]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/hid/hid-logitech-hidpp.c
Merge branch 'for-5.14/logitech' into for-linus
[mirror_ubuntu-jammy-kernel.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * HIDPP protocol for Logitech receivers
4 *
5 * Copyright (c) 2011 Logitech (c)
6 * Copyright (c) 2012-2013 Google (c)
7 * Copyright (c) 2013-2014 Red Hat Inc.
8 */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT 0x10
45 #define REPORT_ID_HIDPP_LONG 0x11
46 #define REPORT_ID_HIDPP_VERY_LONG 0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH 7
49 #define HIDPP_REPORT_LONG_LENGTH 20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03
57 #define HIDPP_SUB_ID_ROLLER 0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06
59 #define HIDPP_SUB_ID_USER_IFACE_EVENT 0x08
60 #define HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST BIT(5)
61
62 #define HIDPP_QUIRK_CLASS_WTP BIT(0)
63 #define HIDPP_QUIRK_CLASS_M560 BIT(1)
64 #define HIDPP_QUIRK_CLASS_K400 BIT(2)
65 #define HIDPP_QUIRK_CLASS_G920 BIT(3)
66 #define HIDPP_QUIRK_CLASS_K750 BIT(4)
67
68 /* bits 2..20 are reserved for classes */
69 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */
70 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22)
71 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23)
72 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24)
73 #define HIDPP_QUIRK_UNIFYING BIT(25)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26)
75 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27)
76 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28)
77 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29)
78 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30)
79 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31)
80
81 /* These are just aliases for now */
82 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
83 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
84
85 /* Convenience constant to check for any high-res support. */
86 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
87 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
88 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
89
90 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT
91
92 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0)
93 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1)
94 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2)
95 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3)
96 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4)
97 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE BIT(5)
98 #define HIDPP_CAPABILITY_UNIFIED_BATTERY BIT(6)
99
100 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
101
102 /*
103 * There are two hidpp protocols in use, the first version hidpp10 is known
104 * as register access protocol or RAP, the second version hidpp20 is known as
105 * feature access protocol or FAP
106 *
107 * Most older devices (including the Unifying usb receiver) use the RAP protocol
108 * where as most newer devices use the FAP protocol. Both protocols are
109 * compatible with the underlying transport, which could be usb, Unifiying, or
110 * bluetooth. The message lengths are defined by the hid vendor specific report
111 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
112 * the HIDPP_LONG report type (total message length 20 bytes)
113 *
114 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
115 * messages. The Unifying receiver itself responds to RAP messages (device index
116 * is 0xFF for the receiver), and all messages (short or long) with a device
117 * index between 1 and 6 are passed untouched to the corresponding paired
118 * Unifying device.
119 *
120 * The paired device can be RAP or FAP, it will receive the message untouched
121 * from the Unifiying receiver.
122 */
123
124 struct fap {
125 u8 feature_index;
126 u8 funcindex_clientid;
127 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129
130 struct rap {
131 u8 sub_id;
132 u8 reg_address;
133 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
134 };
135
136 struct hidpp_report {
137 u8 report_id;
138 u8 device_index;
139 union {
140 struct fap fap;
141 struct rap rap;
142 u8 rawbytes[sizeof(struct fap)];
143 };
144 } __packed;
145
146 struct hidpp_battery {
147 u8 feature_index;
148 u8 solar_feature_index;
149 u8 voltage_feature_index;
150 struct power_supply_desc desc;
151 struct power_supply *ps;
152 char name[64];
153 int status;
154 int capacity;
155 int level;
156 int voltage;
157 int charge_type;
158 bool online;
159 u8 supported_levels_1004;
160 };
161
162 /**
163 * struct hidpp_scroll_counter - Utility class for processing high-resolution
164 * scroll events.
165 * @dev: the input device for which events should be reported.
166 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
167 * @remainder: counts the number of high-resolution units moved since the last
168 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
169 * only be used by class methods.
170 * @direction: direction of last movement (1 or -1)
171 * @last_time: last event time, used to reset remainder after inactivity
172 */
173 struct hidpp_scroll_counter {
174 int wheel_multiplier;
175 int remainder;
176 int direction;
177 unsigned long long last_time;
178 };
179
180 struct hidpp_device {
181 struct hid_device *hid_dev;
182 struct input_dev *input;
183 struct mutex send_mutex;
184 void *send_receive_buf;
185 char *name; /* will never be NULL and should not be freed */
186 wait_queue_head_t wait;
187 int very_long_report_length;
188 bool answer_available;
189 u8 protocol_major;
190 u8 protocol_minor;
191
192 void *private_data;
193
194 struct work_struct work;
195 struct kfifo delayed_work_fifo;
196 atomic_t connected;
197 struct input_dev *delayed_input;
198
199 unsigned long quirks;
200 unsigned long capabilities;
201 u8 supported_reports;
202
203 struct hidpp_battery battery;
204 struct hidpp_scroll_counter vertical_wheel_counter;
205
206 u8 wireless_feature_index;
207 };
208
209 /* HID++ 1.0 error codes */
210 #define HIDPP_ERROR 0x8f
211 #define HIDPP_ERROR_SUCCESS 0x00
212 #define HIDPP_ERROR_INVALID_SUBID 0x01
213 #define HIDPP_ERROR_INVALID_ADRESS 0x02
214 #define HIDPP_ERROR_INVALID_VALUE 0x03
215 #define HIDPP_ERROR_CONNECT_FAIL 0x04
216 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05
217 #define HIDPP_ERROR_ALREADY_EXISTS 0x06
218 #define HIDPP_ERROR_BUSY 0x07
219 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08
220 #define HIDPP_ERROR_RESOURCE_ERROR 0x09
221 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a
222 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b
223 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c
224 /* HID++ 2.0 error codes */
225 #define HIDPP20_ERROR 0xff
226
227 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
228
229 static int __hidpp_send_report(struct hid_device *hdev,
230 struct hidpp_report *hidpp_report)
231 {
232 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
233 int fields_count, ret;
234
235 switch (hidpp_report->report_id) {
236 case REPORT_ID_HIDPP_SHORT:
237 fields_count = HIDPP_REPORT_SHORT_LENGTH;
238 break;
239 case REPORT_ID_HIDPP_LONG:
240 fields_count = HIDPP_REPORT_LONG_LENGTH;
241 break;
242 case REPORT_ID_HIDPP_VERY_LONG:
243 fields_count = hidpp->very_long_report_length;
244 break;
245 default:
246 return -ENODEV;
247 }
248
249 /*
250 * set the device_index as the receiver, it will be overwritten by
251 * hid_hw_request if needed
252 */
253 hidpp_report->device_index = 0xff;
254
255 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
256 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
257 } else {
258 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
259 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
260 HID_REQ_SET_REPORT);
261 }
262
263 return ret == fields_count ? 0 : -1;
264 }
265
266 /*
267 * hidpp_send_message_sync() returns 0 in case of success, and something else
268 * in case of a failure.
269 * - If ' something else' is positive, that means that an error has been raised
270 * by the protocol itself.
271 * - If ' something else' is negative, that means that we had a classic error
272 * (-ENOMEM, -EPIPE, etc...)
273 */
274 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
275 struct hidpp_report *message,
276 struct hidpp_report *response)
277 {
278 int ret;
279
280 mutex_lock(&hidpp->send_mutex);
281
282 hidpp->send_receive_buf = response;
283 hidpp->answer_available = false;
284
285 /*
286 * So that we can later validate the answer when it arrives
287 * in hidpp_raw_event
288 */
289 *response = *message;
290
291 ret = __hidpp_send_report(hidpp->hid_dev, message);
292
293 if (ret) {
294 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
295 memset(response, 0, sizeof(struct hidpp_report));
296 goto exit;
297 }
298
299 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
300 5*HZ)) {
301 dbg_hid("%s:timeout waiting for response\n", __func__);
302 memset(response, 0, sizeof(struct hidpp_report));
303 ret = -ETIMEDOUT;
304 }
305
306 if (response->report_id == REPORT_ID_HIDPP_SHORT &&
307 response->rap.sub_id == HIDPP_ERROR) {
308 ret = response->rap.params[1];
309 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
310 goto exit;
311 }
312
313 if ((response->report_id == REPORT_ID_HIDPP_LONG ||
314 response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
315 response->fap.feature_index == HIDPP20_ERROR) {
316 ret = response->fap.params[1];
317 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
318 goto exit;
319 }
320
321 exit:
322 mutex_unlock(&hidpp->send_mutex);
323 return ret;
324
325 }
326
327 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
328 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
329 struct hidpp_report *response)
330 {
331 struct hidpp_report *message;
332 int ret;
333
334 if (param_count > sizeof(message->fap.params))
335 return -EINVAL;
336
337 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
338 if (!message)
339 return -ENOMEM;
340
341 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
342 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
343 else
344 message->report_id = REPORT_ID_HIDPP_LONG;
345 message->fap.feature_index = feat_index;
346 message->fap.funcindex_clientid = funcindex_clientid;
347 memcpy(&message->fap.params, params, param_count);
348
349 ret = hidpp_send_message_sync(hidpp, message, response);
350 kfree(message);
351 return ret;
352 }
353
354 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
355 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
356 struct hidpp_report *response)
357 {
358 struct hidpp_report *message;
359 int ret, max_count;
360
361 /* Send as long report if short reports are not supported. */
362 if (report_id == REPORT_ID_HIDPP_SHORT &&
363 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
364 report_id = REPORT_ID_HIDPP_LONG;
365
366 switch (report_id) {
367 case REPORT_ID_HIDPP_SHORT:
368 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
369 break;
370 case REPORT_ID_HIDPP_LONG:
371 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
372 break;
373 case REPORT_ID_HIDPP_VERY_LONG:
374 max_count = hidpp_dev->very_long_report_length - 4;
375 break;
376 default:
377 return -EINVAL;
378 }
379
380 if (param_count > max_count)
381 return -EINVAL;
382
383 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
384 if (!message)
385 return -ENOMEM;
386 message->report_id = report_id;
387 message->rap.sub_id = sub_id;
388 message->rap.reg_address = reg_address;
389 memcpy(&message->rap.params, params, param_count);
390
391 ret = hidpp_send_message_sync(hidpp_dev, message, response);
392 kfree(message);
393 return ret;
394 }
395
396 static void delayed_work_cb(struct work_struct *work)
397 {
398 struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
399 work);
400 hidpp_connect_event(hidpp);
401 }
402
403 static inline bool hidpp_match_answer(struct hidpp_report *question,
404 struct hidpp_report *answer)
405 {
406 return (answer->fap.feature_index == question->fap.feature_index) &&
407 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
408 }
409
410 static inline bool hidpp_match_error(struct hidpp_report *question,
411 struct hidpp_report *answer)
412 {
413 return ((answer->rap.sub_id == HIDPP_ERROR) ||
414 (answer->fap.feature_index == HIDPP20_ERROR)) &&
415 (answer->fap.funcindex_clientid == question->fap.feature_index) &&
416 (answer->fap.params[0] == question->fap.funcindex_clientid);
417 }
418
419 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
420 struct hidpp_report *report)
421 {
422 return (hidpp->wireless_feature_index &&
423 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
424 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
425 (report->rap.sub_id == 0x41));
426 }
427
428 /*
429 * hidpp_prefix_name() prefixes the current given name with "Logitech ".
430 */
431 static void hidpp_prefix_name(char **name, int name_length)
432 {
433 #define PREFIX_LENGTH 9 /* "Logitech " */
434
435 int new_length;
436 char *new_name;
437
438 if (name_length > PREFIX_LENGTH &&
439 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
440 /* The prefix has is already in the name */
441 return;
442
443 new_length = PREFIX_LENGTH + name_length;
444 new_name = kzalloc(new_length, GFP_KERNEL);
445 if (!new_name)
446 return;
447
448 snprintf(new_name, new_length, "Logitech %s", *name);
449
450 kfree(*name);
451
452 *name = new_name;
453 }
454
455 /**
456 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
457 * events given a high-resolution wheel
458 * movement.
459 * @input_dev: Pointer to the input device
460 * @counter: a hid_scroll_counter struct describing the wheel.
461 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
462 * units.
463 *
464 * Given a high-resolution movement, this function converts the movement into
465 * fractions of 120 and emits high-resolution scroll events for the input
466 * device. It also uses the multiplier from &struct hid_scroll_counter to
467 * emit low-resolution scroll events when appropriate for
468 * backwards-compatibility with userspace input libraries.
469 */
470 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
471 struct hidpp_scroll_counter *counter,
472 int hi_res_value)
473 {
474 int low_res_value, remainder, direction;
475 unsigned long long now, previous;
476
477 hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
478 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
479
480 remainder = counter->remainder;
481 direction = hi_res_value > 0 ? 1 : -1;
482
483 now = sched_clock();
484 previous = counter->last_time;
485 counter->last_time = now;
486 /*
487 * Reset the remainder after a period of inactivity or when the
488 * direction changes. This prevents the REL_WHEEL emulation point
489 * from sliding for devices that don't always provide the same
490 * number of movements per detent.
