]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/hid/hid-core.c
Merge tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54 * Register a new report for a device.
55 */
56
57 struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60 {
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84
85 return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90 * Register a new field for this report.
91 */
92
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
94 {
95 struct hid_field *field;
96
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
100 }
101
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 usages * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
107
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
113
114 return field;
115 }
116
117 /*
118 * Open a collection. The type/usage is pushed on the stack.
119 */
120
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
133
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
139
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
142 }
143
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
148 2),
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
153 }
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
163 }
164
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
167
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
175
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
178
179 return 0;
180 }
181
182 /*
183 * Close a collection.
184 */
185
186 static int close_collection(struct hid_parser *parser)
187 {
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
191 }
192 parser->collection_stack_ptr--;
193 return 0;
194 }
195
196 /*
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
199 */
200
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 struct hid_collection *collection = parser->device->collection;
204 int n;
205
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
210 }
211 return 0; /* we know nothing about this usage type */
212 }
213
214 /*
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
217 */
218
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
224 }
225
226 /*
227 * Add a usage to the temporary parser table.
228 */
229
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
235 }
236 parser->local.usage[parser->local.usage_index] = usage;
237
238 /*
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
241 */
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
244
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
251 }
252
253 /*
254 * Register a new field for this report.
255 */
256
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int usages;
262 unsigned int offset;
263 unsigned int i;
264 unsigned int application;
265
266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267
268 report = hid_register_report(parser->device, report_type,
269 parser->global.report_id, application);
270 if (!report) {
271 hid_err(parser->device, "hid_register_report failed\n");
272 return -1;
273 }
274
275 /* Handle both signed and unsigned cases properly */
276 if ((parser->global.logical_minimum < 0 &&
277 parser->global.logical_maximum <
278 parser->global.logical_minimum) ||
279 (parser->global.logical_minimum >= 0 &&
280 (__u32)parser->global.logical_maximum <
281 (__u32)parser->global.logical_minimum)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser->global.logical_minimum,
284 parser->global.logical_maximum);
285 return -1;
286 }
287
288 offset = report->size;
289 report->size += parser->global.report_size * parser->global.report_count;
290
291 /* Total size check: Allow for possible report index byte */
292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293 hid_err(parser->device, "report is too long\n");
294 return -1;
295 }
296
297 if (!parser->local.usage_index) /* Ignore padding fields */
298 return 0;
299
300 usages = max_t(unsigned, parser->local.usage_index,
301 parser->global.report_count);
302
303 field = hid_register_field(report, usages);
304 if (!field)
305 return 0;
306
307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309 field->application = application;
310
311 for (i = 0; i < usages; i++) {
312 unsigned j = i;
313 /* Duplicate the last usage we parsed if we have excess values */
314 if (i >= parser->local.usage_index)
315 j = parser->local.usage_index - 1;
316 field->usage[i].hid = parser->local.usage[j];
317 field->usage[i].collection_index =
318 parser->local.collection_index[j];
319 field->usage[i].usage_index = i;
320 field->usage[i].resolution_multiplier = 1;
321 }
322
323 field->maxusage = usages;
324 field->flags = flags;
325 field->report_offset = offset;
326 field->report_type = report_type;
327 field->report_size = parser->global.report_size;
328 field->report_count = parser->global.report_count;
329 field->logical_minimum = parser->global.logical_minimum;
330 field->logical_maximum = parser->global.logical_maximum;
331 field->physical_minimum = parser->global.physical_minimum;
332 field->physical_maximum = parser->global.physical_maximum;
333 field->unit_exponent = parser->global.unit_exponent;
334 field->unit = parser->global.unit;
335
336 return 0;
337 }
338
339 /*
340 * Read data value from item.
341 */
342
343 static u32 item_udata(struct hid_item *item)
344 {
345 switch (item->size) {
346 case 1: return item->data.u8;
347 case 2: return item->data.u16;
348 case 4: return item->data.u32;
349 }
350 return 0;
351 }
352
353 static s32 item_sdata(struct hid_item *item)
354 {
355 switch (item->size) {
356 case 1: return item->data.s8;
357 case 2: return item->data.s16;
358 case 4: return item->data.s32;
359 }
360 return 0;
361 }
362
363 /*
364 * Process a global item.
365 */
366
367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368 {
369 __s32 raw_value;
370 switch (item->tag) {
371 case HID_GLOBAL_ITEM_TAG_PUSH:
372
373 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374 hid_err(parser->device, "global environment stack overflow\n");
375 return -1;
376 }
377
378 memcpy(parser->global_stack + parser->global_stack_ptr++,
379 &parser->global, sizeof(struct hid_global));
380 return 0;
381
382 case HID_GLOBAL_ITEM_TAG_POP:
383
384 if (!parser->global_stack_ptr) {
385 hid_err(parser->device, "global environment stack underflow\n");
386 return -1;
387 }
388
389 memcpy(&parser->global, parser->global_stack +
390 --parser->global_stack_ptr, sizeof(struct hid_global));
391 return 0;
392
393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394 parser->global.usage_page = item_udata(item);
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398 parser->global.logical_minimum = item_sdata(item);
399 return 0;
400
401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402 if (parser->global.logical_minimum < 0)
403 parser->global.logical_maximum = item_sdata(item);
404 else
405 parser->global.logical_maximum = item_udata(item);
406 return 0;
407
408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409 parser->global.physical_minimum = item_sdata(item);
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413 if (parser->global.physical_minimum < 0)
414 parser->global.physical_maximum = item_sdata(item);
415 else
416 parser->global.physical_maximum = item_udata(item);
417 return 0;
418
419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420 /* Many devices provide unit exponent as a two's complement
421 * nibble due to the common misunderstanding of HID
422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423 * both this and the standard encoding. */
424 raw_value = item_sdata(item);
425 if (!(raw_value & 0xfffffff0))
426 parser->global.unit_exponent = hid_snto32(raw_value, 4);
427 else
428 parser->global.unit_exponent = raw_value;
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_UNIT:
432 parser->global.unit = item_udata(item);
433 return 0;
434
435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436 parser->global.report_size = item_udata(item);
437 if (parser->global.report_size > 256) {
438 hid_err(parser->device, "invalid report_size %d\n",
439 parser->global.report_size);
440 return -1;
441 }
442 return 0;
443
444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445 parser->global.report_count = item_udata(item);
446 if (parser->global.report_count > HID_MAX_USAGES) {
447 hid_err(parser->device, "invalid report_count %d\n",
448 parser->global.report_count);
449 return -1;
450 }
451 return 0;
452
453 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454 parser->global.report_id = item_udata(item);
455 if (parser->global.report_id == 0 ||
456 parser->global.report_id >= HID_MAX_IDS) {
457 hid_err(parser->device, "report_id %u is invalid\n",
458 parser->global.report_id);
459 return -1;
460 }
461 return 0;
462
463 default:
464 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465 return -1;
466 }
467 }
468
469 /*
470 * Process a local item.
471 */
472
473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474 {
475 __u32 data;
476 unsigned n;
477 __u32 count;
478
479 data = item_udata(item);
480
481 switch (item->tag) {
482 case HID_LOCAL_ITEM_TAG_DELIMITER:
483
484 if (data) {
485 /*
486 * We treat items before the first delimiter
487 * as global to all usage sets (branch 0).
488 * In the moment we process only these global
489 * items and the first delimiter set.
490 */
491 if (parser->local.delimiter_depth != 0) {
492 hid_err(parser->device, "nested delimiters\n");
493 return -1;
494 }
495 parser->local.delimiter_depth++;
496 parser->local.delimiter_branch++;
497 } else {
498 if (parser->local.delimiter_depth < 1) {
499 hid_err(parser->device, "bogus close delimiter\n");
500 return -1;
501 }
502 parser->local.delimiter_depth--;
503 }
504 return 0;
505
506 case HID_LOCAL_ITEM_TAG_USAGE:
507
508 if (parser->local.delimiter_branch > 1) {
509 dbg_hid("alternative usage ignored\n");
510 return 0;
511 }
512
513 return hid_add_usage(parser, data, item->size);
514
515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516
517 if (parser->local.delimiter_branch > 1) {
518 dbg_hid("alternative usage ignored\n");
519 return 0;
520 }
521
522 parser->local.usage_minimum = data;
523 return 0;
524
525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526
527 if (parser->local.delimiter_branch > 1) {
528 dbg_hid("alternative usage ignored\n");
529 return 0;
530 }
531
532 count = data - parser->local.usage_minimum;
533 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534 /*
535 * We do not warn if the name is not set, we are
536 * actually pre-scanning the device.
