_count;
1480 unsigned offset = field->report_offset;
1481 unsigned size = field->report_size;
1482 __s32 min = field->logical_minimum;
1483 __s32 max = field->logical_maximum;
1484 __s32 *value;
1485
1486 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1487 if (!value)
1488 return;
1489
1490 for (n = 0; n < count; n++) {
1491
1492 value[n] = min < 0 ?
1493 snto32(hid_field_extract(hid, data, offset + n * size,
1494 size), size) :
1495 hid_field_extract(hid, data, offset + n * size, size);
1496
1497 /* Ignore report if ErrorRollOver */
1498 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1499 value[n] >= min && value[n] <= max &&
1500 value[n] - min < field->maxusage &&
1501 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1502 goto exit;
1503 }
1504
1505 for (n = 0; n < count; n++) {
1506
1507 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1508 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1509 continue;
1510 }
1511
1512 if (field->value[n] >= min && field->value[n] <= max
1513 && field->value[n] - min < field->maxusage
1514 && field->usage[field->value[n] - min].hid
1515 && search(value, field->value[n], count))
1516 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1517
1518 if (value[n] >= min && value[n] <= max
1519 && value[n] - min < field->maxusage
1520 && field->usage[value[n] - min].hid
1521 && search(field->value, value[n], count))
1522 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1523 }
1524
1525 memcpy(field->value, value, count * sizeof(__s32));
1526 exit:
1527 kfree(value);
1528 }
1529
1530 /*
1531 * Output the field into the report.
1532 */
1533
1534 static void hid_output_field(const struct hid_device *hid,
1535 struct hid_field *field, __u8 *data)
1536 {
1537 unsigned count = field->report_count;
1538 unsigned offset = field->report_offset;
1539 unsigned size = field->report_size;
1540 unsigned n;
1541
1542 for (n = 0; n < count; n++) {
1543 if (field->logical_minimum < 0) /* signed values */
1544 implement(hid, data, offset + n * size, size,
1545 s32ton(field->value[n], size));
1546 else /* unsigned values */
1547 implement(hid, data, offset + n * size, size,
1548 field->value[n]);
1549 }
1550 }
1551
1552 /*
1553 * Create a report. 'data' has to be allocated using
1554 * hid_alloc_report_buf() so that it has proper size.
1555 */
1556
1557 void hid_output_report(struct hid_report *report, __u8 *data)
1558 {
1559 unsigned n;
1560
1561 if (report->id > 0)
1562 *data++ = report->id;
1563
1564 memset(data, 0, ((report->size - 1) >> 3) + 1);
1565 for (n = 0; n < report->maxfield; n++)
1566 hid_output_field(report->device, report->field[n], data);
1567 }
1568 EXPORT_SYMBOL_GPL(hid_output_report);
1569
1570 /*
1571 * Allocator for buffer that is going to be passed to hid_output_report()
1572 */
1573 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1574 {
1575 /*
1576 * 7 extra bytes are necessary to achieve proper functionality
1577 * of implement() working on 8 byte chunks
1578 */
1579
1580 u32 len = hid_report_len(report) + 7;
1581
1582 return kmalloc(len, flags);
1583 }
1584 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1585
1586 /*
1587 * Set a field value. The report this field belongs to has to be
1588 * created and transferred to the device, to set this value in the
1589 * device.