491 */
492 if (now - previous > 1000000000 || direction != counter->direction)
493 remainder = 0;
494
495 counter->direction = direction;
496 remainder += hi_res_value;
497
498 /* Some wheels will rest 7/8ths of a detent from the previous detent
499 * after slow movement, so we want the threshold for low-res events to
500 * be in the middle between two detents (e.g. after 4/8ths) as
501 * opposed to on the detents themselves (8/8ths).
502 */
503 if (abs(remainder) >= 60) {
504 /* Add (or subtract) 1 because we want to trigger when the wheel
505 * is half-way to the next detent (i.e. scroll 1 detent after a
506 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
507 * etc.).
508 */
509 low_res_value = remainder / 120;
510 if (low_res_value == 0)
511 low_res_value = (hi_res_value > 0 ? 1 : -1);
512 input_report_rel(input_dev, REL_WHEEL, low_res_value);
513 remainder -= low_res_value * 120;
514 }
515 counter->remainder = remainder;
516 }
517
518 /* -------------------------------------------------------------------------- */
519 /* HIDP++ 1.0 commands */
520 /* -------------------------------------------------------------------------- */
521
522 #define HIDPP_SET_REGISTER 0x80
523 #define HIDPP_GET_REGISTER 0x81
524 #define HIDPP_SET_LONG_REGISTER 0x82
525 #define HIDPP_GET_LONG_REGISTER 0x83
526
527 /**
528 * hidpp10_set_register - Modify a HID++ 1.0 register.
529 * @hidpp_dev: the device to set the register on.
530 * @register_address: the address of the register to modify.
531 * @byte: the byte of the register to modify. Should be less than 3.
532 * @mask: mask of the bits to modify
533 * @value: new values for the bits in mask
534 * Return: 0 if successful, otherwise a negative error code.
535 */
536 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
537 u8 register_address, u8 byte, u8 mask, u8 value)
538 {
539 struct hidpp_report response;
540 int ret;
541 u8 params[3] = { 0 };
542
543 ret = hidpp_send_rap_command_sync(hidpp_dev,
544 REPORT_ID_HIDPP_SHORT,
545 HIDPP_GET_REGISTER,
546 register_address,
547 NULL, 0, &response);
548 if (ret)
549 return ret;
550
551 memcpy(params, response.rap.params, 3);
552
553 params[byte] &= ~mask;
554 params[byte] |= value & mask;
555
556 return hidpp_send_rap_command_sync(hidpp_dev,
557 REPORT_ID_HIDPP_SHORT,
558 HIDPP_SET_REGISTER,
559 register_address,
560 params, 3, &response);
561 }
562
563 #define HIDPP_REG_ENABLE_REPORTS 0x00
564 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0)
565 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2)
566 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3)
567 #define HIDPP_ENABLE_BAT_REPORT BIT(4)
568 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5)
569
570 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
571 {
572 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
573 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
574 }
575
576 #define HIDPP_REG_FEATURES 0x01
577 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1)
578 #define HIDPP_ENABLE_FAST_SCROLL BIT(6)
579
580 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
581 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
582 {
583 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
584 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
585 }
586
587 #define HIDPP_REG_BATTERY_STATUS 0x07
588
589 static int hidpp10_battery_status_map_level(u8 param)
590 {
591 int level;
592
593 switch (param) {
594 case 1 ... 2:
595 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
596 break;
597 case 3 ... 4:
598 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
599 break;
600 case 5 ... 6:
601 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
602 break;
603 case 7:
604 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
605 break;
606 default:
607 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
608 }
609
610 return level;
611 }
612
613 static int hidpp10_battery_status_map_status(u8 param)
614 {
615 int status;
616
617 switch (param) {
618 case 0x00:
619 /* discharging (in use) */
620 status = POWER_SUPPLY_STATUS_DISCHARGING;
621 break;
622 case 0x21: /* (standard) charging */
623 case 0x24: /* fast charging */
624 case 0x25: /* slow charging */
625 status = POWER_SUPPLY_STATUS_CHARGING;
626 break;
627 case 0x26: /* topping charge */
628 case 0x22: /* charge complete */
629 status = POWER_SUPPLY_STATUS_FULL;
630 break;
631 case 0x20: /* unknown */
632 status = POWER_SUPPLY_STATUS_UNKNOWN;
633 break;
634 /*
635 * 0x01...0x1F = reserved (not charging)
636 * 0x23 = charging error
637 * 0x27..0xff = reserved
638 */
639 default:
640 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
641 break;
642 }
643
644 return status;
645 }
646
647 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
648 {
649 struct hidpp_report response;
650 int ret, status;
651
652 ret = hidpp_send_rap_command_sync(hidpp,
653 REPORT_ID_HIDPP_SHORT,
654 HIDPP_GET_REGISTER,
655 HIDPP_REG_BATTERY_STATUS,
656 NULL, 0, &response);
657 if (ret)
658 return ret;
659
660 hidpp->battery.level =
661 hidpp10_battery_status_map_level(response.rap.params[0]);
662 status = hidpp10_battery_status_map_status(response.rap.params[1]);
663 hidpp->battery.status = status;
664 /* the capacity is only available when discharging or full */
665 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
666 status == POWER_SUPPLY_STATUS_FULL;
667
668 return 0;
669 }
670
671 #define HIDPP_REG_BATTERY_MILEAGE 0x0D
672
673 static int hidpp10_battery_mileage_map_status(u8 param)
674 {
675 int status;
676
677 switch (param >> 6) {
678 case 0x00:
679 /* discharging (in use) */
680 status = POWER_SUPPLY_STATUS_DISCHARGING;
681 break;
682 case 0x01: /* charging */
683 status = POWER_SUPPLY_STATUS_CHARGING;
684 break;
685 case 0x02: /* charge complete */
686 status = POWER_SUPPLY_STATUS_FULL;
687 break;
688 /*
689 * 0x03 = charging error
690 */
691 default:
692 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
693 break;
694 }
695
696 return status;
697 }
698
699 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
700 {
701 struct hidpp_report response;
702 int ret, status;
703
704 ret = hidpp_send_rap_command_sync(hidpp,
705 REPORT_ID_HIDPP_SHORT,
706 HIDPP_GET_REGISTER,
707 HIDPP_REG_BATTERY_MILEAGE,
708 NULL, 0, &response);
709 if (ret)
710 return ret;
711
712 hidpp->battery.capacity = response.rap.params[0];
713 status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
714 hidpp->battery.status = status;
715 /* the capacity is only available when discharging or full */
716 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
717 status == POWER_SUPPLY_STATUS_FULL;
718
719 return 0;
720 }
721
722 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
723 {
724 struct hidpp_report *report = (struct hidpp_report *)data;
725 int status, capacity, level;
726 bool changed;
727
728 if (report->report_id != REPORT_ID_HIDPP_SHORT)
729 return 0;
730
731 switch (report->rap.sub_id) {
732 case HIDPP_REG_BATTERY_STATUS:
733 capacity = hidpp->battery.capacity;
734 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
735 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
736 break;
737 case HIDPP_REG_BATTERY_MILEAGE:
738 capacity = report->rap.params[0];
739 level = hidpp->battery.level;
740 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
741 break;
742 default:
743 return 0;
744 }
745
746 changed = capacity != hidpp->battery.capacity ||
747 level != hidpp->battery.level ||
748 status != hidpp->battery.status;
749
750 /* the capacity is only available when discharging or full */
751 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
752 status == POWER_SUPPLY_STATUS_FULL;
753
754 if (changed) {
755 hidpp->battery.level = level;
756 hidpp->battery.status = status;
757 if (hidpp->battery.ps)
758 power_supply_changed(hidpp->battery.ps);
759 }
760
761 return 0;
762 }
763
764 #define HIDPP_REG_PAIRING_INFORMATION 0xB5
765 #define HIDPP_EXTENDED_PAIRING 0x30
766 #define HIDPP_DEVICE_NAME 0x40
767
768 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
769 {
770 struct hidpp_report response;
771 int ret;
772 u8 params[1] = { HIDPP_DEVICE_NAME };
773 char *name;
774 int len;
775
776 ret = hidpp_send_rap_command_sync(hidpp_dev,
777 REPORT_ID_HIDPP_SHORT,
778 HIDPP_GET_LONG_REGISTER,
779 HIDPP_REG_PAIRING_INFORMATION,
780 params, 1, &response);
781 if (ret)
782 return NULL;
783
784 len = response.rap.params[1];
785
786 if (2 + len > sizeof(response.rap.params))
787 return NULL;
788
789 if (len < 4) /* logitech devices are usually at least Xddd */
790 return NULL;
791
792 name = kzalloc(len + 1, GFP_KERNEL);
793 if (!name)
794 return NULL;
795
796 memcpy(name, &response.rap.params[2], len);
797
798 /* include the terminating '\0' */
799 hidpp_prefix_name(&name, len + 1);
800
801 return name;
802 }
803
804 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
805 {
806 struct hidpp_report response;
807 int ret;
808 u8 params[1] = { HIDPP_EXTENDED_PAIRING };
809
810 ret = hidpp_send_rap_command_sync(hidpp,
811 REPORT_ID_HIDPP_SHORT,
812 HIDPP_GET_LONG_REGISTER,
813 HIDPP_REG_PAIRING_INFORMATION,
814 params, 1, &response);
815 if (ret)
816 return ret;
817
818 /*
819 * We don't care about LE or BE, we will output it as a string
820 * with %4phD, so we need to keep the order.
821 */
822 *serial = *((u32 *)&response.rap.params[1]);
823 return 0;
824 }
825
826 static int hidpp_unifying_init(struct hidpp_device *hidpp)
827 {
828 struct hid_device *hdev = hidpp->hid_dev;
829 const char *name;
830 u32 serial;
831 int ret;
832
833 ret = hidpp_unifying_get_serial(hidpp, &serial);
834 if (ret)
835 return ret;
836
837 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
838 hdev->product, &serial);
839 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
840
841 name = hidpp_unifying_get_name(hidpp);
842 if (!name)
843 return -EIO;
844
845 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
846 dbg_hid("HID++ Unifying: Got name: %s\n", name);
847
848 kfree(name);
849 return 0;
850 }
851
852 /* -------------------------------------------------------------------------- */
853 /* 0x0000: Root */
854 /* -------------------------------------------------------------------------- */
855
856 #define HIDPP_PAGE_ROOT 0x0000
857 #define HIDPP_PAGE_ROOT_IDX 0x00
858
859 #define CMD_ROOT_GET_FEATURE 0x01
860 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11
861
862 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
863 u8 *feature_index, u8 *feature_type)
864 {
865 struct hidpp_report response;
866 int ret;
867 u8 params[2] = { feature >> 8, feature & 0x00FF };
868
869 ret = hidpp_send_fap_command_sync(hidpp,
870 HIDPP_PAGE_ROOT_IDX,
871 CMD_ROOT_GET_FEATURE,
872 params, 2, &response);
873 if (ret)
874 return ret;
875
876 if (response.fap.params[0] == 0)
877 return -ENOENT;
878
879 *feature_index = response.fap.params[0];
880 *feature_type = response.fap.params[1];
881
882 return ret;
883 }
884
885 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
886 {
887 const u8 ping_byte = 0x5a;
888 u8 ping_data[3] = { 0, 0, ping_byte };
889 struct hidpp_report response;
890 int ret;
891
892 ret = hidpp_send_rap_command_sync(hidpp,
893 REPORT_ID_HIDPP_SHORT,
894 HIDPP_PAGE_ROOT_IDX,
895 CMD_ROOT_GET_PROTOCOL_VERSION,
896 ping_data, sizeof(ping_data), &response);
897
898 if (ret == HIDPP_ERROR_INVALID_SUBID) {
899 hidpp->protocol_major = 1;
900 hidpp->protocol_minor = 0;
901 goto print_version;
902 }
903
904 /* the device might not be connected */
905 if (ret == HIDPP_ERROR_RESOURCE_ERROR)
906 return -EIO;
907
908 if (ret > 0) {
909 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
910 __func__, ret);
911 return -EPROTO;
912 }
913 if (ret)
914 return ret;
915
916 if (response.rap.params[2] != ping_byte) {
917 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
918 __func__, response.rap.params[2], ping_byte);
919 return -EPROTO;
920 }
921
922 hidpp->protocol_major = response.rap.params[0];
923 hidpp->protocol_minor = response.rap.params[1];
924
925 print_version:
926 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
927 hidpp->protocol_major, hidpp->protocol_minor);
928 return 0;
929 }
930
931 /* -------------------------------------------------------------------------- */
932 /* 0x0005: GetDeviceNameType */
933 /* -------------------------------------------------------------------------- */
934
935 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005
936
937 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01
938 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11
939 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21
940
941 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
942 u8 feature_index, u8 *nameLength)
943 {
944 struct hidpp_report response;
945 int ret;
946
947 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
948 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
949
950 if (ret > 0) {
951 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
952 __func__, ret);
953 return -EPROTO;
954 }
955 if (ret)
956 return ret;
957
958 *nameLength = response.fap.params[0];
959
960 return ret;
961 }
962
963 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
964 u8 feature_index, u8 char_index, char *device_name, int len_buf)
965 {
966 struct hidpp_report response;
967 int ret, i;
968 int count;
969
970 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
971 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
972 &response);
973
974 if (ret > 0) {
975 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
976 __func__, ret);
977 return -EPROTO;
978 }
979 if (ret)
980 return ret;
981
982 switch (response.report_id) {
983 case REPORT_ID_HIDPP_VERY_LONG:
984 count = hidpp->very_long_report_length - 4;
985 break;
986 case REPORT_ID_HIDPP_LONG:
987 count = HIDPP_REPORT_LONG_LENGTH - 4;
988 break;
989 case REPORT_ID_HIDPP_SHORT:
990 count = HIDPP_REPORT_SHORT_LENGTH - 4;
991 break;
992 default:
993 return -EPROTO;
994 }
995
996 if (len_buf < count)
997 count = len_buf;
998
999 for (i = 0; i < count; i++)
1000 device_name[i] = response.fap.params[i];
1001
1002 return count;
1003 }
1004
1005 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1006 {
1007 u8 feature_type;
1008 u8 feature_index;
1009 u8 __name_length;
1010 char *name;
1011 unsigned index = 0;
1012 int ret;
1013
1014 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1015 &feature_index, &feature_type);
1016 if (ret)
1017 return NULL;
1018
1019 ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1020 &__name_length);
1021 if (ret)
1022 return NULL;
1023
1024 name = kzalloc(__name_length + 1, GFP_KERNEL);
1025 if (!name)
1026 return NULL;
1027
1028 while (index < __name_length) {
1029 ret = hidpp_devicenametype_get_device_name(hidpp,
1030 feature_index, index, name + index,
1031 __name_length - index);
1032 if (ret <= 0) {
1033 kfree(name);
1034 return NULL;
1035 }
1036 index += ret;
1037 }
1038
1039 /* include the terminating '\0' */
1040 hidpp_prefix_name(&name, __name_length + 1);
1041
1042 return name;
1043 }
1044
1045 /* -------------------------------------------------------------------------- */
1046 /* 0x1000: Battery level status */
1047 /* -------------------------------------------------------------------------- */
1048
1049 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000
1050
1051 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00
1052 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10
1053
1054 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00
1055
1056 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0)
1057 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1)
1058 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2)
1059
1060 static int hidpp_map_battery_level(int capacity)
1061 {
1062 if (capacity < 11)
1063 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1064 /*
1065 * The spec says this should be < 31 but some devices report 30
1066 * with brand new batteries and Windows reports 30 as "Good".