537 */
538 if (dev_name(&parser->device->dev))
539 hid_warn(parser->device,
540 "ignoring exceeding usage max\n");
541 data = HID_MAX_USAGES - parser->local.usage_index +
542 parser->local.usage_minimum - 1;
543 if (data <= 0) {
544 hid_err(parser->device,
545 "no more usage index available\n");
546 return -1;
547 }
548 }
549
550 for (n = parser->local.usage_minimum; n <= data; n++)
551 if (hid_add_usage(parser, n, item->size)) {
552 dbg_hid("hid_add_usage failed\n");
553 return -1;
554 }
555 return 0;
556
557 default:
558
559 dbg_hid("unknown local item tag 0x%x\n", item->tag);
560 return 0;
561 }
562 return 0;
563 }
564
565 /*
566 * Concatenate Usage Pages into Usages where relevant:
567 * As per specification, 6.2.2.8: "When the parser encounters a main item it
568 * concatenates the last declared Usage Page with a Usage to form a complete
569 * usage value."
570 */
571
572 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573 {
574 int i;
575 unsigned int usage_page;
576 unsigned int current_page;
577
578 if (!parser->local.usage_index)
579 return;
580
581 usage_page = parser->global.usage_page;
582
583 /*
584 * Concatenate usage page again only if last declared Usage Page
585 * has not been already used in previous usages concatenation
586 */
587 for (i = parser->local.usage_index - 1; i >= 0; i--) {
588 if (parser->local.usage_size[i] > 2)
589 /* Ignore extended usages */
590 continue;
591
592 current_page = parser->local.usage[i] >> 16;
593 if (current_page == usage_page)
594 break;
595
596 complete_usage(parser, i);
597 }
598 }
599
600 /*
601 * Process a main item.
602 */
603
604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605 {
606 __u32 data;
607 int ret;
608
609 hid_concatenate_last_usage_page(parser);
610
611 data = item_udata(item);
612
613 switch (item->tag) {
614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615 ret = open_collection(parser, data & 0xff);
616 break;
617 case HID_MAIN_ITEM_TAG_END_COLLECTION:
618 ret = close_collection(parser);
619 break;
620 case HID_MAIN_ITEM_TAG_INPUT:
621 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622 break;
623 case HID_MAIN_ITEM_TAG_OUTPUT:
624 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_FEATURE:
627 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628 break;
629 default:
630 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631 ret = 0;
632 }
633
634 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
635
636 return ret;
637 }
638
639 /*
640 * Process a reserved item.
641 */
642
643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644 {
645 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646 return 0;
647 }
648
649 /*
650 * Free a report and all registered fields. The field->usage and
651 * field->value table's are allocated behind the field, so we need
652 * only to free(field) itself.
653 */
654
655 static void hid_free_report(struct hid_report *report)
656 {
657 unsigned n;
658
659 for (n = 0; n < report->maxfield; n++)
660 kfree(report->field[n]);
661 kfree(report);
662 }
663
664 /*
665 * Close report. This function returns the device
666 * state to the point prior to hid_open_report().
667 */
668 static void hid_close_report(struct hid_device *device)
669 {
670 unsigned i, j;
671
672 for (i = 0; i < HID_REPORT_TYPES; i++) {
673 struct hid_report_enum *report_enum = device->report_enum + i;
674
675 for (j = 0; j < HID_MAX_IDS; j++) {
676 struct hid_report *report = report_enum->report_id_hash[j];
677 if (report)
678 hid_free_report(report);
679 }
680 memset(report_enum, 0, sizeof(*report_enum));
681 INIT_LIST_HEAD(&report_enum->report_list);
682 }
683
684 kfree(device->rdesc);
685 device->rdesc = NULL;
686 device->rsize = 0;
687
688 kfree(device->collection);
689 device->collection = NULL;
690 device->collection_size = 0;
691 device->maxcollection = 0;
692 device->maxapplication = 0;
693
694 device->status &= ~HID_STAT_PARSED;
695 }
696
697 /*
698 * Free a device structure, all reports, and all fields.
699 */
700
701 static void hid_device_release(struct device *dev)
702 {
703 struct hid_device *hid = to_hid_device(dev);
704
705 hid_close_report(hid);
706 kfree(hid->dev_rdesc);
707 kfree(hid);
708 }
709
710 /*
711 * Fetch a report description item from the data stream. We support long
712 * items, though they are not used yet.
713 */
714
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717 u8 b;
718
719 if ((end - start) <= 0)
720 return NULL;
721
722 b = *start++;
723
724 item->type = (b >> 2) & 3;
725 item->tag = (b >> 4) & 15;
726
727 if (item->tag == HID_ITEM_TAG_LONG) {
728
729 item->format = HID_ITEM_FORMAT_LONG;
730
731 if ((end - start) < 2)
732 return NULL;
733
734 item->size = *start++;
735 item->tag = *start++;
736
737 if ((end - start) < item->size)
738 return NULL;
739
740 item->data.longdata = start;
741 start += item->size;
742 return start;
743 }
744
745 item->format = HID_ITEM_FORMAT_SHORT;
746 item->size = b & 3;
747
748 switch (item->size) {
749 case 0:
750 return start;
751
752 case 1:
753 if ((end - start) < 1)
754 return NULL;
755 item->data.u8 = *start++;
756 return start;
757
758 case 2:
759 if ((end - start) < 2)
760 return NULL;
761 item->data.u16 = get_unaligned_le16(start);
762 start = (__u8 *)((__le16 *)start + 1);
763 return start;
764
765 case 3:
766 item->size++;
767 if ((end - start) < 4)
768 return NULL;
769 item->data.u32 = get_unaligned_le32(start);
770 start = (__u8 *)((__le32 *)start + 1);
771 return start;
772 }
773
774 return NULL;
775 }
776
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779 struct hid_device *hid = parser->device;
780
781 if (usage == HID_DG_CONTACTID)
782 hid->group = HID_GROUP_MULTITOUCH;
783 }
784
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 parser->global.report_size == 8)
789 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 parser->global.report_size == 8)
793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798 struct hid_device *hid = parser->device;
799 int i;
800
801 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 type == HID_COLLECTION_PHYSICAL)
803 hid->group = HID_GROUP_SENSOR_HUB;
804
805 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807 hid->group == HID_GROUP_MULTITOUCH)
808 hid->group = HID_GROUP_GENERIC;
809
810 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811 for (i = 0; i < parser->local.usage_index; i++)
812 if (parser->local.usage[i] == HID_GD_POINTER)
813 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814
815 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817
818 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
819 for (i = 0; i < parser->local.usage_index; i++)
820 if (parser->local.usage[i] ==
821 (HID_UP_GOOGLEVENDOR | 0x0001))
822 parser->device->group =
823 HID_GROUP_VIVALDI;
824 }
825
826 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
827 {
828 __u32 data;
829 int i;
830
831 hid_concatenate_last_usage_page(parser);
832
833 data = item_udata(item);
834
835 switch (item->tag) {
836 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
837 hid_scan_collection(parser, data & 0xff);
838 break;
839 case HID_MAIN_ITEM_TAG_END_COLLECTION:
840 break;
841 case HID_MAIN_ITEM_TAG_INPUT:
842 /* ignore constant inputs, they will be ignored by hid-input */
843 if (data & HID_MAIN_ITEM_CONSTANT)
844 break;
845 for (i = 0; i < parser->local.usage_index; i++)
846 hid_scan_input_usage(parser, parser->local.usage[i]);
847 break;
848 case HID_MAIN_ITEM_TAG_OUTPUT:
849 break;
850 case HID_MAIN_ITEM_TAG_FEATURE:
851 for (i = 0; i < parser->local.usage_index; i++)
852 hid_scan_feature_usage(parser, parser->local.usage[i]);
853 break;
854 }
855
856 /* Reset the local parser environment */
857 memset(&parser->local, 0, sizeof(parser->local));
858
859 return 0;
860 }
861
862 /*
863 * Scan a report descriptor before the device is added to the bus.
864 * Sets device groups and other properties that determine what driver
865 * to load.
866 */
867 static int hid_scan_report(struct hid_device *hid)
868 {
869 struct hid_parser *parser;
870 struct hid_item item;
871 __u8 *start = hid->dev_rdesc;
872 __u8 *end = start + hid->dev_rsize;
873 static int (*dispatch_type[])(struct hid_parser *parser,
874 struct hid_item *item) = {
875 hid_scan_main,
876 hid_parser_global,
877 hid_parser_local,
878 hid_parser_reserved
879 };
880
881 parser = vzalloc(sizeof(struct hid_parser));
882 if (!parser)
883 return -ENOMEM;
884
885 parser->device = hid;
886 hid->group = HID_GROUP_GENERIC;
887
888 /*
889 * The parsing is simpler than the one in hid_open_report() as we should
890 * be robust against hid errors. Those errors will be raised by
891 * hid_open_report() anyway.