1590 */
1591
1592 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1593 {
1594 unsigned size;
1595
1596 if (!field)
1597 return -1;
1598
1599 size = field->report_size;
1600
1601 hid_dump_input(field->report->device, field->usage + offset, value);
1602
1603 if (offset >= field->report_count) {
1604 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1605 offset, field->report_count);
1606 return -1;
1607 }
1608 if (field->logical_minimum < 0) {
1609 if (value != snto32(s32ton(value, size), size)) {
1610 hid_err(field->report->device, "value %d is out of range\n", value);
1611 return -1;
1612 }
1613 }
1614 field->value[offset] = value;
1615 return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(hid_set_field);
1618
1619 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1620 const u8 *data)
1621 {
1622 struct hid_report *report;
1623 unsigned int n = 0; /* Normally report number is 0 */
1624
1625 /* Device uses numbered reports, data[0] is report number */
1626 if (report_enum->numbered)
1627 n = *data;
1628
1629 report = report_enum->report_id_hash[n];
1630 if (report == NULL)
1631 dbg_hid("undefined report_id %u received\n", n);
1632
1633 return report;
1634 }
1635
1636 /*
1637 * Implement a generic .request() callback, using .raw_request()
1638 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1639 */
1640 int __hid_request(struct hid_device *hid, struct hid_report *report,
1641 int reqtype)
1642 {
1643 char *buf;
1644 int ret;
1645 u32 len;
1646
1647 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1648 if (!buf)
1649 return -ENOMEM;
1650
1651 len = hid_report_len(report);
1652
1653 if (reqtype == HID_REQ_SET_REPORT)
1654 hid_output_report(report, buf);
1655
1656 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1657 report->type, reqtype);
1658 if (ret < 0) {
1659 dbg_hid("unable to complete request: %d\n", ret);
1660 goto out;
1661 }
1662
1663 if (reqtype == HID_REQ_GET_REPORT)
1664 hid_input_report(hid, report->type, buf, ret, 0);
1665
1666 ret = 0;
1667
1668 out:
1669 kfree(buf);
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(__hid_request);
1673
1674 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1675 int interrupt)
1676 {
1677 struct hid_report_enum *report_enum = hid->report_enum + type;
1678 struct hid_report *report;
1679 struct hid_driver *hdrv;
1680 unsigned int a;
1681 u32 rsize, csize = size;
1682 u8 *cdata = data;
1683 int ret = 0;
1684
1685 report = hid_get_report(report_enum, data);
1686 if (!report)
1687 goto out;
1688
1689 if (report_enum->numbered) {
1690 cdata++;
1691 csize--;
1692 }
1693
1694 rsize = ((report->size - 1) >> 3) + 1;
1695
1696 if (rsize > HID_MAX_BUFFER_SIZE)
1697 rsize = HID_MAX_BUFFER_SIZE;
1698
1699 if (csize < rsize) {
1700 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1701 csize, rsize);
1702 memset(cdata + csize, 0, rsize - csize);
1703 }
1704
1705 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1706 hid->hiddev_report_event(hid, report);
1707 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1708 ret = hidraw_report_event(hid, data, size);
1709 if (ret)
1710 goto out;
1711 }
1712
1713 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1714 for (a = 0; a < report->maxfield; a++)
1715 hid_input_field(hid, report->field[a], cdata, interrupt);
1716 hdrv = hid->driver;
1717 if (hdrv && hdrv->report)
1718 hdrv->report(hid, report);
1719 }
1720
1721 if (hid->claimed & HID_CLAIMED_INPUT)
1722 hidinput_report_event(hid, report);
1723 out:
1724 return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1727
1728 /**
1729 * hid_input_report - report data from lower layer (usb, bt...)
1730 *
1731 * @hid: hid device
1732 * @type: HID report type (HID_*_REPORT)
1733 * @data: report contents
1734 * @size: size of data parameter
1735 * @interrupt: distinguish between interrupt and control transfers
1736 *
1737 * This is data entry for lower layers.