1067 */
1068 else if (capacity < 30)
1069 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1070 else if (capacity < 81)
1071 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1072 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1073 }
1074
1075 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1076 int *next_capacity,
1077 int *level)
1078 {
1079 int status;
1080
1081 *capacity = data[0];
1082 *next_capacity = data[1];
1083 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1084
1085 /* When discharging, we can rely on the device reported capacity.
1086 * For all other states the device reports 0 (unknown).
1087 */
1088 switch (data[2]) {
1089 case 0: /* discharging (in use) */
1090 status = POWER_SUPPLY_STATUS_DISCHARGING;
1091 *level = hidpp_map_battery_level(*capacity);
1092 break;
1093 case 1: /* recharging */
1094 status = POWER_SUPPLY_STATUS_CHARGING;
1095 break;
1096 case 2: /* charge in final stage */
1097 status = POWER_SUPPLY_STATUS_CHARGING;
1098 break;
1099 case 3: /* charge complete */
1100 status = POWER_SUPPLY_STATUS_FULL;
1101 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1102 *capacity = 100;
1103 break;
1104 case 4: /* recharging below optimal speed */
1105 status = POWER_SUPPLY_STATUS_CHARGING;
1106 break;
1107 /* 5 = invalid battery type
1108 6 = thermal error
1109 7 = other charging error */
1110 default:
1111 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1112 break;
1113 }
1114
1115 return status;
1116 }
1117
1118 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1119 u8 feature_index,
1120 int *status,
1121 int *capacity,
1122 int *next_capacity,
1123 int *level)
1124 {
1125 struct hidpp_report response;
1126 int ret;
1127 u8 *params = (u8 *)response.fap.params;
1128
1129 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1130 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1131 NULL, 0, &response);
1132 /* Ignore these intermittent errors */
1133 if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1134 return -EIO;
1135 if (ret > 0) {
1136 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1137 __func__, ret);
1138 return -EPROTO;
1139 }
1140 if (ret)
1141 return ret;
1142
1143 *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1144 next_capacity,
1145 level);
1146
1147 return 0;
1148 }
1149
1150 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1151 u8 feature_index)
1152 {
1153 struct hidpp_report response;
1154 int ret;
1155 u8 *params = (u8 *)response.fap.params;
1156 unsigned int level_count, flags;
1157
1158 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1159 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1160 NULL, 0, &response);
1161 if (ret > 0) {
1162 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1163 __func__, ret);
1164 return -EPROTO;
1165 }
1166 if (ret)
1167 return ret;
1168
1169 level_count = params[0];
1170 flags = params[1];
1171
1172 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1173 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1174 else
1175 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1176
1177 return 0;
1178 }
1179
1180 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1181 {
1182 u8 feature_type;
1183 int ret;
1184 int status, capacity, next_capacity, level;
1185
1186 if (hidpp->battery.feature_index == 0xff) {
1187 ret = hidpp_root_get_feature(hidpp,
1188 HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1189 &hidpp->battery.feature_index,
1190 &feature_type);
1191 if (ret)
1192 return ret;
1193 }
1194
1195 ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1196 hidpp->battery.feature_index,
1197 &status, &capacity,
1198 &next_capacity, &level);
1199 if (ret)
1200 return ret;
1201
1202 ret = hidpp20_batterylevel_get_battery_info(hidpp,
1203 hidpp->battery.feature_index);
1204 if (ret)
1205 return ret;
1206
1207 hidpp->battery.status = status;
1208 hidpp->battery.capacity = capacity;
1209 hidpp->battery.level = level;
1210 /* the capacity is only available when discharging or full */
1211 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1212 status == POWER_SUPPLY_STATUS_FULL;
1213
1214 return 0;
1215 }
1216
1217 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1218 u8 *data, int size)
1219 {
1220 struct hidpp_report *report = (struct hidpp_report *)data;
1221 int status, capacity, next_capacity, level;
1222 bool changed;
1223
1224 if (report->fap.feature_index != hidpp->battery.feature_index ||
1225 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1226 return 0;
1227
1228 status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1229 &capacity,
1230 &next_capacity,
1231 &level);
1232
1233 /* the capacity is only available when discharging or full */
1234 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1235 status == POWER_SUPPLY_STATUS_FULL;
1236
1237 changed = capacity != hidpp->battery.capacity ||
1238 level != hidpp->battery.level ||
1239 status != hidpp->battery.status;
1240
1241 if (changed) {
1242 hidpp->battery.level = level;
1243 hidpp->battery.capacity = capacity;
1244 hidpp->battery.status = status;
1245 if (hidpp->battery.ps)
1246 power_supply_changed(hidpp->battery.ps);
1247 }
1248
1249 return 0;
1250 }
1251
1252 /* -------------------------------------------------------------------------- */
1253 /* 0x1001: Battery voltage */
1254 /* -------------------------------------------------------------------------- */
1255
1256 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1257
1258 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1259
1260 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1261
1262 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1263 int *level, int *charge_type)
1264 {
1265 int status;
1266
1267 long flags = (long) data[2];
1268 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1269
1270 if (flags & 0x80)
1271 switch (flags & 0x07) {
1272 case 0:
1273 status = POWER_SUPPLY_STATUS_CHARGING;
1274 break;
1275 case 1:
1276 status = POWER_SUPPLY_STATUS_FULL;
1277 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1278 break;
1279 case 2:
1280 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1281 break;
1282 default:
1283 status = POWER_SUPPLY_STATUS_UNKNOWN;
1284 break;
1285 }
1286 else
1287 status = POWER_SUPPLY_STATUS_DISCHARGING;
1288
1289 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1290 if (test_bit(3, &flags)) {
1291 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1292 }
1293 if (test_bit(4, &flags)) {
1294 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1295 }
1296 if (test_bit(5, &flags)) {
1297 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1298 }
1299
1300 *voltage = get_unaligned_be16(data);
1301
1302 return status;
1303 }
1304
1305 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1306 u8 feature_index,
1307 int *status, int *voltage,
1308 int *level, int *charge_type)
1309 {
1310 struct hidpp_report response;
1311 int ret;
1312 u8 *params = (u8 *)response.fap.params;
1313
1314 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1315 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1316 NULL, 0, &response);
1317
1318 if (ret > 0) {
1319 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1320 __func__, ret);
1321 return -EPROTO;
1322 }
1323 if (ret)
1324 return ret;
1325
1326 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1327
1328 *status = hidpp20_battery_map_status_voltage(params, voltage,
1329 level, charge_type);
1330
1331 return 0;
1332 }
1333
1334 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1335 {
1336 u8 feature_type;
1337 int ret;
1338 int status, voltage, level, charge_type;
1339
1340 if (hidpp->battery.voltage_feature_index == 0xff) {
1341 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1342 &hidpp->battery.voltage_feature_index,
1343 &feature_type);
1344 if (ret)
1345 return ret;
1346 }
1347
1348 ret = hidpp20_battery_get_battery_voltage(hidpp,
1349 hidpp->battery.voltage_feature_index,
1350 &status, &voltage, &level, &charge_type);
1351
1352 if (ret)
1353 return ret;
1354
1355 hidpp->battery.status = status;
1356 hidpp->battery.voltage = voltage;
1357 hidpp->battery.level = level;
1358 hidpp->battery.charge_type = charge_type;
1359 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1360
1361 return 0;
1362 }
1363
1364 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1365 u8 *data, int size)
1366 {
1367 struct hidpp_report *report = (struct hidpp_report *)data;
1368 int status, voltage, level, charge_type;
1369
1370 if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1371 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1372 return 0;
1373
1374 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1375 &level, &charge_type);
1376
1377 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1378
1379 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1380 hidpp->battery.voltage = voltage;
1381 hidpp->battery.status = status;
1382 hidpp->battery.level = level;
1383 hidpp->battery.charge_type = charge_type;
1384 if (hidpp->battery.ps)
1385 power_supply_changed(hidpp->battery.ps);
1386 }
1387 return 0;
1388 }
1389
1390 /* -------------------------------------------------------------------------- */
1391 /* 0x1004: Unified battery */
1392 /* -------------------------------------------------------------------------- */
1393
1394 #define HIDPP_PAGE_UNIFIED_BATTERY 0x1004
1395
1396 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES 0x00
1397 #define CMD_UNIFIED_BATTERY_GET_STATUS 0x10
1398
1399 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT 0x00
1400
1401 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL BIT(0)
1402 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW BIT(1)
1403 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD BIT(2)
1404 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL BIT(3)
1405
1406 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE BIT(0)
1407 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE BIT(1)
1408
1409 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1410 u8 feature_index)
1411 {
1412 struct hidpp_report response;
1413 int ret;
1414 u8 *params = (u8 *)response.fap.params;
1415
1416 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1417 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1418 /* we have already set the device capabilities, so let's skip */
1419 return 0;
1420 }
1421
1422 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1423 CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1424 NULL, 0, &response);
1425 /* Ignore these intermittent errors */
1426 if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1427 return -EIO;
1428 if (ret > 0) {
1429 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1430 __func__, ret);
1431 return -EPROTO;
1432 }
1433 if (ret)
1434 return ret;
1435
1436 /*
1437 * If the device supports state of charge (battery percentage) we won't
1438 * export the battery level information. there are 4 possible battery
1439 * levels and they all are optional, this means that the device might
1440 * not support any of them, we are just better off with the battery
1441 * percentage.