892 */
893 while ((start = fetch_item(start, end, &item)) != NULL)
894 dispatch_type[item.type](parser, &item);
895
896 /*
897 * Handle special flags set during scanning.
898 */
899 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
900 (hid->group == HID_GROUP_MULTITOUCH))
901 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
902
903 /*
904 * Vendor specific handlings
905 */
906 switch (hid->vendor) {
907 case USB_VENDOR_ID_WACOM:
908 hid->group = HID_GROUP_WACOM;
909 break;
910 case USB_VENDOR_ID_SYNAPTICS:
911 if (hid->group == HID_GROUP_GENERIC)
912 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
913 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
914 /*
915 * hid-rmi should take care of them,
916 * not hid-generic
917 */
918 hid->group = HID_GROUP_RMI;
919 break;
920 }
921
922 kfree(parser->collection_stack);
923 vfree(parser);
924 return 0;
925 }
926
927 /**
928 * hid_parse_report - parse device report
929 *
930 * @hid: hid device
931 * @start: report start
932 * @size: report size
933 *
934 * Allocate the device report as read by the bus driver. This function should
935 * only be called from parse() in ll drivers.
936 */
937 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
938 {
939 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
940 if (!hid->dev_rdesc)
941 return -ENOMEM;
942 hid->dev_rsize = size;
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(hid_parse_report);
946
947 static const char * const hid_report_names[] = {
948 "HID_INPUT_REPORT",
949 "HID_OUTPUT_REPORT",
950 "HID_FEATURE_REPORT",
951 };
952 /**
953 * hid_validate_values - validate existing device report's value indexes
954 *
955 * @hid: hid device
956 * @type: which report type to examine
957 * @id: which report ID to examine (0 for first)
958 * @field_index: which report field to examine
959 * @report_counts: expected number of values
960 *
961 * Validate the number of values in a given field of a given report, after
962 * parsing.
963 */
964 struct hid_report *hid_validate_values(struct hid_device *hid,
965 unsigned int type, unsigned int id,
966 unsigned int field_index,
967 unsigned int report_counts)
968 {
969 struct hid_report *report;
970
971 if (type > HID_FEATURE_REPORT) {
972 hid_err(hid, "invalid HID report type %u\n", type);
973 return NULL;
974 }
975
976 if (id >= HID_MAX_IDS) {
977 hid_err(hid, "invalid HID report id %u\n", id);
978 return NULL;
979 }
980
981 /*
982 * Explicitly not using hid_get_report() here since it depends on
983 * ->numbered being checked, which may not always be the case when
984 * drivers go to access report values.
985 */
986 if (id == 0) {
987 /*
988 * Validating on id 0 means we should examine the first
989 * report in the list.
990 */
991 report = list_entry(
992 hid->report_enum[type].report_list.next,
993 struct hid_report, list);
994 } else {
995 report = hid->report_enum[type].report_id_hash[id];
996 }
997 if (!report) {
998 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
999 return NULL;
1000 }
1001 if (report->maxfield <= field_index) {
1002 hid_err(hid, "not enough fields in %s %u\n",
1003 hid_report_names[type], id);
1004 return NULL;
1005 }
1006 if (report->field[field_index]->report_count < report_counts) {
1007 hid_err(hid, "not enough values in %s %u field %u\n",
1008 hid_report_names[type], id, field_index);
1009 return NULL;
1010 }
1011 return report;
1012 }
1013 EXPORT_SYMBOL_GPL(hid_validate_values);
1014
1015 static int hid_calculate_multiplier(struct hid_device *hid,
1016 struct hid_field *multiplier)
1017 {
1018 int m;
1019 __s32 v = *multiplier->value;
1020 __s32 lmin = multiplier->logical_minimum;
1021 __s32 lmax = multiplier->logical_maximum;
1022 __s32 pmin = multiplier->physical_minimum;
1023 __s32 pmax = multiplier->physical_maximum;
1024
1025 /*
1026 * "Because OS implementations will generally divide the control's
1027 * reported count by the Effective Resolution Multiplier, designers
1028 * should take care not to establish a potential Effective
1029 * Resolution Multiplier of zero."
1030 * HID Usage Table, v1.12, Section 4.3.1, p31
1031 */
1032 if (lmax - lmin == 0)
1033 return 1;
1034 /*
1035 * Handling the unit exponent is left as an exercise to whoever
1036 * finds a device where that exponent is not 0.
1037 */
1038 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1039 if (unlikely(multiplier->unit_exponent != 0)) {
1040 hid_warn(hid,
1041 "unsupported Resolution Multiplier unit exponent %d\n",
1042 multiplier->unit_exponent);
1043 }
1044
1045 /* There are no devices with an effective multiplier > 255 */
1046 if (unlikely(m == 0 || m > 255 || m < -255)) {
1047 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1048 m = 1;
1049 }
1050
1051 return m;
1052 }
1053
1054 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1055 struct hid_field *field,
1056 struct hid_collection *multiplier_collection,
1057 int effective_multiplier)
1058 {
1059 struct hid_collection *collection;
1060 struct hid_usage *usage;
1061 int i;
1062
1063 /*
1064 * If multiplier_collection is NULL, the multiplier applies
1065 * to all fields in the report.
1066 * Otherwise, it is the Logical Collection the multiplier applies to
1067 * but our field may be in a subcollection of that collection.
1068 */
1069 for (i = 0; i < field->maxusage; i++) {
1070 usage = &field->usage[i];
1071
1072 collection = &hid->collection[usage->collection_index];
1073 while (collection->parent_idx != -1 &&
1074 collection != multiplier_collection)
1075 collection = &hid->collection[collection->parent_idx];
1076
1077 if (collection->parent_idx != -1 ||
1078 multiplier_collection == NULL)
1079 usage->resolution_multiplier = effective_multiplier;
1080
1081 }
1082 }
1083
1084 static void hid_apply_multiplier(struct hid_device *hid,
1085 struct hid_field *multiplier)
1086 {
1087 struct hid_report_enum *rep_enum;
1088 struct hid_report *rep;
1089 struct hid_field *field;
1090 struct hid_collection *multiplier_collection;
1091 int effective_multiplier;
1092 int i;
1093
1094 /*
1095 * "The Resolution Multiplier control must be contained in the same
1096 * Logical Collection as the control(s) to which it is to be applied.
1097 * If no Resolution Multiplier is defined, then the Resolution
1098 * Multiplier defaults to 1. If more than one control exists in a
1099 * Logical Collection, the Resolution Multiplier is associated with
1100 * all controls in the collection. If no Logical Collection is
1101 * defined, the Resolution Multiplier is associated with all
1102 * controls in the report."
1103 * HID Usage Table, v1.12, Section 4.3.1, p30
1104 *
1105 * Thus, search from the current collection upwards until we find a
1106 * logical collection. Then search all fields for that same parent
1107 * collection. Those are the fields the multiplier applies to.
1108 *
1109 * If we have more than one multiplier, it will overwrite the
1110 * applicable fields later.
1111 */
1112 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1113 while (multiplier_collection->parent_idx != -1 &&
1114 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1115 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1116
1117 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1118
1119 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1120 list_for_each_entry(rep, &rep_enum->report_list, list) {
1121 for (i = 0; i < rep->maxfield; i++) {
1122 field = rep->field[i];
1123 hid_apply_multiplier_to_field(hid, field,
1124 multiplier_collection,
1125 effective_multiplier);
1126 }
1127 }
1128 }
1129
1130 /*
1131 * hid_setup_resolution_multiplier - set up all resolution multipliers
1132 *
1133 * @device: hid device
1134 *
1135 * Search for all Resolution Multiplier Feature Reports and apply their
1136 * value to all matching Input items. This only updates the internal struct
1137 * fields.
1138 *
1139 * The Resolution Multiplier is applied by the hardware. If the multiplier
1140 * is anything other than 1, the hardware will send pre-multiplied events
1141 * so that the same physical interaction generates an accumulated
1142 * accumulated_value = value * * multiplier
1143 * This may be achieved by sending
1144 * - "value * multiplier" for each event, or
1145 * - "value" but "multiplier" times as frequently, or
1146 * - a combination of the above
1147 * The only guarantee is that the same physical interaction always generates
1148 * an accumulated 'value * multiplier'.
1149 *
1150 * This function must be called before any event processing and after
1151 * any SetRequest to the Resolution Multiplier.