1738 */
1739 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1740 {
1741 struct hid_report_enum *report_enum;
1742 struct hid_driver *hdrv;
1743 struct hid_report *report;
1744 int ret = 0;
1745
1746 if (!hid)
1747 return -ENODEV;
1748
1749 if (down_trylock(&hid->driver_input_lock))
1750 return -EBUSY;
1751
1752 if (!hid->driver) {
1753 ret = -ENODEV;
1754 goto unlock;
1755 }
1756 report_enum = hid->report_enum + type;
1757 hdrv = hid->driver;
1758
1759 if (!size) {
1760 dbg_hid("empty report\n");
1761 ret = -1;
1762 goto unlock;
1763 }
1764
1765 /* Avoid unnecessary overhead if debugfs is disabled */
1766 if (!list_empty(&hid->debug_list))
1767 hid_dump_report(hid, type, data, size);
1768
1769 report = hid_get_report(report_enum, data);
1770
1771 if (!report) {
1772 ret = -1;
1773 goto unlock;
1774 }
1775
1776 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1777 ret = hdrv->raw_event(hid, report, data, size);
1778 if (ret < 0)
1779 goto unlock;
1780 }
1781
1782 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1783
1784 unlock:
1785 up(&hid->driver_input_lock);
1786 return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(hid_input_report);
1789
1790 bool hid_match_one_id(const struct hid_device *hdev,
1791 const struct hid_device_id *id)
1792 {
1793 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1794 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1795 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1796 (id->product == HID_ANY_ID || id->product == hdev->product);
1797 }
1798
1799 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1800 const struct hid_device_id *id)
1801 {
1802 for (; id->bus; id++)
1803 if (hid_match_one_id(hdev, id))
1804 return id;
1805
1806 return NULL;
1807 }
1808
1809 static const struct hid_device_id hid_hiddev_list[] = {
1810 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1812 { }
1813 };
1814
1815 static bool hid_hiddev(struct hid_device *hdev)
1816 {
1817 return !!hid_match_id(hdev, hid_hiddev_list);
1818 }
1819
1820
1821 static ssize_t
1822 read_report_descriptor(struct file *filp, struct kobject *kobj,
1823 struct bin_attribute *attr,
1824 char *buf, loff_t off, size_t count)
1825 {
1826 struct device *dev = kobj_to_dev(kobj);
1827 struct hid_device *hdev = to_hid_device(dev);
1828
1829 if (off >= hdev->rsize)
1830 return 0;
1831
1832 if (off + count > hdev->rsize)
1833 count = hdev->rsize - off;
1834
1835 memcpy(buf, hdev->rdesc + off, count);
1836
1837 return count;
1838 }
1839
1840 static ssize_t
1841 show_country(struct device *dev, struct device_attribute *attr,
1842 char *buf)
1843 {
1844 struct hid_device *hdev = to_hid_device(dev);
1845
1846 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1847 }
1848
1849 static struct bin_attribute dev_bin_attr_report_desc = {
1850 .attr = { .name = "report_descriptor", .mode = 0444 },
1851 .read = read_report_descriptor,
1852 .size = HID_MAX_DESCRIPTOR_SIZE,
1853 };
1854
1855 static const struct device_attribute dev_attr_country = {
1856 .attr = { .name = "country", .mode = 0444 },
1857 .show = show_country,
1858 };
1859
1860 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1861 {
1862 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1863 "Joystick", "Gamepad", "Keyboard", "Keypad",
1864 "Multi-Axis Controller"
1865 };
1866 const char *type, *bus;
1867 char buf[64] = "";
1868 unsigned int i;
1869 int len;
1870 int ret;
1871
1872 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1873 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1874 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1875 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1876 if (hdev->bus != BUS_USB)
1877 connect_mask &= ~HID_CONNECT_HIDDEV;
1878 if (hid_hiddev(hdev))
1879 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1880
1881 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1882 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1883 hdev->claimed |= HID_CLAIMED_INPUT;
1884
1885 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1886 !hdev->hiddev_connect(hdev,
1887 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1888 hdev->claimed |= HID_CLAIMED_HIDDEV;
1889 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1890 hdev->claimed |= HID_CLAIMED_HIDRAW;
1891
1892 if (connect_mask & HID_CONNECT_DRIVER)
1893 hdev->claimed |= HID_CLAIMED_DRIVER;
1894
1895 /* Drivers with the ->raw_event callback set are not required to connect