1442 */
1443 if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1444 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1445 hidpp->battery.supported_levels_1004 = 0;
1446 } else {
1447 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1448 hidpp->battery.supported_levels_1004 = params[0];
1449 }
1450
1451 return 0;
1452 }
1453
1454 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1455 u8 charging_status,
1456 u8 external_power_status)
1457 {
1458 int status;
1459
1460 switch (charging_status) {
1461 case 0: /* discharging */
1462 status = POWER_SUPPLY_STATUS_DISCHARGING;
1463 break;
1464 case 1: /* charging */
1465 case 2: /* charging slow */
1466 status = POWER_SUPPLY_STATUS_CHARGING;
1467 break;
1468 case 3: /* complete */
1469 status = POWER_SUPPLY_STATUS_FULL;
1470 break;
1471 case 4: /* error */
1472 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1473 hid_info(hidpp->hid_dev, "%s: charging error",
1474 hidpp->name);
1475 break;
1476 default:
1477 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1478 break;
1479 }
1480
1481 return status;
1482 }
1483
1484 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1485 u8 battery_level)
1486 {
1487 /* cler unsupported level bits */
1488 battery_level &= hidpp->battery.supported_levels_1004;
1489
1490 if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1491 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1492 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1493 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1494 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1495 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1496 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1497 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1498
1499 return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1500 }
1501
1502 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1503 u8 feature_index,
1504 u8 *state_of_charge,
1505 int *status,
1506 int *level)
1507 {
1508 struct hidpp_report response;
1509 int ret;
1510 u8 *params = (u8 *)response.fap.params;
1511
1512 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1513 CMD_UNIFIED_BATTERY_GET_STATUS,
1514 NULL, 0, &response);
1515 /* Ignore these intermittent errors */
1516 if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1517 return -EIO;
1518 if (ret > 0) {
1519 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1520 __func__, ret);
1521 return -EPROTO;
1522 }
1523 if (ret)
1524 return ret;
1525
1526 *state_of_charge = params[0];
1527 *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1528 *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1529
1530 return 0;
1531 }
1532
1533 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1534 {
1535 u8 feature_type;
1536 int ret;
1537 u8 state_of_charge;
1538 int status, level;
1539
1540 if (hidpp->battery.feature_index == 0xff) {
1541 ret = hidpp_root_get_feature(hidpp,
1542 HIDPP_PAGE_UNIFIED_BATTERY,
1543 &hidpp->battery.feature_index,
1544 &feature_type);
1545 if (ret)
1546 return ret;
1547 }
1548
1549 ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1550 hidpp->battery.feature_index);
1551 if (ret)
1552 return ret;
1553
1554 ret = hidpp20_unifiedbattery_get_status(hidpp,
1555 hidpp->battery.feature_index,
1556 &state_of_charge,
1557 &status,
1558 &level);
1559 if (ret)
1560 return ret;
1561
1562 hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1563 hidpp->battery.capacity = state_of_charge;
1564 hidpp->battery.status = status;
1565 hidpp->battery.level = level;
1566 hidpp->battery.online = true;
1567
1568 return 0;
1569 }
1570
1571 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1572 u8 *data, int size)
1573 {
1574 struct hidpp_report *report = (struct hidpp_report *)data;
1575 u8 *params = (u8 *)report->fap.params;
1576 int state_of_charge, status, level;
1577 bool changed;
1578
1579 if (report->fap.feature_index != hidpp->battery.feature_index ||
1580 report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1581 return 0;
1582
1583 state_of_charge = params[0];
1584 status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1585 level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1586
1587 changed = status != hidpp->battery.status ||
1588 (state_of_charge != hidpp->battery.capacity &&
1589 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1590 (level != hidpp->battery.level &&
1591 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1592
1593 if (changed) {
1594 hidpp->battery.capacity = state_of_charge;
1595 hidpp->battery.status = status;
1596 hidpp->battery.level = level;
1597 if (hidpp->battery.ps)
1598 power_supply_changed(hidpp->battery.ps);
1599 }
1600
1601 return 0;
1602 }
1603
1604 /* -------------------------------------------------------------------------- */
1605 /* Battery feature helpers */
1606 /* -------------------------------------------------------------------------- */
1607
1608 static enum power_supply_property hidpp_battery_props[] = {
1609 POWER_SUPPLY_PROP_ONLINE,
1610 POWER_SUPPLY_PROP_STATUS,
1611 POWER_SUPPLY_PROP_SCOPE,
1612 POWER_SUPPLY_PROP_MODEL_NAME,
1613 POWER_SUPPLY_PROP_MANUFACTURER,
1614 POWER_SUPPLY_PROP_SERIAL_NUMBER,
1615 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1616 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1617 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1618 };
1619
1620 static int hidpp_battery_get_property(struct power_supply *psy,
1621 enum power_supply_property psp,
1622 union power_supply_propval *val)
1623 {
1624 struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1625 int ret = 0;
1626
1627 switch(psp) {
1628 case POWER_SUPPLY_PROP_STATUS:
1629 val->intval = hidpp->battery.status;
1630 break;
1631 case POWER_SUPPLY_PROP_CAPACITY:
1632 val->intval = hidpp->battery.capacity;
1633 break;
1634 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1635 val->intval = hidpp->battery.level;
1636 break;
1637 case POWER_SUPPLY_PROP_SCOPE:
1638 val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1639 break;
1640 case POWER_SUPPLY_PROP_ONLINE:
1641 val->intval = hidpp->battery.online;
1642 break;
1643 case POWER_SUPPLY_PROP_MODEL_NAME:
1644 if (!strncmp(hidpp->name, "Logitech ", 9))
1645 val->strval = hidpp->name + 9;
1646 else
1647 val->strval = hidpp->name;
1648 break;
1649 case POWER_SUPPLY_PROP_MANUFACTURER:
1650 val->strval = "Logitech";
1651 break;
1652 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1653 val->strval = hidpp->hid_dev->uniq;
1654 break;
1655 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1656 /* hardware reports voltage in in mV. sysfs expects uV */
1657 val->intval = hidpp->battery.voltage * 1000;
1658 break;
1659 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1660 val->intval = hidpp->battery.charge_type;
1661 break;
1662 default:
1663 ret = -EINVAL;
1664 break;
1665 }
1666
1667 return ret;
1668 }
1669
1670 /* -------------------------------------------------------------------------- */
1671 /* 0x1d4b: Wireless device status */
1672 /* -------------------------------------------------------------------------- */
1673 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b
1674
1675 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1676 {
1677 u8 feature_type;
1678 int ret;
1679
1680 ret = hidpp_root_get_feature(hidpp,
1681 HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1682 &hidpp->wireless_feature_index,
1683 &feature_type);
1684
1685 return ret;
1686 }
1687
1688 /* -------------------------------------------------------------------------- */
1689 /* 0x2120: Hi-resolution scrolling */
1690 /* -------------------------------------------------------------------------- */
1691
1692 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120
1693
1694 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10
1695
1696 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1697 bool enabled, u8 *multiplier)
1698 {
1699 u8 feature_index;
1700 u8 feature_type;
1701 int ret;
1702 u8 params[1];
1703 struct hidpp_report response;
1704
1705 ret = hidpp_root_get_feature(hidpp,
1706 HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1707 &feature_index,
1708 &feature_type);
1709 if (ret)
1710 return ret;
1711
1712 params[0] = enabled ? BIT(0) : 0;
1713 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1714 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1715 params, sizeof(params), &response);
1716 if (ret)
1717 return ret;
1718 *multiplier = response.fap.params[1];
1719 return 0;
1720 }
1721
1722 /* -------------------------------------------------------------------------- */
1723 /* 0x2121: HiRes Wheel */
1724 /* -------------------------------------------------------------------------- */
1725
1726 #define HIDPP_PAGE_HIRES_WHEEL 0x2121
1727
1728 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00
1729 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20
1730
1731 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1732 u8 *multiplier)
1733 {
1734 u8 feature_index;
1735 u8 feature_type;
1736 int ret;
1737 struct hidpp_report response;
1738
1739 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1740 &feature_index, &feature_type);
1741 if (ret)
1742 goto return_default;
1743
1744 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1745 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1746 NULL, 0, &response);
1747 if (ret)
1748 goto return_default;
1749
1750 *multiplier = response.fap.params[0];
1751 return 0;
1752 return_default:
1753 hid_warn(hidpp->hid_dev,
1754 "Couldn't get wheel multiplier (error %d)\n", ret);
1755 return ret;
1756 }
1757
1758 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1759 bool high_resolution, bool use_hidpp)
1760 {
1761 u8 feature_index;
1762 u8 feature_type;
1763 int ret;
1764 u8 params[1];
1765 struct hidpp_report response;
1766
1767 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1768 &feature_index, &feature_type);
1769 if (ret)
1770 return ret;
1771
1772 params[0] = (invert ? BIT(2) : 0) |
1773 (high_resolution ? BIT(1) : 0) |
1774 (use_hidpp ? BIT(0) : 0);
1775
1776 return hidpp_send_fap_command_sync(hidpp, feature_index,
1777 CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1778 params, sizeof(params), &response);
1779 }
1780
1781 /* -------------------------------------------------------------------------- */
1782 /* 0x4301: Solar Keyboard */
1783 /* -------------------------------------------------------------------------- */
1784
1785 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301
1786
1787 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00
1788
1789 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00
1790 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10
1791 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20
1792
1793 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1794 {
1795 struct hidpp_report response;
1796 u8 params[2] = { 1, 1 };
1797 u8 feature_type;
1798 int ret;
1799
1800 if (hidpp->battery.feature_index == 0xff) {
1801 ret = hidpp_root_get_feature(hidpp,
1802 HIDPP_PAGE_SOLAR_KEYBOARD,
1803 &hidpp->battery.solar_feature_index,
1804 &feature_type);
1805 if (ret)
1806 return ret;
1807 }
1808
1809 ret = hidpp_send_fap_command_sync(hidpp,
1810 hidpp->battery.solar_feature_index,
1811 CMD_SOLAR_SET_LIGHT_MEASURE,
1812 params, 2, &response);
1813 if (ret > 0) {
1814 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1815 __func__, ret);
1816 return -EPROTO;
1817 }
1818 if (ret)
1819 return ret;
1820
1821 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1822
1823 return 0;
1824 }
1825
1826 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1827 u8 *data, int size)
1828 {
1829 struct hidpp_report *report = (struct hidpp_report *)data;
1830 int capacity, lux, status;
1831 u8 function;
1832
1833 function = report->fap.funcindex_clientid;
1834
1835
1836 if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1837 !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1838 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1839 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1840 return 0;
1841
1842 capacity = report->fap.params[0];
1843
1844 switch (function) {
1845 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1846 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1847 if (lux > 200)
1848 status = POWER_SUPPLY_STATUS_CHARGING;
1849 else
1850 status = POWER_SUPPLY_STATUS_DISCHARGING;
1851 break;
1852 case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1853 default:
1854 if (capacity < hidpp->battery.capacity)
1855 status = POWER_SUPPLY_STATUS_DISCHARGING;
1856 else
1857 status = POWER_SUPPLY_STATUS_CHARGING;
1858
1859 }
1860
1861 if (capacity == 100)
1862 status = POWER_SUPPLY_STATUS_FULL;
1863
1864 hidpp->battery.online = true;
1865 if (capacity != hidpp->battery.capacity ||
1866 status != hidpp->battery.status) {
1867 hidpp->battery.capacity = capacity;
1868 hidpp->battery.status = status;
1869 if (hidpp->battery.ps)
1870 power_supply_changed(hidpp->battery.ps);
1871 }
1872
1873 return 0;
1874 }
1875
1876 /* -------------------------------------------------------------------------- */
1877 /* 0x6010: Touchpad FW items */
1878 /* -------------------------------------------------------------------------- */
1879
1880 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010
1881
1882 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10
1883
1884 struct hidpp_touchpad_fw_items {
1885 uint8_t presence;
1886 uint8_t desired_state;
1887 uint8_t state;
1888 uint8_t persistent;
1889 };
1890
1891 /*
1892 * send a set state command to the device by reading the current items->state
1893 * field. items is then filled with the current state.