1152 */
1153 void hid_setup_resolution_multiplier(struct hid_device *hid)
1154 {
1155 struct hid_report_enum *rep_enum;
1156 struct hid_report *rep;
1157 struct hid_usage *usage;
1158 int i, j;
1159
1160 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1161 list_for_each_entry(rep, &rep_enum->report_list, list) {
1162 for (i = 0; i < rep->maxfield; i++) {
1163 /* Ignore if report count is out of bounds. */
1164 if (rep->field[i]->report_count < 1)
1165 continue;
1166
1167 for (j = 0; j < rep->field[i]->maxusage; j++) {
1168 usage = &rep->field[i]->usage[j];
1169 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1170 hid_apply_multiplier(hid,
1171 rep->field[i]);
1172 }
1173 }
1174 }
1175 }
1176 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1177
1178 /**
1179 * hid_open_report - open a driver-specific device report
1180 *
1181 * @device: hid device
1182 *
1183 * Parse a report description into a hid_device structure. Reports are
1184 * enumerated, fields are attached to these reports.
1185 * 0 returned on success, otherwise nonzero error value.
1186 *
1187 * This function (or the equivalent hid_parse() macro) should only be
1188 * called from probe() in drivers, before starting the device.
1189 */
1190 int hid_open_report(struct hid_device *device)
1191 {
1192 struct hid_parser *parser;
1193 struct hid_item item;
1194 unsigned int size;
1195 __u8 *start;
1196 __u8 *buf;
1197 __u8 *end;
1198 __u8 *next;
1199 int ret;
1200 static int (*dispatch_type[])(struct hid_parser *parser,
1201 struct hid_item *item) = {
1202 hid_parser_main,
1203 hid_parser_global,
1204 hid_parser_local,
1205 hid_parser_reserved
1206 };
1207
1208 if (WARN_ON(device->status & HID_STAT_PARSED))
1209 return -EBUSY;
1210
1211 start = device->dev_rdesc;
1212 if (WARN_ON(!start))
1213 return -ENODEV;
1214 size = device->dev_rsize;
1215
1216 buf = kmemdup(start, size, GFP_KERNEL);
1217 if (buf == NULL)
1218 return -ENOMEM;
1219
1220 if (device->driver->report_fixup)
1221 start = device->driver->report_fixup(device, buf, &size);
1222 else
1223 start = buf;
1224
1225 start = kmemdup(start, size, GFP_KERNEL);
1226 kfree(buf);
1227 if (start == NULL)
1228 return -ENOMEM;
1229
1230 device->rdesc = start;
1231 device->rsize = size;
1232
1233 parser = vzalloc(sizeof(struct hid_parser));
1234 if (!parser) {
1235 ret = -ENOMEM;
1236 goto alloc_err;
1237 }
1238
1239 parser->device = device;
1240
1241 end = start + size;
1242
1243 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1244 sizeof(struct hid_collection), GFP_KERNEL);
1245 if (!device->collection) {
1246 ret = -ENOMEM;
1247 goto err;
1248 }
1249 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1250
1251 ret = -EINVAL;
1252 while ((next = fetch_item(start, end, &item)) != NULL) {
1253 start = next;
1254
1255 if (item.format != HID_ITEM_FORMAT_SHORT) {
1256 hid_err(device, "unexpected long global item\n");
1257 goto err;
1258 }
1259
1260 if (dispatch_type[item.type](parser, &item)) {
1261 hid_err(device, "item %u %u %u %u parsing failed\n",
1262 item.format, (unsigned)item.size,
1263 (unsigned)item.type, (unsigned)item.tag);
1264 goto err;
1265 }
1266
1267 if (start == end) {
1268 if (parser->collection_stack_ptr) {
1269 hid_err(device, "unbalanced collection at end of report description\n");
1270 goto err;
1271 }
1272 if (parser->local.delimiter_depth) {
1273 hid_err(device, "unbalanced delimiter at end of report description\n");
1274 goto err;
1275 }
1276
1277 /*
1278 * fetch initial values in case the device's
1279 * default multiplier isn't the recommended 1
1280 */
1281 hid_setup_resolution_multiplier(device);
1282
1283 kfree(parser->collection_stack);
1284 vfree(parser);
1285 device->status |= HID_STAT_PARSED;
1286
1287 return 0;
1288 }
1289 }
1290
1291 hid_err(device, "item fetching failed at offset %u/%u\n",
1292 size - (unsigned int)(end - start), size);
1293 err:
1294 kfree(parser->collection_stack);
1295 alloc_err:
1296 vfree(parser);
1297 hid_close_report(device);
1298 return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(hid_open_report);
1301
1302 /*
1303 * Convert a signed n-bit integer to signed 32-bit integer. Common
1304 * cases are done through the compiler, the screwed things has to be
1305 * done by hand.
1306 */
1307
1308 static s32 snto32(__u32 value, unsigned n)
1309 {
1310 if (!value || !n)
1311 return 0;
1312
1313 switch (n) {
1314 case 8: return ((__s8)value);
1315 case 16: return ((__s16)value);
1316 case 32: return ((__s32)value);
1317 }
1318 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1319 }
1320
1321 s32 hid_snto32(__u32 value, unsigned n)
1322 {
1323 return snto32(value, n);
1324 }
1325 EXPORT_SYMBOL_GPL(hid_snto32);
1326
1327 /*
1328 * Convert a signed 32-bit integer to a signed n-bit integer.
1329 */
1330
1331 static u32 s32ton(__s32 value, unsigned n)
1332 {
1333 s32 a = value >> (n - 1);
1334 if (a && a != -1)
1335 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1336 return value & ((1 << n) - 1);
1337 }
1338
1339 /*
1340 * Extract/implement a data field from/to a little endian report (bit array).
1341 *
1342 * Code sort-of follows HID spec:
1343 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1344 *
1345 * While the USB HID spec allows unlimited length bit fields in "report
1346 * descriptors", most devices never use more than 16 bits.
1347 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1348 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1349 */
1350
1351 static u32 __extract(u8 *report, unsigned offset, int n)
1352 {
1353 unsigned int idx = offset / 8;
1354 unsigned int bit_nr = 0;
1355 unsigned int bit_shift = offset % 8;
1356 int bits_to_copy = 8 - bit_shift;
1357 u32 value = 0;
1358 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1359
1360 while (n > 0) {
1361 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1362 n -= bits_to_copy;
1363 bit_nr += bits_to_copy;
1364 bits_to_copy = 8;
1365 bit_shift = 0;
1366 idx++;
1367 }
1368
1369 return value & mask;
1370 }
1371
1372 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1373 unsigned offset, unsigned n)
1374 {
1375 if (n > 32) {
1376 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1377 __func__, n, current->comm);
1378 n = 32;
1379 }
1380
1381 return __extract(report, offset, n);
1382 }
1383 EXPORT_SYMBOL_GPL(hid_field_extract);
1384
1385 /*
1386 * "implement" : set bits in a little endian bit stream.
1387 * Same concepts as "extract" (see comments above).
1388 * The data mangled in the bit stream remains in little endian
1389 * order the whole time. It make more sense to talk about
1390 * endianness of register values by considering a register
1391 * a "cached" copy of the little endian bit stream.
1392 */
1393
1394 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1395 {
1396 unsigned int idx = offset / 8;
1397 unsigned int bit_shift = offset % 8;
1398 int bits_to_set = 8 - bit_shift;
1399
1400 while (n - bits_to_set >= 0) {
1401 report[idx] &= ~(0xff << bit_shift);
1402 report[idx] |= value << bit_shift;
1403 value >>= bits_to_set;
1404 n -= bits_to_set;
1405 bits_to_set = 8;
1406 bit_shift = 0;
1407 idx++;
1408 }
1409
1410 /* last nibble */
1411 if (n) {
1412 u8 bit_mask = ((1U << n) - 1);
1413 report[idx] &= ~(bit_mask << bit_shift);
1414 report[idx] |= value << bit_shift;
1415 }
1416 }
1417
1418 static void implement(const struct hid_device *hid, u8 *report,
1419 unsigned offset, unsigned n, u32 value)
1420 {
1421 if (unlikely(n > 32)) {
1422 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1423 __func__, n, current->comm);
1424 n = 32;
1425 } else if (n < 32) {
1426 u32 m = (1U << n) - 1;
1427
1428 if (unlikely(value > m)) {
1429 hid_warn(hid,
1430 "%s() called with too large value %d (n: %d)! (%s)\n",
1431 __func__, value, n, current->comm);
1432 WARN_ON(1);
1433 value &= m;
1434 }
1435 }
1436
1437 __implement(report, offset, n, value);
1438 }
1439
1440 /*
1441 * Search an array for a value.