1896 * to any other listener. */
1897 if (!hdev->claimed && !hdev->driver->raw_event) {
1898 hid_err(hdev, "device has no listeners, quitting\n");
1899 return -ENODEV;
1900 }
1901
1902 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1903 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1904 hdev->ff_init(hdev);
1905
1906 len = 0;
1907 if (hdev->claimed & HID_CLAIMED_INPUT)
1908 len += sprintf(buf + len, "input");
1909 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1910 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1911 ((struct hiddev *)hdev->hiddev)->minor);
1912 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1913 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1914 ((struct hidraw *)hdev->hidraw)->minor);
1915
1916 type = "Device";
1917 for (i = 0; i < hdev->maxcollection; i++) {
1918 struct hid_collection *col = &hdev->collection[i];
1919 if (col->type == HID_COLLECTION_APPLICATION &&
1920 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1921 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1922 type = types[col->usage & 0xffff];
1923 break;
1924 }
1925 }
1926
1927 switch (hdev->bus) {
1928 case BUS_USB:
1929 bus = "USB";
1930 break;
1931 case BUS_BLUETOOTH:
1932 bus = "BLUETOOTH";
1933 break;
1934 case BUS_I2C:
1935 bus = "I2C";
1936 break;
1937 default:
1938 bus = "<UNKNOWN>";
1939 }
1940
1941 ret = device_create_file(&hdev->dev, &dev_attr_country);
1942 if (ret)
1943 hid_warn(hdev,
1944 "can't create sysfs country code attribute err: %d\n", ret);
1945
1946 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1947 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1948 type, hdev->name, hdev->phys);
1949
1950 return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(hid_connect);
1953
1954 void hid_disconnect(struct hid_device *hdev)
1955 {
1956 device_remove_file(&hdev->dev, &dev_attr_country);
1957 if (hdev->claimed & HID_CLAIMED_INPUT)
1958 hidinput_disconnect(hdev);
1959 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1960 hdev->hiddev_disconnect(hdev);
1961 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1962 hidraw_disconnect(hdev);
1963 hdev->claimed = 0;
1964 }
1965 EXPORT_SYMBOL_GPL(hid_disconnect);
1966
1967 /**
1968 * hid_hw_start - start underlying HW
1969 * @hdev: hid device
1970 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1971 *
1972 * Call this in probe function *after* hid_parse. This will setup HW
1973 * buffers and start the device (if not defeirred to device open).
1974 * hid_hw_stop must be called if this was successful.
1975 */
1976 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1977 {
1978 int error;
1979
1980 error = hdev->ll_driver->start(hdev);
1981 if (error)
1982 return error;
1983
1984 if (connect_mask) {
1985 error = hid_connect(hdev, connect_mask);
1986 if (error) {
1987 hdev->ll_driver->stop(hdev);
1988 return error;
1989 }
1990 }
1991
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(hid_hw_start);
1995
1996 /**
1997 * hid_hw_stop - stop underlying HW
1998 * @hdev: hid device
1999 *
2000 * This is usually called from remove function or from probe when something
2001 * failed and hid_hw_start was called already.
2002 */
2003 void hid_hw_stop(struct hid_device *hdev)
2004 {
2005 hid_disconnect(hdev);
2006 hdev->ll_driver->stop(hdev);
2007 }
2008 EXPORT_SYMBOL_GPL(hid_hw_stop);
2009
2010 /**
2011 * hid_hw_open - signal underlying HW to start delivering events
2012 * @hdev: hid device
2013 *
2014 * Tell underlying HW to start delivering events from the device.
2015 * This function should be called sometime after successful call
2016 * to hid_hw_start().
2017 */
2018 int hid_hw_open(struct hid_device *hdev)
2019 {
2020 int ret;
2021
2022 ret = mutex_lock_killable(&hdev->ll_open_lock);
2023 if (ret)
2024 return ret;
2025
2026 if (!hdev->ll_open_count++) {
2027 ret = hdev->ll_driver->open(hdev);
2028 if (ret)
2029 hdev->ll_open_count--;
2030 }
2031
2032 mutex_unlock(&hdev->ll_open_lock);
2033 return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(hid_hw_open);
2036
2037 /**
2038 * hid_hw_close - signal underlaying HW to stop delivering events
2039 *
2040 * @hdev: hid device
2041 *
2042 * This function indicates that we are not interested in the events
2043 * from this device anymore. Delivery of events may or may not stop,
2044 * depending on the number of users still outstanding.