1894 */
1895 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1896 u8 feature_index,
1897 struct hidpp_touchpad_fw_items *items)
1898 {
1899 struct hidpp_report response;
1900 int ret;
1901 u8 *params = (u8 *)response.fap.params;
1902
1903 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1904 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1905
1906 if (ret > 0) {
1907 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1908 __func__, ret);
1909 return -EPROTO;
1910 }
1911 if (ret)
1912 return ret;
1913
1914 items->presence = params[0];
1915 items->desired_state = params[1];
1916 items->state = params[2];
1917 items->persistent = params[3];
1918
1919 return 0;
1920 }
1921
1922 /* -------------------------------------------------------------------------- */
1923 /* 0x6100: TouchPadRawXY */
1924 /* -------------------------------------------------------------------------- */
1925
1926 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100
1927
1928 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01
1929 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21
1930
1931 #define EVENT_TOUCHPAD_RAW_XY 0x00
1932
1933 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01
1934 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03
1935
1936 struct hidpp_touchpad_raw_info {
1937 u16 x_size;
1938 u16 y_size;
1939 u8 z_range;
1940 u8 area_range;
1941 u8 timestamp_unit;
1942 u8 maxcontacts;
1943 u8 origin;
1944 u16 res;
1945 };
1946
1947 struct hidpp_touchpad_raw_xy_finger {
1948 u8 contact_type;
1949 u8 contact_status;
1950 u16 x;
1951 u16 y;
1952 u8 z;
1953 u8 area;
1954 u8 finger_id;
1955 };
1956
1957 struct hidpp_touchpad_raw_xy {
1958 u16 timestamp;
1959 struct hidpp_touchpad_raw_xy_finger fingers[2];
1960 u8 spurious_flag;
1961 u8 end_of_frame;
1962 u8 finger_count;
1963 u8 button;
1964 };
1965
1966 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1967 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1968 {
1969 struct hidpp_report response;
1970 int ret;
1971 u8 *params = (u8 *)response.fap.params;
1972
1973 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1974 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1975
1976 if (ret > 0) {
1977 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1978 __func__, ret);
1979 return -EPROTO;
1980 }
1981 if (ret)
1982 return ret;
1983
1984 raw_info->x_size = get_unaligned_be16(&params[0]);
1985 raw_info->y_size = get_unaligned_be16(&params[2]);
1986 raw_info->z_range = params[4];
1987 raw_info->area_range = params[5];
1988 raw_info->maxcontacts = params[7];
1989 raw_info->origin = params[8];
1990 /* res is given in unit per inch */
1991 raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1992
1993 return ret;
1994 }
1995
1996 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1997 u8 feature_index, bool send_raw_reports,
1998 bool sensor_enhanced_settings)
1999 {
2000 struct hidpp_report response;
2001
2002 /*
2003 * Params:
2004 * bit 0 - enable raw
2005 * bit 1 - 16bit Z, no area
2006 * bit 2 - enhanced sensitivity
2007 * bit 3 - width, height (4 bits each) instead of area
2008 * bit 4 - send raw + gestures (degrades smoothness)
2009 * remaining bits - reserved
2010 */
2011 u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2012
2013 return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2014 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2015 }
2016
2017 static void hidpp_touchpad_touch_event(u8 *data,
2018 struct hidpp_touchpad_raw_xy_finger *finger)
2019 {
2020 u8 x_m = data[0] << 2;
2021 u8 y_m = data[2] << 2;
2022
2023 finger->x = x_m << 6 | data[1];
2024 finger->y = y_m << 6 | data[3];
2025
2026 finger->contact_type = data[0] >> 6;
2027 finger->contact_status = data[2] >> 6;
2028
2029 finger->z = data[4];
2030 finger->area = data[5];
2031 finger->finger_id = data[6] >> 4;
2032 }
2033
2034 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2035 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2036 {
2037 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2038 raw_xy->end_of_frame = data[8] & 0x01;
2039 raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2040 raw_xy->finger_count = data[15] & 0x0f;
2041 raw_xy->button = (data[8] >> 2) & 0x01;
2042
2043 if (raw_xy->finger_count) {
2044 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2045 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2046 }
2047 }
2048
2049 /* -------------------------------------------------------------------------- */
2050 /* 0x8123: Force feedback support */
2051 /* -------------------------------------------------------------------------- */
2052
2053 #define HIDPP_FF_GET_INFO 0x01
2054 #define HIDPP_FF_RESET_ALL 0x11
2055 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21
2056 #define HIDPP_FF_SET_EFFECT_STATE 0x31
2057 #define HIDPP_FF_DESTROY_EFFECT 0x41
2058 #define HIDPP_FF_GET_APERTURE 0x51
2059 #define HIDPP_FF_SET_APERTURE 0x61
2060 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71
2061 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81
2062
2063 #define HIDPP_FF_EFFECT_STATE_GET 0x00
2064 #define HIDPP_FF_EFFECT_STATE_STOP 0x01
2065 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02
2066 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03
2067
2068 #define HIDPP_FF_EFFECT_CONSTANT 0x00
2069 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01
2070 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02
2071 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03
2072 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04
2073 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05
2074 #define HIDPP_FF_EFFECT_SPRING 0x06
2075 #define HIDPP_FF_EFFECT_DAMPER 0x07
2076 #define HIDPP_FF_EFFECT_FRICTION 0x08
2077 #define HIDPP_FF_EFFECT_INERTIA 0x09
2078 #define HIDPP_FF_EFFECT_RAMP 0x0A
2079
2080 #define HIDPP_FF_EFFECT_AUTOSTART 0x80
2081
2082 #define HIDPP_FF_EFFECTID_NONE -1
2083 #define HIDPP_FF_EFFECTID_AUTOCENTER -2
2084 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18
2085
2086 #define HIDPP_FF_MAX_PARAMS 20
2087 #define HIDPP_FF_RESERVED_SLOTS 1
2088
2089 struct hidpp_ff_private_data {
2090 struct hidpp_device *hidpp;
2091 u8 feature_index;
2092 u8 version;
2093 u16 gain;
2094 s16 range;
2095 u8 slot_autocenter;
2096 u8 num_effects;
2097 int *effect_ids;
2098 struct workqueue_struct *wq;
2099 atomic_t workqueue_size;
2100 };
2101
2102 struct hidpp_ff_work_data {
2103 struct work_struct work;
2104 struct hidpp_ff_private_data *data;
2105 int effect_id;
2106 u8 command;
2107 u8 params[HIDPP_FF_MAX_PARAMS];
2108 u8 size;
2109 };
2110
2111 static const signed short hidpp_ff_effects[] = {
2112 FF_CONSTANT,
2113 FF_PERIODIC,
2114 FF_SINE,
2115 FF_SQUARE,
2116 FF_SAW_UP,
2117 FF_SAW_DOWN,
2118 FF_TRIANGLE,
2119 FF_SPRING,
2120 FF_DAMPER,
2121 FF_AUTOCENTER,
2122 FF_GAIN,
2123 -1
2124 };
2125
2126 static const signed short hidpp_ff_effects_v2[] = {
2127 FF_RAMP,
2128 FF_FRICTION,
2129 FF_INERTIA,
2130 -1
2131 };
2132
2133 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2134 HIDPP_FF_EFFECT_SPRING,
2135 HIDPP_FF_EFFECT_FRICTION,
2136 HIDPP_FF_EFFECT_DAMPER,
2137 HIDPP_FF_EFFECT_INERTIA
2138 };
2139
2140 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2141 "spring",
2142 "friction",
2143 "damper",
2144 "inertia"
2145 };
2146
2147
2148 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2149 {
2150 int i;
2151
2152 for (i = 0; i < data->num_effects; i++)
2153 if (data->effect_ids[i] == effect_id)
2154 return i+1;
2155
2156 return 0;
2157 }
2158
2159 static void hidpp_ff_work_handler(struct work_struct *w)
2160 {
2161 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2162 struct hidpp_ff_private_data *data = wd->data;
2163 struct hidpp_report response;
2164 u8 slot;
2165 int ret;
2166
2167 /* add slot number if needed */
2168 switch (wd->effect_id) {
2169 case HIDPP_FF_EFFECTID_AUTOCENTER:
2170 wd->params[0] = data->slot_autocenter;
2171 break;
2172 case HIDPP_FF_EFFECTID_NONE:
2173 /* leave slot as zero */
2174 break;
2175 default:
2176 /* find current slot for effect */
2177 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2178 break;
2179 }
2180
2181 /* send command and wait for reply */
2182 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2183 wd->command, wd->params, wd->size, &response);
2184
2185 if (ret) {
2186 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2187 goto out;
2188 }
2189
2190 /* parse return data */
2191 switch (wd->command) {
2192 case HIDPP_FF_DOWNLOAD_EFFECT:
2193 slot = response.fap.params[0];
2194 if (slot > 0 && slot <= data->num_effects) {
2195 if (wd->effect_id >= 0)
2196 /* regular effect uploaded */
2197 data->effect_ids[slot-1] = wd->effect_id;
2198 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2199 /* autocenter spring uploaded */
2200 data->slot_autocenter = slot;
2201 }
2202 break;
2203 case HIDPP_FF_DESTROY_EFFECT:
2204 if (wd->effect_id >= 0)
2205 /* regular effect destroyed */
2206 data->effect_ids[wd->params[0]-1] = -1;
2207 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2208 /* autocenter spring destoyed */
2209 data->slot_autocenter = 0;
2210 break;
2211 case HIDPP_FF_SET_GLOBAL_GAINS:
2212 data->gain = (wd->params[0] << 8) + wd->params[1];
2213 break;
2214 case HIDPP_FF_SET_APERTURE:
2215 data->range = (wd->params[0] << 8) + wd->params[1];
2216 break;
2217 default:
2218 /* no action needed */
2219 break;
2220 }
2221
2222 out:
2223 atomic_dec(&data->workqueue_size);
2224 kfree(wd);
2225 }
2226
2227 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2228 {
2229 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2230 int s;
2231
2232 if (!wd)
2233 return -ENOMEM;
2234
2235 INIT_WORK(&wd->work, hidpp_ff_work_handler);
2236
2237 wd->data = data;
2238 wd->effect_id = effect_id;
2239 wd->command = command;
2240 wd->size = size;
2241 memcpy(wd->params, params, size);
2242
2243 atomic_inc(&data->workqueue_size);
2244 queue_work(data->wq, &wd->work);
2245
2246 /* warn about excessive queue size */
2247 s = atomic_read(&data->workqueue_size);
2248 if (s >= 20 && s % 20 == 0)
2249 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2250
2251 return 0;
2252 }
2253
2254 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2255 {
2256 struct hidpp_ff_private_data *data = dev->ff->private;
2257 u8 params[20];
2258 u8 size;
2259 int force;
2260
2261 /* set common parameters */
2262 params[2] = effect->replay.length >> 8;
2263 params[3] = effect->replay.length & 255;
2264 params[4] = effect->replay.delay >> 8;
2265 params[5] = effect->replay.delay & 255;
2266
2267 switch (effect->type) {
2268 case FF_CONSTANT:
2269 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2270 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2271 params[6] = force >> 8;
2272 params[7] = force & 255;
2273 params[8] = effect->u.constant.envelope.attack_level >> 7;
2274 params[9] = effect->u.constant.envelope.attack_length >> 8;
2275 params[10] = effect->u.constant.envelope.attack_length & 255;
2276 params[11] = effect->u.constant.envelope.fade_level >> 7;
2277 params[12] = effect->u.constant.envelope.fade_length >> 8;
2278 params[13] = effect->u.constant.envelope.fade_length & 255;
2279 size = 14;
2280 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2281 effect->u.constant.level,
2282 effect->direction, force);
2283 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2284 effect->u.constant.envelope.attack_level,
2285 effect->u.constant.envelope.attack_length,
2286 effect->u.constant.envelope.fade_level,
2287 effect->u.constant.envelope.fade_length);
2288 break;
2289 case FF_PERIODIC:
2290 {
2291 switch (effect->u.periodic.waveform) {
2292 case FF_SINE:
2293 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2294 break;
2295 case FF_SQUARE:
2296 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2297 break;
2298 case FF_SAW_UP:
2299 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2300 break;
2301 case FF_SAW_DOWN:
2302 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2303 break;
2304 case FF_TRIANGLE:
2305 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2306 break;
2307 default:
2308 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2309 return -EINVAL;
2310 }
2311 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2312 params[6] = effect->u.periodic.magnitude >> 8;
2313 params[7] = effect->u.periodic.magnitude & 255;
2314 params[8] = effect->u.periodic.offset >> 8;
2315 params[9] = effect->u.periodic.offset & 255;
2316 params[10] = effect->u.periodic.period >> 8;
2317 params[11] = effect->u.periodic.period & 255;
2318 params[12] = effect->u.periodic.phase >> 8;
2319 params[13] = effect->u.periodic.phase & 255;
2320 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2321 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2322 params[16] = effect->u.periodic.envelope.attack_length & 255;
2323 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2324 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2325 params[19] = effect->u.periodic.envelope.fade_length & 255;
2326 size = 20;
2327 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2328 effect->u.periodic.magnitude, effect->direction,
2329 effect->u.periodic.offset,
2330 effect->u.periodic.period,
2331 effect->u.periodic.phase);
2332 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2333 effect->u.periodic.envelope.attack_level,
2334 effect->u.periodic.envelope.attack_length,
2335 effect->u.periodic.envelope.fade_level,
2336 effect->u.periodic.envelope.fade_length);
2337 break;
2338 }
2339 case FF_RAMP:
2340 params[1] = HIDPP_FF_EFFECT_RAMP;
2341 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2342 params[6] = force >> 8;
2343 params[7] = force & 255;
2344 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2345 params[8] = force >> 8;
2346 params[9] = force & 255;
2347 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2348 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2349 params[12] = effect->u.ramp.envelope.attack_length & 255;
2350 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2351 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2352 params[15] = effect->u.ramp.envelope.fade_length & 255;
2353 size = 16;
2354 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2355 effect->u.ramp.start_level,
2356 effect->u.ramp.end_level,
2357 effect->direction, force);
2358 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2359 effect->u.ramp.envelope.attack_level,
2360 effect->u.ramp.envelope.attack_length,
2361 effect->u.ramp.envelope.fade_level,
2362 effect->u.ramp.envelope.fade_length);
2363 break;
2364 case FF_FRICTION:
2365 case FF_INERTIA:
2366 case FF_SPRING:
2367 case FF_DAMPER:
2368 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2369 params[6] = effect->u.condition[0].left_saturation >> 9;