1442 */
1443
1444 static int search(__s32 *array, __s32 value, unsigned n)
1445 {
1446 while (n--) {
1447 if (*array++ == value)
1448 return 0;
1449 }
1450 return -1;
1451 }
1452
1453 /**
1454 * hid_match_report - check if driver's raw_event should be called
1455 *
1456 * @hid: hid device
1457 * @report: hid report to match against
1458 *
1459 * compare hid->driver->report_table->report_type to report->type
1460 */
1461 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1462 {
1463 const struct hid_report_id *id = hid->driver->report_table;
1464
1465 if (!id) /* NULL means all */
1466 return 1;
1467
1468 for (; id->report_type != HID_TERMINATOR; id++)
1469 if (id->report_type == HID_ANY_ID ||
1470 id->report_type == report->type)
1471 return 1;
1472 return 0;
1473 }
1474
1475 /**
1476 * hid_match_usage - check if driver's event should be called
1477 *
1478 * @hid: hid device
1479 * @usage: usage to match against
1480 *
1481 * compare hid->driver->usage_table->usage_{type,code} to
1482 * usage->usage_{type,code}
1483 */
1484 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1485 {
1486 const struct hid_usage_id *id = hid->driver->usage_table;
1487
1488 if (!id) /* NULL means all */
1489 return 1;
1490
1491 for (; id->usage_type != HID_ANY_ID - 1; id++)
1492 if ((id->usage_hid == HID_ANY_ID ||
1493 id->usage_hid == usage->hid) &&
1494 (id->usage_type == HID_ANY_ID ||
1495 id->usage_type == usage->type) &&
1496 (id->usage_code == HID_ANY_ID ||
1497 id->usage_code == usage->code))
1498 return 1;
1499 return 0;
1500 }
1501
1502 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1503 struct hid_usage *usage, __s32 value, int interrupt)
1504 {
1505 struct hid_driver *hdrv = hid->driver;
1506 int ret;
1507
1508 if (!list_empty(&hid->debug_list))
1509 hid_dump_input(hid, usage, value);
1510
1511 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1512 ret = hdrv->event(hid, field, usage, value);
1513 if (ret != 0) {
1514 if (ret < 0)
1515 hid_err(hid, "%s's event failed with %d\n",
1516 hdrv->name, ret);
1517 return;
1518 }
1519 }
1520
1521 if (hid->claimed & HID_CLAIMED_INPUT)
1522 hidinput_hid_event(hid, field, usage, value);
1523 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1524 hid->hiddev_hid_event(hid, field, usage, value);
1525 }
1526
1527 /*
1528 * Analyse a received field, and fetch the data from it. The field
1529 * content is stored for next report processing (we do differential
1530 * reporting to the layer).
1531 */
1532
1533 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1534 __u8 *data, int interrupt)
1535 {
1536 unsigned n;
1537 unsigned count = field->report_count;
1538 unsigned offset = field->report_offset;
1539 unsigned size = field->report_size;
1540 __s32 min = field->logical_minimum;
1541 __s32 max = field->logical_maximum;
1542 __s32 *value;
1543
1544 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1545 if (!value)
1546 return;
1547
1548 for (n = 0; n < count; n++) {
1549
1550 value[n] = min < 0 ?
1551 snto32(hid_field_extract(hid, data, offset + n * size,
1552 size), size) :
1553 hid_field_extract(hid, data, offset + n * size, size);
1554
1555 /* Ignore report if ErrorRollOver */
1556 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1557 value[n] >= min && value[n] <= max &&
1558 value[n] - min < field->maxusage &&
1559 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1560 goto exit;
1561 }
1562
1563 for (n = 0; n < count; n++) {
1564
1565 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1566 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1567 continue;
1568 }
1569
1570 if (field->value[n] >= min && field->value[n] <= max
1571 && field->value[n] - min < field->maxusage
1572 && field->usage[field->value[n] - min].hid
1573 && search(value, field->value[n], count))
1574 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1575
1576 if (value[n] >= min && value[n] <= max
1577 && value[n] - min < field->maxusage
1578 && field->usage[value[n] - min].hid
1579 && search(field->value, value[n], count))
1580 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1581 }
1582
1583 memcpy(field->value, value, count * sizeof(__s32));
1584 exit:
1585 kfree(value);
1586 }
1587
1588 /*
1589 * Output the field into the report.
1590 */
1591
1592 static void hid_output_field(const struct hid_device *hid,
1593 struct hid_field *field, __u8 *data)
1594 {
1595 unsigned count = field->report_count;
1596 unsigned offset = field->report_offset;
1597 unsigned size = field->report_size;
1598 unsigned n;
1599
1600 for (n = 0; n < count; n++) {
1601 if (field->logical_minimum < 0) /* signed values */
1602 implement(hid, data, offset + n * size, size,
1603 s32ton(field->value[n], size));
1604 else /* unsigned values */
1605 implement(hid, data, offset + n * size, size,
1606 field->value[n]);
1607 }
1608 }
1609
1610 /*
1611 * Compute the size of a report.
1612 */
1613 static size_t hid_compute_report_size(struct hid_report *report)
1614 {
1615 if (report->size)
1616 return ((report->size - 1) >> 3) + 1;
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * Create a report. 'data' has to be allocated using
1623 * hid_alloc_report_buf() so that it has proper size.
1624 */
1625
1626 void hid_output_report(struct hid_report *report, __u8 *data)
1627 {
1628 unsigned n;
1629
1630 if (report->id > 0)
1631 *data++ = report->id;
1632
1633 memset(data, 0, hid_compute_report_size(report));
1634 for (n = 0; n < report->maxfield; n++)
1635 hid_output_field(report->device, report->field[n], data);
1636 }
1637 EXPORT_SYMBOL_GPL(hid_output_report);
1638
1639 /*
1640 * Allocator for buffer that is going to be passed to hid_output_report()
1641 */
1642 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1643 {
1644 /*
1645 * 7 extra bytes are necessary to achieve proper functionality
1646 * of implement() working on 8 byte chunks
1647 */
1648
1649 u32 len = hid_report_len(report) + 7;
1650
1651 return kmalloc(len, flags);
1652 }
1653 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1654
1655 /*
1656 * Set a field value. The report this field belongs to has to be
1657 * created and transferred to the device, to set this value in the
1658 * device.
1659 */
1660
1661 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1662 {
1663 unsigned size;
1664
1665 if (!field)
1666 return -1;
1667
1668 size = field->report_size;
1669
1670 hid_dump_input(field->report->device, field->usage + offset, value);
1671
1672 if (offset >= field->report_count) {
1673 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1674 offset, field->report_count);
1675 return -1;
1676 }
1677 if (field->logical_minimum < 0) {
1678 if (value != snto32(s32ton(value, size), size)) {
1679 hid_err(field->report->device, "value %d is out of range\n", value);
1680 return -1;
1681 }
1682 }
1683 field->value[offset] = value;
1684 return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(hid_set_field);
1687
1688 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1689 const u8 *data)
1690 {
1691 struct hid_report *report;
1692 unsigned int n = 0; /* Normally report number is 0 */
1693
1694 /* Device uses numbered reports, data[0] is report number */
1695 if (report_enum->numbered)
1696 n = *data;
1697
1698 report = report_enum->report_id_hash[n];
1699 if (report == NULL)
1700 dbg_hid("undefined report_id %u received\n", n);
1701
1702 return report;
1703 }
1704
1705 /*
1706 * Implement a generic .request() callback, using .raw_request()
1707 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1708 */
1709 int __hid_request(struct hid_device *hid, struct hid_report *report,
1710 int reqtype)
1711 {
1712 char *buf;
1713 int ret;
1714 u32 len;
1715
1716 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1717 if (!buf)
1718 return -ENOMEM;
1719
1720 len = hid_report_len(report);
1721
1722 if (reqtype == HID_REQ_SET_REPORT)
1723 hid_output_report(report, buf);
1724
1725 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1726 report->type, reqtype);
1727 if (ret < 0) {
1728 dbg_hid("unable to complete request: %d\n", ret);
1729 goto out;
1730 }
1731
1732 if (reqtype == HID_REQ_GET_REPORT)
1733 hid_input_report(hid, report->type, buf, ret, 0);
1734
1735 ret = 0;
1736
1737 out:
1738 kfree(buf);
1739 return ret;
1740 }
1741 EXPORT_SYMBOL_GPL(__hid_request);
1742
1743 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1744 int interrupt)
1745 {
1746 struct hid_report_enum *report_enum = hid->report_enum + type;
1747 struct hid_report *report;
1748 struct hid_driver *hdrv;
1749 unsigned int a;
1750 u32 rsize, csize = size;
1751 u8 *cdata = data;
1752 int ret = 0;
1753
1754 report = hid_get_report(report_enum, data);
1755 if (!report)
1756 goto out;
1757
1758 if (report_enum->numbered) {
1759 cdata++;
1760 csize--;
1761 }
1762
1763 rsize = hid_compute_report_size(report);
1764
1765 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1766 rsize = HID_MAX_BUFFER_SIZE - 1;
1767 else if (rsize > HID_MAX_BUFFER_SIZE)
1768 rsize = HID_MAX_BUFFER_SIZE;
1769
1770 if (csize < rsize) {
1771 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1772 csize, rsize);
1773 memset(cdata + csize, 0, rsize - csize);
1774 }
1775
1776 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1777 hid->hiddev_report_event(hid, report);
1778 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1779 ret = hidraw_report_event(hid, data, size);
1780 if (ret)
1781 goto out;
1782 }
1783
1784 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1785 for (a = 0; a < report->maxfield; a++)
1786 hid_input_field(hid, report->field[a], cdata, interrupt);
1787 hdrv = hid->driver;
1788 if (hdrv && hdrv->report)
1789 hdrv->report(hid, report);
1790 }
1791
1792 if (hid->claimed & HID_CLAIMED_INPUT)
1793 hidinput_report_event(hid, report);
1794 out:
1795 return ret;
1796 }
1797 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1798
1799 /**
1800 * hid_input_report - report data from lower layer (usb, bt...)