2045 */
2046 void hid_hw_close(struct hid_device *hdev)
2047 {
2048 mutex_lock(&hdev->ll_open_lock);
2049 if (!--hdev->ll_open_count)
2050 hdev->ll_driver->close(hdev);
2051 mutex_unlock(&hdev->ll_open_lock);
2052 }
2053 EXPORT_SYMBOL_GPL(hid_hw_close);
2054
2055 struct hid_dynid {
2056 struct list_head list;
2057 struct hid_device_id id;
2058 };
2059
2060 /**
2061 * store_new_id - add a new HID device ID to this driver and re-probe devices
2062 * @driver: target device driver
2063 * @buf: buffer for scanning device ID data
2064 * @count: input size
2065 *
2066 * Adds a new dynamic hid device ID to this driver,
2067 * and causes the driver to probe for all devices again.
2068 */
2069 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2070 size_t count)
2071 {
2072 struct hid_driver *hdrv = to_hid_driver(drv);
2073 struct hid_dynid *dynid;
2074 __u32 bus, vendor, product;
2075 unsigned long driver_data = 0;
2076 int ret;
2077
2078 ret = sscanf(buf, "%x %x %x %lx",
2079 &bus, &vendor, &product, &driver_data);
2080 if (ret < 3)
2081 return -EINVAL;
2082
2083 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2084 if (!dynid)
2085 return -ENOMEM;
2086
2087 dynid->id.bus = bus;
2088 dynid->id.group = HID_GROUP_ANY;
2089 dynid->id.vendor = vendor;
2090 dynid->id.product = product;
2091 dynid->id.driver_data = driver_data;
2092
2093 spin_lock(&hdrv->dyn_lock);
2094 list_add_tail(&dynid->list, &hdrv->dyn_list);
2095 spin_unlock(&hdrv->dyn_lock);
2096
2097 ret = driver_attach(&hdrv->driver);
2098
2099 return ret ? : count;
2100 }
2101 static DRIVER_ATTR_WO(new_id);
2102
2103 static struct attribute *hid_drv_attrs[] = {
2104 &driver_attr_new_id.attr,
2105 NULL,
2106 };
2107 ATTRIBUTE_GROUPS(hid_drv);
2108
2109 static void hid_free_dynids(struct hid_driver *hdrv)
2110 {
2111 struct hid_dynid *dynid, *n;
2112
2113 spin_lock(&hdrv->dyn_lock);
2114 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2115 list_del(&dynid->list);
2116 kfree(dynid);
2117 }
2118 spin_unlock(&hdrv->dyn_lock);
2119 }
2120
2121 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2122 struct hid_driver *hdrv)
2123 {
2124 struct hid_dynid *dynid;
2125
2126 spin_lock(&hdrv->dyn_lock);
2127 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2128 if (hid_match_one_id(hdev, &dynid->id)) {
2129 spin_unlock(&hdrv->dyn_lock);
2130 return &dynid->id;
2131 }
2132 }
2133 spin_unlock(&hdrv->dyn_lock);
2134
2135 return hid_match_id(hdev, hdrv->id_table);
2136 }
2137 EXPORT_SYMBOL_GPL(hid_match_device);
2138
2139 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2140 {
2141 struct hid_driver *hdrv = to_hid_driver(drv);
2142 struct hid_device *hdev = to_hid_device(dev);
2143
2144 return hid_match_device(hdev, hdrv) != NULL;
2145 }
2146
2147 /**
2148 * hid_compare_device_paths - check if both devices share the same path
2149 * @hdev_a: hid device
2150 * @hdev_b: hid device
2151 * @separator: char to use as separator
2152 *
2153 * Check if two devices share the same path up to the last occurrence of
2154 * the separator char. Both paths must exist (i.e., zero-length paths
2155 * don't match).