2370 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2371 params[8] = effect->u.condition[0].left_coeff >> 8;
2372 params[9] = effect->u.condition[0].left_coeff & 255;
2373 params[10] = effect->u.condition[0].deadband >> 9;
2374 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2375 params[12] = effect->u.condition[0].center >> 8;
2376 params[13] = effect->u.condition[0].center & 255;
2377 params[14] = effect->u.condition[0].right_coeff >> 8;
2378 params[15] = effect->u.condition[0].right_coeff & 255;
2379 params[16] = effect->u.condition[0].right_saturation >> 9;
2380 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2381 size = 18;
2382 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2383 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2384 effect->u.condition[0].left_coeff,
2385 effect->u.condition[0].left_saturation,
2386 effect->u.condition[0].right_coeff,
2387 effect->u.condition[0].right_saturation);
2388 dbg_hid(" deadband=%d, center=%d\n",
2389 effect->u.condition[0].deadband,
2390 effect->u.condition[0].center);
2391 break;
2392 default:
2393 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2394 return -EINVAL;
2395 }
2396
2397 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2398 }
2399
2400 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2401 {
2402 struct hidpp_ff_private_data *data = dev->ff->private;
2403 u8 params[2];
2404
2405 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2406
2407 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2408
2409 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2410 }
2411
2412 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2413 {
2414 struct hidpp_ff_private_data *data = dev->ff->private;
2415 u8 slot = 0;
2416
2417 dbg_hid("Erasing effect %d.\n", effect_id);
2418
2419 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2420 }
2421
2422 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2423 {
2424 struct hidpp_ff_private_data *data = dev->ff->private;
2425 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2426
2427 dbg_hid("Setting autocenter to %d.\n", magnitude);
2428
2429 /* start a standard spring effect */
2430 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2431 /* zero delay and duration */
2432 params[2] = params[3] = params[4] = params[5] = 0;
2433 /* set coeff to 25% of saturation */
2434 params[8] = params[14] = magnitude >> 11;
2435 params[9] = params[15] = (magnitude >> 3) & 255;
2436 params[6] = params[16] = magnitude >> 9;
2437 params[7] = params[17] = (magnitude >> 1) & 255;
2438 /* zero deadband and center */
2439 params[10] = params[11] = params[12] = params[13] = 0;
2440
2441 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2442 }
2443
2444 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2445 {
2446 struct hidpp_ff_private_data *data = dev->ff->private;
2447 u8 params[4];
2448
2449 dbg_hid("Setting gain to %d.\n", gain);
2450
2451 params[0] = gain >> 8;
2452 params[1] = gain & 255;
2453 params[2] = 0; /* no boost */
2454 params[3] = 0;
2455
2456 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2457 }
2458
2459 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2460 {
2461 struct hid_device *hid = to_hid_device(dev);
2462 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2463 struct input_dev *idev = hidinput->input;
2464 struct hidpp_ff_private_data *data = idev->ff->private;
2465
2466 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2467 }
2468
2469 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2470 {
2471 struct hid_device *hid = to_hid_device(dev);
2472 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2473 struct input_dev *idev = hidinput->input;
2474 struct hidpp_ff_private_data *data = idev->ff->private;
2475 u8 params[2];
2476 int range = simple_strtoul(buf, NULL, 10);
2477
2478 range = clamp(range, 180, 900);
2479
2480 params[0] = range >> 8;
2481 params[1] = range & 0x00FF;
2482
2483 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2484
2485 return count;
2486 }
2487
2488 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2489
2490 static void hidpp_ff_destroy(struct ff_device *ff)
2491 {
2492 struct hidpp_ff_private_data *data = ff->private;
2493 struct hid_device *hid = data->hidpp->hid_dev;
2494
2495 hid_info(hid, "Unloading HID++ force feedback.\n");
2496
2497 device_remove_file(&hid->dev, &dev_attr_range);
2498 destroy_workqueue(data->wq);
2499 kfree(data->effect_ids);
2500 }
2501
2502 static int hidpp_ff_init(struct hidpp_device *hidpp,
2503 struct hidpp_ff_private_data *data)
2504 {
2505 struct hid_device *hid = hidpp->hid_dev;
2506 struct hid_input *hidinput;
2507 struct input_dev *dev;
2508 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2509 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2510 struct ff_device *ff;
2511 int error, j, num_slots = data->num_effects;
2512 u8 version;
2513
2514 if (list_empty(&hid->inputs)) {
2515 hid_err(hid, "no inputs found\n");
2516 return -ENODEV;
2517 }
2518 hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2519 dev = hidinput->input;
2520
2521 if (!dev) {
2522 hid_err(hid, "Struct input_dev not set!\n");
2523 return -EINVAL;
2524 }
2525
2526 /* Get firmware release */
2527 version = bcdDevice & 255;
2528
2529 /* Set supported force feedback capabilities */
2530 for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2531 set_bit(hidpp_ff_effects[j], dev->ffbit);
2532 if (version > 1)
2533 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2534 set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2535
2536 error = input_ff_create(dev, num_slots);
2537
2538 if (error) {
2539 hid_err(dev, "Failed to create FF device!\n");
2540 return error;
2541 }
2542 /*
2543 * Create a copy of passed data, so we can transfer memory
2544 * ownership to FF core
2545 */
2546 data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2547 if (!data)
2548 return -ENOMEM;
2549 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2550 if (!data->effect_ids) {
2551 kfree(data);
2552 return -ENOMEM;
2553 }
2554 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2555 if (!data->wq) {
2556 kfree(data->effect_ids);
2557 kfree(data);
2558 return -ENOMEM;
2559 }
2560
2561 data->hidpp = hidpp;
2562 data->version = version;
2563 for (j = 0; j < num_slots; j++)
2564 data->effect_ids[j] = -1;
2565
2566 ff = dev->ff;
2567 ff->private = data;
2568
2569 ff->upload = hidpp_ff_upload_effect;
2570 ff->erase = hidpp_ff_erase_effect;
2571 ff->playback = hidpp_ff_playback;
2572 ff->set_gain = hidpp_ff_set_gain;
2573 ff->set_autocenter = hidpp_ff_set_autocenter;
2574 ff->destroy = hidpp_ff_destroy;
2575
2576 /* Create sysfs interface */
2577 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2578 if (error)
2579 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2580
2581 /* init the hardware command queue */
2582 atomic_set(&data->workqueue_size, 0);
2583
2584 hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2585 version);
2586
2587 return 0;
2588 }
2589
2590 /* ************************************************************************** */
2591 /* */
2592 /* Device Support */
2593 /* */
2594 /* ************************************************************************** */
2595
2596 /* -------------------------------------------------------------------------- */
2597 /* Touchpad HID++ devices */
2598 /* -------------------------------------------------------------------------- */
2599
2600 #define WTP_MANUAL_RESOLUTION 39
2601
2602 struct wtp_data {
2603 u16 x_size, y_size;
2604 u8 finger_count;
2605 u8 mt_feature_index;
2606 u8 button_feature_index;
2607 u8 maxcontacts;
2608 bool flip_y;
2609 unsigned int resolution;
2610 };
2611
2612 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2613 struct hid_field *field, struct hid_usage *usage,
2614 unsigned long **bit, int *max)
2615 {
2616 return -1;
2617 }
2618
2619 static void wtp_populate_input(struct hidpp_device *hidpp,
2620 struct input_dev *input_dev)
2621 {
2622 struct wtp_data *wd = hidpp->private_data;
2623
2624 __set_bit(EV_ABS, input_dev->evbit);
2625 __set_bit(EV_KEY, input_dev->evbit);
2626 __clear_bit(EV_REL, input_dev->evbit);
2627 __clear_bit(EV_LED, input_dev->evbit);
2628
2629 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2630 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2631 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2632 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2633
2634 /* Max pressure is not given by the devices, pick one */
2635 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2636
2637 input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2638
2639 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2640 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2641 else
2642 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2643
2644 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2645 INPUT_MT_DROP_UNUSED);
2646 }
2647
2648 static void wtp_touch_event(struct hidpp_device *hidpp,
2649 struct hidpp_touchpad_raw_xy_finger *touch_report)
2650 {
2651 struct wtp_data *wd = hidpp->private_data;
2652 int slot;
2653
2654 if (!touch_report->finger_id || touch_report->contact_type)
2655 /* no actual data */
2656 return;
2657
2658 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2659
2660 input_mt_slot(hidpp->input, slot);
2661 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2662 touch_report->contact_status);
2663 if (touch_report->contact_status) {
2664 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2665 touch_report->x);
2666 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2667 wd->flip_y ? wd->y_size - touch_report->y :
2668 touch_report->y);
2669 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2670 touch_report->area);
2671 }
2672 }
2673
2674 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2675 struct hidpp_touchpad_raw_xy *raw)
2676 {
2677 int i;
2678
2679 for (i = 0; i < 2; i++)
2680 wtp_touch_event(hidpp, &(raw->fingers[i]));
2681
2682 if (raw->end_of_frame &&
2683 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2684 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2685
2686 if (raw->end_of_frame || raw->finger_count <= 2) {
2687 input_mt_sync_frame(hidpp->input);
2688 input_sync(hidpp->input);
2689 }
2690 }
2691
2692 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2693 {
2694 struct wtp_data *wd = hidpp->private_data;
2695 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2696 (data[7] >> 4) * (data[7] >> 4)) / 2;
2697 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2698 (data[13] >> 4) * (data[13] >> 4)) / 2;
2699 struct hidpp_touchpad_raw_xy raw = {
2700 .timestamp = data[1],
2701 .fingers = {
2702 {
2703 .contact_type = 0,
2704 .contact_status = !!data[7],
2705 .x = get_unaligned_le16(&data[3]),
2706 .y = get_unaligned_le16(&data[5]),
2707 .z = c1_area,
2708 .area = c1_area,
2709 .finger_id = data[2],
2710 }, {
2711 .contact_type = 0,
2712 .contact_status = !!data[13],
2713 .x = get_unaligned_le16(&data[9]),
2714 .y = get_unaligned_le16(&data[11]),
2715 .z = c2_area,
2716 .area = c2_area,
2717 .finger_id = data[8],
2718 }
2719 },
2720 .finger_count = wd->maxcontacts,
2721 .spurious_flag = 0,
2722 .end_of_frame = (data[0] >> 7) == 0,
2723 .button = data[0] & 0x01,
2724 };
2725
2726 wtp_send_raw_xy_event(hidpp, &raw);
2727
2728 return 1;
2729 }
2730
2731 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2732 {
2733 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2734 struct wtp_data *wd = hidpp->private_data;
2735 struct hidpp_report *report = (struct hidpp_report *)data;
2736 struct hidpp_touchpad_raw_xy raw;
2737
2738 if (!wd || !hidpp->input)
2739 return 1;
2740
2741 switch (data[0]) {
2742 case 0x02:
2743 if (size < 2) {
2744 hid_err(hdev, "Received HID report of bad size (%d)",
2745 size);
2746 return 1;
2747 }
2748 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2749 input_event(hidpp->input, EV_KEY, BTN_LEFT,
2750 !!(data[1] & 0x01));
2751 input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2752 !!(data[1] & 0x02));
2753 input_sync(hidpp->input);
2754 return 0;
2755 } else {
2756 if (size < 21)
2757 return 1;
2758 return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2759 }
2760 case REPORT_ID_HIDPP_LONG:
2761 /* size is already checked in hidpp_raw_event. */
2762 if ((report->fap.feature_index != wd->mt_feature_index) ||
2763 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2764 return 1;
2765 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2766
2767 wtp_send_raw_xy_event(hidpp, &raw);
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 static int wtp_get_config(struct hidpp_device *hidpp)
2775 {
2776 struct wtp_data *wd = hidpp->private_data;
2777 struct hidpp_touchpad_raw_info raw_info = {0};
2778 u8 feature_type;
2779 int ret;
2780
2781 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2782 &wd->mt_feature_index, &feature_type);
2783 if (ret)
2784 /* means that the device is not powered up */
2785 return ret;
2786
2787 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2788 &raw_info);
2789 if (ret)
2790 return ret;
2791
2792 wd->x_size = raw_info.x_size;
2793 wd->y_size = raw_info.y_size;
2794 wd->maxcontacts = raw_info.maxcontacts;
2795 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2796 wd->resolution = raw_info.res;
2797 if (!wd->resolution)
2798 wd->resolution = WTP_MANUAL_RESOLUTION;
2799
2800 return 0;
2801 }
2802
2803 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2804 {
2805 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2806 struct wtp_data *wd;
2807
2808 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2809 GFP_KERNEL);
2810 if (!wd)
2811 return -ENOMEM;
2812
2813 hidpp->private_data = wd;
2814
2815 return 0;
2816 };
2817
2818 static int wtp_connect(struct hid_device *hdev, bool connected)
2819 {
2820 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2821 struct wtp_data *wd = hidpp->private_data;
2822 int ret;
2823
2824 if (!wd->x_size) {
2825 ret = wtp_get_config(hidpp);
2826 if (ret) {
2827 hid_err(hdev, "Can not get wtp config: %d\n", ret);
2828 return ret;
2829 }
2830 }
2831
2832 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2833 true, true);
2834 }
2835
2836 /* ------------------------------------------------------------------------- */
2837 /* Logitech M560 devices */
2838 /* ------------------------------------------------------------------------- */
2839
2840 /*
2841 * Logitech M560 protocol overview
2842 *
2843 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2844 * the sides buttons are pressed, it sends some keyboard keys events
2845 * instead of buttons ones.
2846 * To complicate things further, the middle button keys sequence
2847 * is different from the odd press and the even press.