1801 *
1802 * @hid: hid device
1803 * @type: HID report type (HID_*_REPORT)
1804 * @data: report contents
1805 * @size: size of data parameter
1806 * @interrupt: distinguish between interrupt and control transfers
1807 *
1808 * This is data entry for lower layers.
1809 */
1810 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1811 {
1812 struct hid_report_enum *report_enum;
1813 struct hid_driver *hdrv;
1814 struct hid_report *report;
1815 int ret = 0;
1816
1817 if (!hid)
1818 return -ENODEV;
1819
1820 if (down_trylock(&hid->driver_input_lock))
1821 return -EBUSY;
1822
1823 if (!hid->driver) {
1824 ret = -ENODEV;
1825 goto unlock;
1826 }
1827 report_enum = hid->report_enum + type;
1828 hdrv = hid->driver;
1829
1830 if (!size) {
1831 dbg_hid("empty report\n");
1832 ret = -1;
1833 goto unlock;
1834 }
1835
1836 /* Avoid unnecessary overhead if debugfs is disabled */
1837 if (!list_empty(&hid->debug_list))
1838 hid_dump_report(hid, type, data, size);
1839
1840 report = hid_get_report(report_enum, data);
1841
1842 if (!report) {
1843 ret = -1;
1844 goto unlock;
1845 }
1846
1847 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1848 ret = hdrv->raw_event(hid, report, data, size);
1849 if (ret < 0)
1850 goto unlock;
1851 }
1852
1853 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1854
1855 unlock:
1856 up(&hid->driver_input_lock);
1857 return ret;
1858 }
1859 EXPORT_SYMBOL_GPL(hid_input_report);
1860
1861 bool hid_match_one_id(const struct hid_device *hdev,
1862 const struct hid_device_id *id)
1863 {
1864 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1865 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1866 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1867 (id->product == HID_ANY_ID || id->product == hdev->product);
1868 }
1869
1870 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1871 const struct hid_device_id *id)
1872 {
1873 for (; id->bus; id++)
1874 if (hid_match_one_id(hdev, id))
1875 return id;
1876
1877 return NULL;
1878 }
1879
1880 static const struct hid_device_id hid_hiddev_list[] = {
1881 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1883 { }
1884 };
1885
1886 static bool hid_hiddev(struct hid_device *hdev)
1887 {
1888 return !!hid_match_id(hdev, hid_hiddev_list);
1889 }
1890
1891
1892 static ssize_t
1893 read_report_descriptor(struct file *filp, struct kobject *kobj,
1894 struct bin_attribute *attr,
1895 char *buf, loff_t off, size_t count)
1896 {
1897 struct device *dev = kobj_to_dev(kobj);
1898 struct hid_device *hdev = to_hid_device(dev);
1899
1900 if (off >= hdev->rsize)
1901 return 0;
1902
1903 if (off + count > hdev->rsize)
1904 count = hdev->rsize - off;
1905
1906 memcpy(buf, hdev->rdesc + off, count);
1907
1908 return count;
1909 }
1910
1911 static ssize_t
1912 show_country(struct device *dev, struct device_attribute *attr,
1913 char *buf)
1914 {
1915 struct hid_device *hdev = to_hid_device(dev);
1916
1917 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1918 }
1919
1920 static struct bin_attribute dev_bin_attr_report_desc = {
1921 .attr = { .name = "report_descriptor", .mode = 0444 },
1922 .read = read_report_descriptor,
1923 .size = HID_MAX_DESCRIPTOR_SIZE,
1924 };
1925
1926 static const struct device_attribute dev_attr_country = {
1927 .attr = { .name = "country", .mode = 0444 },
1928 .show = show_country,
1929 };
1930
1931 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1932 {
1933 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1934 "Joystick", "Gamepad", "Keyboard", "Keypad",
1935 "Multi-Axis Controller"
1936 };
1937 const char *type, *bus;
1938 char buf[64] = "";
1939 unsigned int i;
1940 int len;
1941 int ret;
1942
1943 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1944 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1945 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1946 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1947 if (hdev->bus != BUS_USB)
1948 connect_mask &= ~HID_CONNECT_HIDDEV;
1949 if (hid_hiddev(hdev))
1950 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1951
1952 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1953 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1954 hdev->claimed |= HID_CLAIMED_INPUT;
1955
1956 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1957 !hdev->hiddev_connect(hdev,
1958 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1959 hdev->claimed |= HID_CLAIMED_HIDDEV;
1960 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1961 hdev->claimed |= HID_CLAIMED_HIDRAW;
1962
1963 if (connect_mask & HID_CONNECT_DRIVER)
1964 hdev->claimed |= HID_CLAIMED_DRIVER;
1965
1966 /* Drivers with the ->raw_event callback set are not required to connect
1967 * to any other listener. */
1968 if (!hdev->claimed && !hdev->driver->raw_event) {
1969 hid_err(hdev, "device has no listeners, quitting\n");
1970 return -ENODEV;
1971 }
1972
1973 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1974 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1975 hdev->ff_init(hdev);
1976
1977 len = 0;
1978 if (hdev->claimed & HID_CLAIMED_INPUT)
1979 len += sprintf(buf + len, "input");
1980 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1981 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1982 ((struct hiddev *)hdev->hiddev)->minor);
1983 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1984 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1985 ((struct hidraw *)hdev->hidraw)->minor);
1986
1987 type = "Device";
1988 for (i = 0; i < hdev->maxcollection; i++) {
1989 struct hid_collection *col = &hdev->collection[i];
1990 if (col->type == HID_COLLECTION_APPLICATION &&
1991 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1992 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1993 type = types[col->usage & 0xffff];
1994 break;
1995 }
1996 }
1997
1998 switch (hdev->bus) {
1999 case BUS_USB:
2000 bus = "USB";
2001 break;
2002 case BUS_BLUETOOTH:
2003 bus = "BLUETOOTH";
2004 break;
2005 case BUS_I2C:
2006 bus = "I2C";
2007 break;
2008 case BUS_VIRTUAL:
2009 bus = "VIRTUAL";
2010 break;
2011 default:
2012 bus = "<UNKNOWN>";
2013 }
2014
2015 ret = device_create_file(&hdev->dev, &dev_attr_country);
2016 if (ret)
2017 hid_warn(hdev,
2018 "can't create sysfs country code attribute err: %d\n", ret);
2019
2020 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2021 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2022 type, hdev->name, hdev->phys);
2023
2024 return 0;
2025 }
2026 EXPORT_SYMBOL_GPL(hid_connect);
2027
2028 void hid_disconnect(struct hid_device *hdev)
2029 {
2030 device_remove_file(&hdev->dev, &dev_attr_country);
2031 if (hdev->claimed & HID_CLAIMED_INPUT)
2032 hidinput_disconnect(hdev);
2033 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2034 hdev->hiddev_disconnect(hdev);
2035 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2036 hidraw_disconnect(hdev);
2037 hdev->claimed = 0;
2038 }
2039 EXPORT_SYMBOL_GPL(hid_disconnect);
2040
2041 /**
2042 * hid_hw_start - start underlying HW
2043 * @hdev: hid device
2044 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2045 *
2046 * Call this in probe function *after* hid_parse. This will setup HW
2047 * buffers and start the device (if not defeirred to device open).