2156 */
2157 bool hid_compare_device_paths(struct hid_device *hdev_a,
2158 struct hid_device *hdev_b, char separator)
2159 {
2160 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2161 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2162
2163 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2164 return false;
2165
2166 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2167 }
2168 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2169
2170 static int hid_device_probe(struct device *dev)
2171 {
2172 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2173 struct hid_device *hdev = to_hid_device(dev);
2174 const struct hid_device_id *id;
2175 int ret = 0;
2176
2177 if (down_interruptible(&hdev->driver_input_lock)) {
2178 ret = -EINTR;
2179 goto end;
2180 }
2181 hdev->io_started = false;
2182
2183 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2184
2185 if (!hdev->driver) {
2186 id = hid_match_device(hdev, hdrv);
2187 if (id == NULL) {
2188 ret = -ENODEV;
2189 goto unlock;
2190 }
2191
2192 if (hdrv->match) {
2193 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2194 ret = -ENODEV;
2195 goto unlock;
2196 }
2197 } else {
2198 /*
2199 * hid-generic implements .match(), so if
2200 * hid_ignore_special_drivers is set, we can safely
2201 * return.
2202 */
2203 if (hid_ignore_special_drivers) {
2204 ret = -ENODEV;
2205 goto unlock;
2206 }
2207 }
2208
2209 /* reset the quirks that has been previously set */
2210 hdev->quirks = hid_lookup_quirk(hdev);
2211 hdev->driver = hdrv;
2212 if (hdrv->probe) {
2213 ret = hdrv->probe(hdev, id);
2214 } else { /* default probe */
2215 ret = hid_open_report(hdev);
2216 if (!ret)
2217 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2218 }
2219 if (ret) {
2220 hid_close_report(hdev);
2221 hdev->driver = NULL;
2222 }
2223 }
2224 unlock:
2225 if (!hdev->io_started)
2226 up(&hdev->driver_input_lock);
2227 end:
2228 return ret;
2229 }
2230
2231 static int hid_device_remove(struct device *dev)
2232 {
2233 struct hid_device *hdev = to_hid_device(dev);
2234 struct hid_driver *hdrv;
2235 int ret = 0;
2236
2237 if (down_interruptible(&hdev->driver_input_lock)) {
2238 ret = -EINTR;
2239 goto end;
2240 }
2241 hdev->io_started = false;
2242
2243 hdrv = hdev->driver;
2244 if (hdrv) {
2245 if (hdrv->remove)
2246 hdrv->remove(hdev);
2247 else /* default remove */
2248 hid_hw_stop(hdev);
2249 hid_close_report(hdev);
2250 hdev->driver = NULL;
2251 }
2252
2253 if (!hdev->io_started)
2254 up(&hdev->driver_input_lock);
2255 end:
2256 return ret;
2257 }
2258
2259 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2260 char *buf)
2261 {
2262 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2263
2264 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2265 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2266 }
2267 static DEVICE_ATTR_RO(modalias);
2268
2269 static struct attribute *hid_dev_attrs[] = {
2270 &dev_attr_modalias.attr,
2271 NULL,
2272 };
2273 static struct bin_attribute *hid_dev_bin_attrs[] = {
2274 &dev_bin_attr_report_desc,
2275 NULL
2276 };
2277 static const struct attribute_group hid_dev_group = {
2278 .attrs = hid_dev_attrs,
2279 .bin_attrs = hid_dev_bin_attrs,
2280 };
2281 __ATTRIBUTE_GROUPS(hid_dev);
2282
2283 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2284 {
2285 struct hid_device *hdev = to_hid_device(dev);
2286
2287 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2288 hdev->bus, hdev->vendor, hdev->product))
2289 return -ENOMEM;
2290
2291 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2292 return -ENOMEM;
2293
2294 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2295 return -ENOMEM;
2296
2297 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2298 return -ENOMEM;
2299
2300 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2301 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2302 return -ENOMEM;
2303
2304 return 0;
2305 }
2306
2307 struct bus_type hid_bus_type = {
2308 .name = "hid",
2309 .dev_groups = hid_dev_groups,
2310 .drv_groups = hid_drv_groups,
2311 .match = hid_bus_match,
2312 .probe = hid_device_probe,
2313 .remove = hid_device_remove,
2314 .uevent = hid_uevent,
2315 };
2316 EXPORT_SYMBOL(hid_bus_type);
2317
2318 int hid_add_device(struct hid_device *hdev)
2319 {
2320 static atomic_t id = ATOMIC_INIT(0);
2321 int ret;
2322
2323 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2324 return -EBUSY;
2325
2326 hdev->quirks = hid_lookup_quirk(hdev);
2327
2328 /* we need to kill them here, otherwise they will stay allocated to
2329 * wait for coming driver */
2330 if (hid_ignore(hdev))
2331 return -ENODEV;
2332
2333 /*
2334 * Check for the mandatory transport channel.