2848 *
2849 * forward button -> Super_R
2850 * backward button -> Super_L+'d' (press only)
2851 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2852 * 2nd time: left-click (press only)
2853 * NB: press-only means that when the button is pressed, the
2854 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2855 * together sequentially; instead when the button is released, no event is
2856 * generated !
2857 *
2858 * With the command
2859 * 10<xx>0a 3500af03 (where <xx> is the mouse id),
2860 * the mouse reacts differently:
2861 * - it never sends a keyboard key event
2862 * - for the three mouse button it sends:
2863 * middle button press 11<xx>0a 3500af00...
2864 * side 1 button (forward) press 11<xx>0a 3500b000...
2865 * side 2 button (backward) press 11<xx>0a 3500ae00...
2866 * middle/side1/side2 button release 11<xx>0a 35000000...
2867 */
2868
2869 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2870
2871 /* how buttons are mapped in the report */
2872 #define M560_MOUSE_BTN_LEFT 0x01
2873 #define M560_MOUSE_BTN_RIGHT 0x02
2874 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08
2875 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10
2876
2877 #define M560_SUB_ID 0x0a
2878 #define M560_BUTTON_MODE_REGISTER 0x35
2879
2880 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2881 {
2882 struct hidpp_report response;
2883 struct hidpp_device *hidpp_dev;
2884
2885 hidpp_dev = hid_get_drvdata(hdev);
2886
2887 return hidpp_send_rap_command_sync(
2888 hidpp_dev,
2889 REPORT_ID_HIDPP_SHORT,
2890 M560_SUB_ID,
2891 M560_BUTTON_MODE_REGISTER,
2892 (u8 *)m560_config_parameter,
2893 sizeof(m560_config_parameter),
2894 &response
2895 );
2896 }
2897
2898 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2899 {
2900 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2901
2902 /* sanity check */
2903 if (!hidpp->input) {
2904 hid_err(hdev, "error in parameter\n");
2905 return -EINVAL;
2906 }
2907
2908 if (size < 7) {
2909 hid_err(hdev, "error in report\n");
2910 return 0;
2911 }
2912
2913 if (data[0] == REPORT_ID_HIDPP_LONG &&
2914 data[2] == M560_SUB_ID && data[6] == 0x00) {
2915 /*
2916 * m560 mouse report for middle, forward and backward button
2917 *
2918 * data[0] = 0x11
2919 * data[1] = device-id
2920 * data[2] = 0x0a
2921 * data[5] = 0xaf -> middle
2922 * 0xb0 -> forward
2923 * 0xae -> backward
2924 * 0x00 -> release all
2925 * data[6] = 0x00
2926 */
2927
2928 switch (data[5]) {
2929 case 0xaf:
2930 input_report_key(hidpp->input, BTN_MIDDLE, 1);
2931 break;
2932 case 0xb0:
2933 input_report_key(hidpp->input, BTN_FORWARD, 1);
2934 break;
2935 case 0xae:
2936 input_report_key(hidpp->input, BTN_BACK, 1);
2937 break;
2938 case 0x00:
2939 input_report_key(hidpp->input, BTN_BACK, 0);
2940 input_report_key(hidpp->input, BTN_FORWARD, 0);
2941 input_report_key(hidpp->input, BTN_MIDDLE, 0);
2942 break;
2943 default:
2944 hid_err(hdev, "error in report\n");
2945 return 0;
2946 }
2947 input_sync(hidpp->input);
2948
2949 } else if (data[0] == 0x02) {
2950 /*
2951 * Logitech M560 mouse report
2952 *
2953 * data[0] = type (0x02)
2954 * data[1..2] = buttons
2955 * data[3..5] = xy
2956 * data[6] = wheel
2957 */
2958
2959 int v;
2960
2961 input_report_key(hidpp->input, BTN_LEFT,
2962 !!(data[1] & M560_MOUSE_BTN_LEFT));
2963 input_report_key(hidpp->input, BTN_RIGHT,
2964 !!(data[1] & M560_MOUSE_BTN_RIGHT));
2965
2966 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2967 input_report_rel(hidpp->input, REL_HWHEEL, -1);
2968 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2969 -120);
2970 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2971 input_report_rel(hidpp->input, REL_HWHEEL, 1);
2972 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2973 120);
2974 }
2975
2976 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2977 input_report_rel(hidpp->input, REL_X, v);
2978
2979 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2980 input_report_rel(hidpp->input, REL_Y, v);
2981
2982 v = hid_snto32(data[6], 8);
2983 if (v != 0)
2984 hidpp_scroll_counter_handle_scroll(hidpp->input,
2985 &hidpp->vertical_wheel_counter, v);
2986
2987 input_sync(hidpp->input);
2988 }
2989
2990 return 1;
2991 }
2992
2993 static void m560_populate_input(struct hidpp_device *hidpp,
2994 struct input_dev *input_dev)
2995 {
2996 __set_bit(EV_KEY, input_dev->evbit);
2997 __set_bit(BTN_MIDDLE, input_dev->keybit);
2998 __set_bit(BTN_RIGHT, input_dev->keybit);
2999 __set_bit(BTN_LEFT, input_dev->keybit);
3000 __set_bit(BTN_BACK, input_dev->keybit);
3001 __set_bit(BTN_FORWARD, input_dev->keybit);
3002
3003 __set_bit(EV_REL, input_dev->evbit);
3004 __set_bit(REL_X, input_dev->relbit);
3005 __set_bit(REL_Y, input_dev->relbit);
3006 __set_bit(REL_WHEEL, input_dev->relbit);
3007 __set_bit(REL_HWHEEL, input_dev->relbit);
3008 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3009 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3010 }
3011
3012 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3013 struct hid_field *field, struct hid_usage *usage,
3014 unsigned long **bit, int *max)
3015 {
3016 return -1;
3017 }
3018
3019 /* ------------------------------------------------------------------------- */
3020 /* Logitech K400 devices */
3021 /* ------------------------------------------------------------------------- */
3022
3023 /*
3024 * The Logitech K400 keyboard has an embedded touchpad which is seen
3025 * as a mouse from the OS point of view. There is a hardware shortcut to disable
3026 * tap-to-click but the setting is not remembered accross reset, annoying some
3027 * users.
3028 *
3029 * We can toggle this feature from the host by using the feature 0x6010:
3030 * Touchpad FW items
3031 */
3032
3033 struct k400_private_data {
3034 u8 feature_index;
3035 };
3036
3037 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3038 {
3039 struct k400_private_data *k400 = hidpp->private_data;
3040 struct hidpp_touchpad_fw_items items = {};
3041 int ret;
3042 u8 feature_type;
3043
3044 if (!k400->feature_index) {
3045 ret = hidpp_root_get_feature(hidpp,
3046 HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3047 &k400->feature_index, &feature_type);
3048 if (ret)
3049 /* means that the device is not powered up */
3050 return ret;
3051 }
3052
3053 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3054 if (ret)
3055 return ret;
3056
3057 return 0;
3058 }
3059
3060 static int k400_allocate(struct hid_device *hdev)
3061 {
3062 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3063 struct k400_private_data *k400;
3064
3065 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3066 GFP_KERNEL);
3067 if (!k400)
3068 return -ENOMEM;
3069
3070 hidpp->private_data = k400;
3071
3072 return 0;
3073 };
3074
3075 static int k400_connect(struct hid_device *hdev, bool connected)
3076 {
3077 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3078
3079 if (!disable_tap_to_click)
3080 return 0;
3081
3082 return k400_disable_tap_to_click(hidpp);
3083 }
3084
3085 /* ------------------------------------------------------------------------- */
3086 /* Logitech G920 Driving Force Racing Wheel for Xbox One */
3087 /* ------------------------------------------------------------------------- */
3088
3089 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123
3090
3091 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3092 struct hidpp_ff_private_data *data)
3093 {
3094 struct hidpp_report response;
3095 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3096 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3097 };
3098 int ret;
3099
3100 /* initialize with zero autocenter to get wheel in usable state */
3101
3102 dbg_hid("Setting autocenter to 0.\n");
3103 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3104 HIDPP_FF_DOWNLOAD_EFFECT,
3105 params, ARRAY_SIZE(params),
3106 &response);
3107 if (ret)
3108 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3109 else
3110 data->slot_autocenter = response.fap.params[0];
3111
3112 return ret;
3113 }
3114
3115 static int g920_get_config(struct hidpp_device *hidpp,
3116 struct hidpp_ff_private_data *data)
3117 {
3118 struct hidpp_report response;
3119 u8 feature_type;
3120 int ret;
3121
3122 memset(data, 0, sizeof(*data));
3123
3124 /* Find feature and store for later use */
3125 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3126 &data->feature_index, &feature_type);
3127 if (ret)
3128 return ret;
3129
3130 /* Read number of slots available in device */
3131 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3132 HIDPP_FF_GET_INFO,
3133 NULL, 0,
3134 &response);
3135 if (ret) {
3136 if (ret < 0)
3137 return ret;
3138 hid_err(hidpp->hid_dev,
3139 "%s: received protocol error 0x%02x\n", __func__, ret);
3140 return -EPROTO;
3141 }
3142
3143 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3144
3145 /* reset all forces */
3146 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3147 HIDPP_FF_RESET_ALL,
3148 NULL, 0,
3149 &response);
3150 if (ret)
3151 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3152
3153 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3154 HIDPP_FF_GET_APERTURE,
3155 NULL, 0,
3156 &response);
3157 if (ret) {
3158 hid_warn(hidpp->hid_dev,
3159 "Failed to read range from device!\n");
3160 }
3161 data->range = ret ?
3162 900 : get_unaligned_be16(&response.fap.params[0]);
3163
3164 /* Read the current gain values */
3165 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3166 HIDPP_FF_GET_GLOBAL_GAINS,
3167 NULL, 0,
3168 &response);
3169 if (ret)
3170 hid_warn(hidpp->hid_dev,
3171 "Failed to read gain values from device!\n");
3172 data->gain = ret ?
3173 0xffff : get_unaligned_be16(&response.fap.params[0]);
3174
3175 /* ignore boost value at response.fap.params[2] */
3176
3177 return g920_ff_set_autocenter(hidpp, data);
3178 }
3179
3180 /* -------------------------------------------------------------------------- */
3181 /* Logitech Dinovo Mini keyboard with builtin touchpad */
3182 /* -------------------------------------------------------------------------- */
3183 #define DINOVO_MINI_PRODUCT_ID 0xb30c
3184
3185 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3186 struct hid_field *field, struct hid_usage *usage,
3187 unsigned long **bit, int *max)
3188 {
3189 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3190 return 0;
3191
3192 switch (usage->hid & HID_USAGE) {
3193 case 0x00d: lg_map_key_clear(KEY_MEDIA); break;
3194 default:
3195 return 0;
3196 }
3197 return 1;
3198 }
3199
3200 /* -------------------------------------------------------------------------- */
3201 /* HID++1.0 devices which use HID++ reports for their wheels */
3202 /* -------------------------------------------------------------------------- */
3203 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3204 {
3205 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3206 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3207 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3208 }
3209
3210 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3211 u8 *data, int size)
3212 {
3213 s8 value, hvalue;
3214
3215 if (!hidpp->input)
3216 return -EINVAL;
3217
3218 if (size < 7)
3219 return 0;
3220
3221 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3222 return 0;
3223
3224 value = data[3];
3225 hvalue = data[4];
3226
3227 input_report_rel(hidpp->input, REL_WHEEL, value);
3228 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3229 input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3230 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3231 input_sync(hidpp->input);
3232
3233 return 1;
3234 }
3235
3236 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3237 struct input_dev *input_dev)
3238 {
3239 __set_bit(EV_REL, input_dev->evbit);
3240 __set_bit(REL_WHEEL, input_dev->relbit);
3241 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3242 __set_bit(REL_HWHEEL, input_dev->relbit);
3243 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3244 }
3245
3246 /* -------------------------------------------------------------------------- */
3247 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */
3248 /* -------------------------------------------------------------------------- */
3249 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3250 {
3251 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3252 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3253 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3254 }
3255
3256 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3257 u8 *data, int size)
3258 {
3259 int i;
3260
3261 if (!hidpp->input)
3262 return -EINVAL;
3263
3264 if (size < 7)
3265 return 0;
3266
3267 if (data[0] != REPORT_ID_HIDPP_SHORT ||
3268 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3269 return 0;
3270
3271 /*
3272 * Buttons are either delivered through the regular mouse report *or*
3273 * through the extra buttons report. At least for button 6 how it is
3274 * delivered differs per receiver firmware version. Even receivers with
3275 * the same usb-id show different behavior, so we handle both cases.