2048 * hid_hw_stop must be called if this was successful.
2049 */
2050 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2051 {
2052 int error;
2053
2054 error = hdev->ll_driver->start(hdev);
2055 if (error)
2056 return error;
2057
2058 if (connect_mask) {
2059 error = hid_connect(hdev, connect_mask);
2060 if (error) {
2061 hdev->ll_driver->stop(hdev);
2062 return error;
2063 }
2064 }
2065
2066 return 0;
2067 }
2068 EXPORT_SYMBOL_GPL(hid_hw_start);
2069
2070 /**
2071 * hid_hw_stop - stop underlying HW
2072 * @hdev: hid device
2073 *
2074 * This is usually called from remove function or from probe when something
2075 * failed and hid_hw_start was called already.
2076 */
2077 void hid_hw_stop(struct hid_device *hdev)
2078 {
2079 hid_disconnect(hdev);
2080 hdev->ll_driver->stop(hdev);
2081 }
2082 EXPORT_SYMBOL_GPL(hid_hw_stop);
2083
2084 /**
2085 * hid_hw_open - signal underlying HW to start delivering events
2086 * @hdev: hid device
2087 *
2088 * Tell underlying HW to start delivering events from the device.
2089 * This function should be called sometime after successful call
2090 * to hid_hw_start().
2091 */
2092 int hid_hw_open(struct hid_device *hdev)
2093 {
2094 int ret;
2095
2096 ret = mutex_lock_killable(&hdev->ll_open_lock);
2097 if (ret)
2098 return ret;
2099
2100 if (!hdev->ll_open_count++) {
2101 ret = hdev->ll_driver->open(hdev);
2102 if (ret)
2103 hdev->ll_open_count--;
2104 }
2105
2106 mutex_unlock(&hdev->ll_open_lock);
2107 return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(hid_hw_open);
2110
2111 /**
2112 * hid_hw_close - signal underlaying HW to stop delivering events
2113 *
2114 * @hdev: hid device
2115 *
2116 * This function indicates that we are not interested in the events
2117 * from this device anymore. Delivery of events may or may not stop,
2118 * depending on the number of users still outstanding.
2119 */
2120 void hid_hw_close(struct hid_device *hdev)
2121 {
2122 mutex_lock(&hdev->ll_open_lock);
2123 if (!--hdev->ll_open_count)
2124 hdev->ll_driver->close(hdev);
2125 mutex_unlock(&hdev->ll_open_lock);
2126 }
2127 EXPORT_SYMBOL_GPL(hid_hw_close);
2128
2129 struct hid_dynid {
2130 struct list_head list;
2131 struct hid_device_id id;
2132 };
2133
2134 /**
2135 * new_id_store - add a new HID device ID to this driver and re-probe devices
2136 * @drv: target device driver
2137 * @buf: buffer for scanning device ID data
2138 * @count: input size
2139 *
2140 * Adds a new dynamic hid device ID to this driver,
2141 * and causes the driver to probe for all devices again.
2142 */
2143 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2144 size_t count)
2145 {
2146 struct hid_driver *hdrv = to_hid_driver(drv);
2147 struct hid_dynid *dynid;
2148 __u32 bus, vendor, product;
2149 unsigned long driver_data = 0;
2150 int ret;
2151
2152 ret = sscanf(buf, "%x %x %x %lx",
2153 &bus, &vendor, &product, &driver_data);
2154 if (ret < 3)
2155 return -EINVAL;
2156
2157 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2158 if (!dynid)
2159 return -ENOMEM;
2160
2161 dynid->id.bus = bus;
2162 dynid->id.group = HID_GROUP_ANY;
2163 dynid->id.vendor = vendor;
2164 dynid->id.product = product;
2165 dynid->id.driver_data = driver_data;
2166
2167 spin_lock(&hdrv->dyn_lock);
2168 list_add_tail(&dynid->list, &hdrv->dyn_list);
2169 spin_unlock(&hdrv->dyn_lock);
2170
2171 ret = driver_attach(&hdrv->driver);
2172
2173 return ret ? : count;
2174 }
2175 static DRIVER_ATTR_WO(new_id);
2176
2177 static struct attribute *hid_drv_attrs[] = {
2178 &driver_attr_new_id.attr,
2179 NULL,
2180 };
2181 ATTRIBUTE_GROUPS(hid_drv);
2182
2183 static void hid_free_dynids(struct hid_driver *hdrv)
2184 {
2185 struct hid_dynid *dynid, *n;
2186
2187 spin_lock(&hdrv->dyn_lock);
2188 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2189 list_del(&dynid->list);
2190 kfree(dynid);
2191 }
2192 spin_unlock(&hdrv->dyn_lock);
2193 }
2194
2195 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2196 struct hid_driver *hdrv)
2197 {
2198 struct hid_dynid *dynid;
2199
2200 spin_lock(&hdrv->dyn_lock);
2201 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2202 if (hid_match_one_id(hdev, &dynid->id)) {
2203 spin_unlock(&hdrv->dyn_lock);
2204 return &dynid->id;
2205 }
2206 }
2207 spin_unlock(&hdrv->dyn_lock);
2208
2209 return hid_match_id(hdev, hdrv->id_table);
2210 }
2211 EXPORT_SYMBOL_GPL(hid_match_device);
2212
2213 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2214 {
2215 struct hid_driver *hdrv = to_hid_driver(drv);
2216 struct hid_device *hdev = to_hid_device(dev);
2217
2218 return hid_match_device(hdev, hdrv) != NULL;
2219 }
2220
2221 /**
2222 * hid_compare_device_paths - check if both devices share the same path
2223 * @hdev_a: hid device
2224 * @hdev_b: hid device
2225 * @separator: char to use as separator
2226 *
2227 * Check if two devices share the same path up to the last occurrence of
2228 * the separator char. Both paths must exist (i.e., zero-length paths
2229 * don't match).
2230 */
2231 bool hid_compare_device_paths(struct hid_device *hdev_a,
2232 struct hid_device *hdev_b, char separator)
2233 {
2234 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2235 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2236
2237 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2238 return false;
2239
2240 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2241 }
2242 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2243
2244 static int hid_device_probe(struct device *dev)
2245 {
2246 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2247 struct hid_device *hdev = to_hid_device(dev);
2248 const struct hid_device_id *id;
2249 int ret = 0;
2250
2251 if (down_interruptible(&hdev->driver_input_lock)) {
2252 ret = -EINTR;
2253 goto end;
2254 }
2255 hdev->io_started = false;
2256
2257 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2258
2259 if (!hdev->driver) {
2260 id = hid_match_device(hdev, hdrv);
2261 if (id == NULL) {
2262 ret = -ENODEV;
2263 goto unlock;
2264 }
2265
2266 if (hdrv->match) {
2267 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2268 ret = -ENODEV;
2269 goto unlock;
2270 }
2271 } else {
2272 /*
2273 * hid-generic implements .match(), so if
2274 * hid_ignore_special_drivers is set, we can safely
2275 * return.