2335 */
2336 if (!hdev->ll_driver->raw_request) {
2337 hid_err(hdev, "transport driver missing .raw_request()\n");
2338 return -EINVAL;
2339 }
2340
2341 /*
2342 * Read the device report descriptor once and use as template
2343 * for the driver-specific modifications.
2344 */
2345 ret = hdev->ll_driver->parse(hdev);
2346 if (ret)
2347 return ret;
2348 if (!hdev->dev_rdesc)
2349 return -ENODEV;
2350
2351 /*
2352 * Scan generic devices for group information
2353 */
2354 if (hid_ignore_special_drivers) {
2355 hdev->group = HID_GROUP_GENERIC;
2356 } else if (!hdev->group &&
2357 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2358 ret = hid_scan_report(hdev);
2359 if (ret)
2360 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2361 }
2362
2363 /* XXX hack, any other cleaner solution after the driver core
2364 * is converted to allow more than 20 bytes as the device name? */
2365 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2366 hdev->vendor, hdev->product, atomic_inc_return(&id));
2367
2368 /*
2369 * Try loading the module for the device before the add, so that we do
2370 * not first have hid-generic binding only to have it replaced
2371 * immediately afterwards with a specialized driver.
2372 */
2373 if (!current_is_async())
2374 request_module("hid:b%04Xg%04Xv%08Xp%08X", hdev->bus,
2375 hdev->group, hdev->vendor, hdev->product);
2376
2377 hid_debug_register(hdev, dev_name(&hdev->dev));
2378 ret = device_add(&hdev->dev);
2379 if (!ret)
2380 hdev->status |= HID_STAT_ADDED;
2381 else
2382 hid_debug_unregister(hdev);
2383
2384 return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(hid_add_device);
2387
2388 /**
2389 * hid_allocate_device - allocate new hid device descriptor
2390 *
2391 * Allocate and initialize hid device, so that hid_destroy_device might be
2392 * used to free it.
2393 *
2394 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2395 * error value.
2396 */
2397 struct hid_device *hid_allocate_device(void)
2398 {
2399 struct hid_device *hdev;
2400 int ret = -ENOMEM;
2401
2402 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2403 if (hdev == NULL)
2404 return ERR_PTR(ret);
2405
2406 device_initialize(&hdev->dev);
2407 hdev->dev.release = hid_device_release;
2408 hdev->dev.bus = &hid_bus_type;
2409 device_enable_async_suspend(&hdev->dev);
2410
2411 hid_close_report(hdev);
2412
2413 init_waitqueue_head(&hdev->debug_wait);
2414 INIT_LIST_HEAD(&hdev->debug_list);
2415 spin_lock_init(&hdev->debug_list_lock);
2416 sema_init(&hdev->driver_input_lock, 1);
2417 mutex_init(&hdev->ll_open_lock);
2418
2419 return hdev;
2420 }
2421 EXPORT_SYMBOL_GPL(hid_allocate_device);
2422
2423 static void hid_remove_device(struct hid_device *hdev)
2424 {
2425 if (hdev->status & HID_STAT_ADDED) {
2426 device_del(&hdev->dev);
2427 hid_debug_unregister(hdev);
2428 hdev->status &= ~HID_STAT_ADDED;
2429 }
2430 kfree(hdev->dev_rdesc);
2431 hdev->dev_rdesc = NULL;
2432 hdev->dev_rsize = 0;
2433 }
2434
2435 /**
2436 * hid_destroy_device - free previously allocated device
2437 *
2438 * @hdev: hid device
2439 *
2440 * If you allocate hid_device through hid_allocate_device, you should ever
2441 * free by this function.