2276 */
2277 if (hid_ignore_special_drivers) {
2278 ret = -ENODEV;
2279 goto unlock;
2280 }
2281 }
2282
2283 /* reset the quirks that has been previously set */
2284 hdev->quirks = hid_lookup_quirk(hdev);
2285 hdev->driver = hdrv;
2286 if (hdrv->probe) {
2287 ret = hdrv->probe(hdev, id);
2288 } else { /* default probe */
2289 ret = hid_open_report(hdev);
2290 if (!ret)
2291 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2292 }
2293 if (ret) {
2294 hid_close_report(hdev);
2295 hdev->driver = NULL;
2296 }
2297 }
2298 unlock:
2299 if (!hdev->io_started)
2300 up(&hdev->driver_input_lock);
2301 end:
2302 return ret;
2303 }
2304
2305 static void hid_device_remove(struct device *dev)
2306 {
2307 struct hid_device *hdev = to_hid_device(dev);
2308 struct hid_driver *hdrv;
2309
2310 down(&hdev->driver_input_lock);
2311 hdev->io_started = false;
2312
2313 hdrv = hdev->driver;
2314 if (hdrv) {
2315 if (hdrv->remove)
2316 hdrv->remove(hdev);
2317 else /* default remove */
2318 hid_hw_stop(hdev);
2319 hid_close_report(hdev);
2320 hdev->driver = NULL;
2321 }
2322
2323 if (!hdev->io_started)
2324 up(&hdev->driver_input_lock);
2325 }
2326
2327 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2328 char *buf)
2329 {
2330 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2331
2332 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2333 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2334 }
2335 static DEVICE_ATTR_RO(modalias);
2336
2337 static struct attribute *hid_dev_attrs[] = {
2338 &dev_attr_modalias.attr,
2339 NULL,
2340 };
2341 static struct bin_attribute *hid_dev_bin_attrs[] = {
2342 &dev_bin_attr_report_desc,
2343 NULL
2344 };
2345 static const struct attribute_group hid_dev_group = {
2346 .attrs = hid_dev_attrs,
2347 .bin_attrs = hid_dev_bin_attrs,
2348 };
2349 __ATTRIBUTE_GROUPS(hid_dev);
2350
2351 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2352 {
2353 struct hid_device *hdev = to_hid_device(dev);
2354
2355 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2356 hdev->bus, hdev->vendor, hdev->product))
2357 return -ENOMEM;
2358
2359 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2360 return -ENOMEM;
2361
2362 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2363 return -ENOMEM;
2364
2365 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2366 return -ENOMEM;
2367
2368 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2369 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2370 return -ENOMEM;
2371
2372 return 0;
2373 }
2374
2375 struct bus_type hid_bus_type = {
2376 .name = "hid",
2377 .dev_groups = hid_dev_groups,
2378 .drv_groups = hid_drv_groups,
2379 .match = hid_bus_match,
2380 .probe = hid_device_probe,
2381 .remove = hid_device_remove,
2382 .uevent = hid_uevent,
2383 };
2384 EXPORT_SYMBOL(hid_bus_type);
2385
2386 int hid_add_device(struct hid_device *hdev)
2387 {
2388 static atomic_t id = ATOMIC_INIT(0);
2389 int ret;
2390
2391 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2392 return -EBUSY;
2393
2394 hdev->quirks = hid_lookup_quirk(hdev);
2395
2396 /* we need to kill them here, otherwise they will stay allocated to
2397 * wait for coming driver */
2398 if (hid_ignore(hdev))
2399 return -ENODEV;
2400
2401 /*
2402 * Check for the mandatory transport channel.
2403 */
2404 if (!hdev->ll_driver->raw_request) {
2405 hid_err(hdev, "transport driver missing .raw_request()\n");
2406 return -EINVAL;
2407 }
2408
2409 /*
2410 * Read the device report descriptor once and use as template
2411 * for the driver-specific modifications.
2412 */
2413 ret = hdev->ll_driver->parse(hdev);
2414 if (ret)
2415 return ret;
2416 if (!hdev->dev_rdesc)
2417 return -ENODEV;
2418
2419 /*
2420 * Scan generic devices for group information
2421 */
2422 if (hid_ignore_special_drivers) {
2423 hdev->group = HID_GROUP_GENERIC;
2424 } else if (!hdev->group &&
2425 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2426 ret = hid_scan_report(hdev);
2427 if (ret)
2428 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2429 }
2430
2431 /* XXX hack, any other cleaner solution after the driver core
2432 * is converted to allow more than 20 bytes as the device name? */
2433 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2434 hdev->vendor, hdev->product, atomic_inc_return(&id));
2435
2436 hid_debug_register(hdev, dev_name(&hdev->dev));
2437 ret = device_add(&hdev->dev);
2438 if (!ret)
2439 hdev->status |= HID_STAT_ADDED;
2440 else
2441 hid_debug_unregister(hdev);
2442
2443 return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(hid_add_device);
2446
2447 /**
2448 * hid_allocate_device - allocate new hid device descriptor
2449 *
2450 * Allocate and initialize hid device, so that hid_destroy_device might be
2451 * used to free it.
2452 *
2453 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2454 * error value.
2455 */
2456 struct hid_device *hid_allocate_device(void)
2457 {
2458 struct hid_device *hdev;
2459 int ret = -ENOMEM;
2460
2461 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2462 if (hdev == NULL)
2463 return ERR_PTR(ret);
2464
2465 device_initialize(&hdev->dev);
2466 hdev->dev.release = hid_device_release;
2467 hdev->dev.bus = &hid_bus_type;
2468 device_enable_async_suspend(&hdev->dev);
2469
2470 hid_close_report(hdev);
2471
2472 init_waitqueue_head(&hdev->debug_wait);
2473 INIT_LIST_HEAD(&hdev->debug_list);
2474 spin_lock_init(&hdev->debug_list_lock);
2475 sema_init(&hdev->driver_input_lock, 1);
2476 mutex_init(&hdev->ll_open_lock);
2477
2478 return hdev;
2479 }
2480 EXPORT_SYMBOL_GPL(hid_allocate_device);
2481
2482 static void hid_remove_device(struct hid_device *hdev)
2483 {
2484 if (hdev->status & HID_STAT_ADDED) {
2485 device_del(&hdev->dev);
2486 hid_debug_unregister(hdev);
2487 hdev->status &= ~HID_STAT_ADDED;
2488 }
2489 kfree(hdev->dev_rdesc);
2490 hdev->dev_rdesc = NULL;
2491 hdev->dev_rsize = 0;
2492 }
2493
2494 /**
2495 * hid_destroy_device - free previously allocated device
2496 *
2497 * @hdev: hid device
2498 *
2499 * If you allocate hid_device through hid_allocate_device, you should ever
2500 * free by this function.
2501 */
2502 void hid_destroy_device(struct hid_device *hdev)
2503 {
2504 hid_remove_device(hdev);
2505 put_device(&hdev->dev);
2506 }
2507 EXPORT_SYMBOL_GPL(hid_destroy_device);
2508
2509
2510 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2511 {
2512 struct hid_driver *hdrv = data;
2513 struct hid_device *hdev = to_hid_device(dev);
2514
2515 if (hdev->driver == hdrv &&
2516 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2517 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2518 return device_reprobe(dev);
2519
2520 return 0;
2521 }
2522
2523 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2524 {
2525 struct hid_driver *hdrv = to_hid_driver(drv);
2526
2527 if (hdrv->match) {
2528 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2529 __hid_bus_reprobe_drivers);
2530 }
2531
2532 return 0;
2533 }
2534
2535 static int __bus_removed_driver(struct device_driver *drv, void *data)
2536 {
2537 return bus_rescan_devices(&hid_bus_type);
2538 }
2539
2540 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2541 const char *mod_name)
2542 {
2543 int ret;
2544
2545 hdrv->driver.name = hdrv->name;
2546 hdrv->driver.bus = &hid_bus_type;
2547 hdrv->driver.owner = owner;
2548 hdrv->driver.mod_name = mod_name;
2549
2550 INIT_LIST_HEAD(&hdrv->dyn_list);
2551 spin_lock_init(&hdrv->dyn_lock);
2552
2553 ret = driver_register(&hdrv->driver);
2554
2555 if (ret == 0)
2556 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2557 __hid_bus_driver_added);
2558
2559 return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(__hid_register_driver);
2562
2563 void hid_unregister_driver(struct hid_driver *hdrv)
2564 {
2565 driver_unregister(&hdrv->driver);
2566 hid_free_dynids(hdrv);
2567
2568 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2569 }
2570 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2571
2572 int hid_check_keys_pressed(struct hid_device *hid)
2573 {
2574 struct hid_input *hidinput;
2575 int i;
2576
2577 if (!(hid->claimed & HID_CLAIMED_INPUT))
2578 return 0;
2579
2580 list_for_each_entry(hidinput, &hid->inputs, list) {
2581 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2582 if (hidinput->input->key[i])
2583 return 1;
2584 }
2585
2586 return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2589
2590 static int __init hid_init(void)
2591 {
2592 int ret;
2593
2594 if (hid_debug)
2595 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2596 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2597
2598 ret = bus_register(&hid_bus_type);
2599 if (ret) {
2600 pr_err("can't register hid bus\n");
2601 goto err;
2602 }
2603
2604 ret = hidraw_init();
2605 if (ret)
2606 goto err_bus;
2607
2608 hid_debug_init();
2609
2610 return 0;
2611 err_bus:
2612 bus_unregister(&hid_bus_type);
2613 err:
2614 return ret;
2615 }
2616
2617 static void __exit hid_exit(void)
2618 {
2619 hid_debug_exit();
2620 hidraw_exit();
2621 bus_unregister(&hid_bus_type);
2622 hid_quirks_exit(HID_BUS_ANY);
2623 }
2624
2625 module_init(hid_init);
2626 module_exit(hid_exit);
2627
2628 MODULE_AUTHOR("Andreas Gal");
2629 MODULE_AUTHOR("Vojtech Pavlik");
2630 MODULE_AUTHOR("Jiri Kosina");
2631 MODULE_LICENSE("GPL");