2442 */
2443 void hid_destroy_device(struct hid_device *hdev)
2444 {
2445 hid_remove_device(hdev);
2446 put_device(&hdev->dev);
2447 }
2448 EXPORT_SYMBOL_GPL(hid_destroy_device);
2449
2450
2451 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2452 {
2453 struct hid_driver *hdrv = data;
2454 struct hid_device *hdev = to_hid_device(dev);
2455
2456 if (hdev->driver == hdrv &&
2457 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2458 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2459 return device_reprobe(dev);
2460
2461 return 0;
2462 }
2463
2464 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2465 {
2466 struct hid_driver *hdrv = to_hid_driver(drv);
2467
2468 if (hdrv->match) {
2469 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2470 __hid_bus_reprobe_drivers);
2471 }
2472
2473 return 0;
2474 }
2475
2476 static int __bus_removed_driver(struct device_driver *drv, void *data)
2477 {
2478 return bus_rescan_devices(&hid_bus_type);
2479 }
2480
2481 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2482 const char *mod_name)
2483 {
2484 int ret;
2485
2486 hdrv->driver.name = hdrv->name;
2487 hdrv->driver.bus = &hid_bus_type;
2488 hdrv->driver.owner = owner;
2489 hdrv->driver.mod_name = mod_name;
2490
2491 INIT_LIST_HEAD(&hdrv->dyn_list);
2492 spin_lock_init(&hdrv->dyn_lock);
2493
2494 ret = driver_register(&hdrv->driver);
2495
2496 if (ret == 0)
2497 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2498 __hid_bus_driver_added);
2499
2500 return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(__hid_register_driver);
2503
2504 void hid_unregister_driver(struct hid_driver *hdrv)
2505 {
2506 driver_unregister(&hdrv->driver);
2507 hid_free_dynids(hdrv);
2508
2509 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2510 }
2511 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2512
2513 int hid_check_keys_pressed(struct hid_device *hid)
2514 {
2515 struct hid_input *hidinput;
2516 int i;
2517
2518 if (!(hid->claimed & HID_CLAIMED_INPUT))
2519 return 0;
2520
2521 list_for_each_entry(hidinput, &hid->inputs, list) {
2522 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2523 if (hidinput->input->key[i])
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2531
2532 static int __init hid_init(void)
2533 {
2534 int ret;
2535
2536 if (hid_debug)
2537 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2538 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2539
2540 ret = bus_register(&hid_bus_type);
2541 if (ret) {
2542 pr_err("can't register hid bus\n");
2543 goto err;
2544 }
2545
2546 ret = hidraw_init();
2547 if (ret)
2548 goto err_bus;
2549
2550 hid_debug_init();
2551
2552 return 0;
2553 err_bus:
2554 bus_unregister(&hid_bus_type);
2555 err:
2556 return ret;
2557 }
2558
2559 static void __exit hid_exit(void)
2560 {
2561 hid_debug_exit();
2562 hidraw_exit();
2563 bus_unregister(&hid_bus_type);
2564 hid_quirks_exit(HID_BUS_ANY);
2565 }
2566
2567 module_init(hid_init);
2568 module_exit(hid_exit);
2569
2570 MODULE_AUTHOR("Andreas Gal");
2571 MODULE_AUTHOR("Vojtech Pavlik");
2572 MODULE_AUTHOR("Jiri Kosina");
2573 MODULE_LICENSE("GPL");