3276 */
3277 for (i = 0; i < 8; i++)
3278 input_report_key(hidpp->input, BTN_MOUSE + i,
3279 (data[3] & (1 << i)));
3280
3281 /* Some mice report events on button 9+, use BTN_MISC */
3282 for (i = 0; i < 8; i++)
3283 input_report_key(hidpp->input, BTN_MISC + i,
3284 (data[4] & (1 << i)));
3285
3286 input_sync(hidpp->input);
3287 return 1;
3288 }
3289
3290 static void hidpp10_extra_mouse_buttons_populate_input(
3291 struct hidpp_device *hidpp, struct input_dev *input_dev)
3292 {
3293 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3294 __set_bit(BTN_0, input_dev->keybit);
3295 __set_bit(BTN_1, input_dev->keybit);
3296 __set_bit(BTN_2, input_dev->keybit);
3297 __set_bit(BTN_3, input_dev->keybit);
3298 __set_bit(BTN_4, input_dev->keybit);
3299 __set_bit(BTN_5, input_dev->keybit);
3300 __set_bit(BTN_6, input_dev->keybit);
3301 __set_bit(BTN_7, input_dev->keybit);
3302 }
3303
3304 /* -------------------------------------------------------------------------- */
3305 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3306 /* -------------------------------------------------------------------------- */
3307
3308 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3309 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3310 u8 *_rdesc, unsigned int *rsize)
3311 {
3312 /* Note 0 terminated so we can use strnstr to search for this. */
3313 static const char consumer_rdesc_start[] = {
3314 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */
3315 0x09, 0x01, /* USAGE (Consumer Control) */
3316 0xA1, 0x01, /* COLLECTION (Application) */
3317 0x85, 0x03, /* REPORT_ID = 3 */
3318 0x75, 0x10, /* REPORT_SIZE (16) */
3319 0x95, 0x02, /* REPORT_COUNT (2) */
3320 0x15, 0x01, /* LOGICAL_MIN (1) */
3321 0x26, 0x00 /* LOGICAL_MAX (... */
3322 };
3323 char *consumer_rdesc, *rdesc = (char *)_rdesc;
3324 unsigned int size;
3325
3326 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3327 size = *rsize - (consumer_rdesc - rdesc);
3328 if (consumer_rdesc && size >= 25) {
3329 consumer_rdesc[15] = 0x7f;
3330 consumer_rdesc[16] = 0x10;
3331 consumer_rdesc[20] = 0x7f;
3332 consumer_rdesc[21] = 0x10;
3333 }
3334 return _rdesc;
3335 }
3336
3337 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3338 {
3339 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3340 HIDPP_ENABLE_CONSUMER_REPORT,
3341 HIDPP_ENABLE_CONSUMER_REPORT);
3342 }
3343
3344 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3345 u8 *data, int size)
3346 {
3347 u8 consumer_report[5];
3348
3349 if (size < 7)
3350 return 0;
3351
3352 if (data[0] != REPORT_ID_HIDPP_SHORT ||
3353 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3354 return 0;
3355
3356 /*
3357 * Build a normal consumer report (3) out of the data, this detour
3358 * is necessary to get some keyboards to report their 0x10xx usages.
3359 */
3360 consumer_report[0] = 0x03;
3361 memcpy(&consumer_report[1], &data[3], 4);
3362 /* We are called from atomic context */
3363 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3364 consumer_report, 5, 1);
3365
3366 return 1;
3367 }
3368
3369 /* -------------------------------------------------------------------------- */
3370 /* High-resolution scroll wheels */
3371 /* -------------------------------------------------------------------------- */
3372
3373 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3374 {
3375 int ret;
3376 u8 multiplier = 1;
3377
3378 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3379 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3380 if (ret == 0)
3381 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3382 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3383 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3384 &multiplier);
3385 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3386 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3387 multiplier = 8;
3388 }
3389 if (ret)
3390 return ret;
3391
3392 if (multiplier == 0)
3393 multiplier = 1;
3394
3395 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3396 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3397 return 0;
3398 }
3399
3400 /* -------------------------------------------------------------------------- */
3401 /* Generic HID++ devices */
3402 /* -------------------------------------------------------------------------- */
3403
3404 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3405 unsigned int *rsize)
3406 {
3407 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3408
3409 if (!hidpp)
3410 return rdesc;
3411
3412 /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3413 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3414 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3415 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3416
3417 return rdesc;
3418 }
3419
3420 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3421 struct hid_field *field, struct hid_usage *usage,
3422 unsigned long **bit, int *max)
3423 {
3424 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3425
3426 if (!hidpp)
3427 return 0;
3428
3429 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3430 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3431 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3432 field->application != HID_GD_MOUSE)
3433 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3434
3435 if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3436 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3437
3438 return 0;
3439 }
3440
3441 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3442 struct hid_field *field, struct hid_usage *usage,
3443 unsigned long **bit, int *max)
3444 {
3445 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3446
3447 if (!hidpp)
3448 return 0;
3449
3450 /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3451 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3452 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3453 usage->code == ABS_Y || usage->code == ABS_Z ||
3454 usage->code == ABS_RZ)) {
3455 field->application = HID_GD_MULTIAXIS;
3456 }
3457 }
3458
3459 return 0;
3460 }
3461
3462
3463 static void hidpp_populate_input(struct hidpp_device *hidpp,
3464 struct input_dev *input)
3465 {
3466 hidpp->input = input;
3467
3468 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3469 wtp_populate_input(hidpp, input);
3470 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3471 m560_populate_input(hidpp, input);
3472
3473 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3474 hidpp10_wheel_populate_input(hidpp, input);
3475
3476 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3477 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3478 }
3479
3480 static int hidpp_input_configured(struct hid_device *hdev,
3481 struct hid_input *hidinput)
3482 {
3483 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3484 struct input_dev *input = hidinput->input;
3485
3486 if (!hidpp)
3487 return 0;
3488
3489 hidpp_populate_input(hidpp, input);
3490
3491 return 0;
3492 }
3493
3494 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3495 int size)
3496 {
3497 struct hidpp_report *question = hidpp->send_receive_buf;
3498 struct hidpp_report *answer = hidpp->send_receive_buf;
3499 struct hidpp_report *report = (struct hidpp_report *)data;
3500 int ret;
3501
3502 /*
3503 * If the mutex is locked then we have a pending answer from a
3504 * previously sent command.
3505 */
3506 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3507 /*
3508 * Check for a correct hidpp20 answer or the corresponding
3509 * error
3510 */
3511 if (hidpp_match_answer(question, report) ||
3512 hidpp_match_error(question, report)) {
3513 *answer = *report;
3514 hidpp->answer_available = true;
3515 wake_up(&hidpp->wait);
3516 /*
3517 * This was an answer to a command that this driver sent
3518 * We return 1 to hid-core to avoid forwarding the
3519 * command upstream as it has been treated by the driver
3520 */
3521
3522 return 1;
3523 }
3524 }
3525
3526 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3527 atomic_set(&hidpp->connected,
3528 !(report->rap.params[0] & (1 << 6)));
3529 if (schedule_work(&hidpp->work) == 0)
3530 dbg_hid("%s: connect event already queued\n", __func__);
3531 return 1;
3532 }
3533
3534 if (hidpp->hid_dev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3535 data[0] == REPORT_ID_HIDPP_SHORT &&
3536 data[2] == HIDPP_SUB_ID_USER_IFACE_EVENT &&
3537 (data[3] & HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST)) {
3538 dev_err_ratelimited(&hidpp->hid_dev->dev,
3539 "Error the keyboard's wireless encryption key has been lost, your keyboard will not work unless you re-configure encryption.\n");
3540 dev_err_ratelimited(&hidpp->hid_dev->dev,
3541 "See: https://gitlab.freedesktop.org/jwrdegoede/logitech-27mhz-keyboard-encryption-setup/\n");
3542 }
3543
3544 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3545 ret = hidpp20_battery_event_1000(hidpp, data, size);
3546 if (ret != 0)
3547 return ret;
3548 ret = hidpp20_battery_event_1004(hidpp, data, size);
3549 if (ret != 0)
3550 return ret;
3551 ret = hidpp_solar_battery_event(hidpp, data, size);
3552 if (ret != 0)
3553 return ret;
3554 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3555 if (ret != 0)
3556 return ret;
3557 }
3558
3559 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3560 ret = hidpp10_battery_event(hidpp, data, size);
3561 if (ret != 0)
3562 return ret;
3563 }
3564
3565 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3566 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3567 if (ret != 0)
3568 return ret;
3569 }
3570
3571 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3572 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3573 if (ret != 0)
3574 return ret;
3575 }
3576
3577 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3578 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3579 if (ret != 0)
3580 return ret;
3581 }
3582
3583 return 0;
3584 }
3585
3586 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3587 u8 *data, int size)
3588 {
3589 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3590 int ret = 0;
3591
3592 if (!hidpp)
3593 return 0;
3594
3595 /* Generic HID++ processing. */
3596 switch (data[0]) {
3597 case REPORT_ID_HIDPP_VERY_LONG:
3598 if (size != hidpp->very_long_report_length) {
3599 hid_err(hdev, "received hid++ report of bad size (%d)",
3600 size);
3601 return 1;
3602 }
3603 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3604 break;
3605 case REPORT_ID_HIDPP_LONG:
3606 if (size != HIDPP_REPORT_LONG_LENGTH) {
3607 hid_err(hdev, "received hid++ report of bad size (%d)",
3608 size);
3609 return 1;
3610 }
3611 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3612 break;
3613 case REPORT_ID_HIDPP_SHORT:
3614 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3615 hid_err(hdev, "received hid++ report of bad size (%d)",
3616 size);
3617 return 1;
3618 }
3619 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3620 break;
3621 }
3622
3623 /* If no report is available for further processing, skip calling
3624 * raw_event of subclasses. */
3625 if (ret != 0)
3626 return ret;
3627
3628 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3629 return wtp_raw_event(hdev, data, size);
3630 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3631 return m560_raw_event(hdev, data, size);
3632
3633 return 0;
3634 }
3635
3636 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3637 struct hid_usage *usage, __s32 value)
3638 {
3639 /* This function will only be called for scroll events, due to the
3640 * restriction imposed in hidpp_usages.
3641 */
3642 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3643 struct hidpp_scroll_counter *counter;
3644
3645 if (!hidpp)
3646 return 0;
3647
3648 counter = &hidpp->vertical_wheel_counter;
3649 /* A scroll event may occur before the multiplier has been retrieved or
3650 * the input device set, or high-res scroll enabling may fail. In such
3651 * cases we must return early (falling back to default behaviour) to
3652 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3653 */
3654 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3655 || hidpp->input == NULL || counter->wheel_multiplier == 0)
3656 return 0;
3657
3658 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3659 return 1;
3660 }
3661
3662 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3663 {
3664 static atomic_t battery_no = ATOMIC_INIT(0);
3665 struct power_supply_config cfg = { .drv_data = hidpp };
3666 struct power_supply_desc *desc = &hidpp->battery.desc;
3667 enum power_supply_property *battery_props;
3668 struct hidpp_battery *battery;
3669 unsigned int num_battery_props;
3670 unsigned long n;
3671 int ret;
3672
3673 if (hidpp->battery.ps)
3674 return 0;
3675
3676 hidpp->battery.feature_index = 0xff;
3677 hidpp->battery.solar_feature_index = 0xff;
3678 hidpp->battery.voltage_feature_index = 0xff;
3679
3680 if (hidpp->protocol_major >= 2) {
3681 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3682 ret = hidpp_solar_request_battery_event(hidpp);
3683 else {
3684 /* we only support one battery feature right now, so let's
3685 first check the ones that support battery level first
3686 and leave voltage for last */
3687 ret = hidpp20_query_battery_info_1000(hidpp);
3688 if (ret)
3689 ret = hidpp20_query_battery_info_1004(hidpp);
3690 if (ret)
3691 ret = hidpp20_query_battery_voltage_info(hidpp);
3692 }
3693
3694 if (ret)
3695 return ret;
3696 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3697 } else {
3698 ret = hidpp10_query_battery_status(hidpp);
3699 if (ret) {
3700 ret = hidpp10_query_battery_mileage(hidpp);
3701 if (ret)
3702 return -ENOENT;
3703 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3704 } else {
3705 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3706 }
3707 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3708 }
3709
3710 battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3711 hidpp_battery_props,
3712 sizeof(hidpp_battery_props),
3713 GFP_KERNEL);
3714 if (!battery_props)
3715 return -ENOMEM;
3716
3717 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3718
3719 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3720 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3721 battery_props[num_battery_props++] =
3722 POWER_SUPPLY_PROP_CAPACITY;
3723
3724 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3725 battery_props[num_battery_props++] =
3726 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3727
3728 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3729 battery_props[num_battery_props++] =
3730 POWER_SUPPLY_PROP_VOLTAGE_NOW;
3731
3732 battery = &hidpp->battery;
3733
3734 n = atomic_inc_return(&battery_no) - 1;
3735 desc->properties = battery_props;
3736 desc->num_properties = num_battery_props;
3737 desc->get_property = hidpp_battery_get_property;
3738 sprintf(battery->name, "hidpp_battery_%ld", n);
3739 desc->name = battery->name;
3740 desc->type = POWER_SUPPLY_TYPE_BATTERY;
3741 desc->use_for_apm = 0;
3742
3743 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3744 &battery->desc,
3745 &cfg);
3746 if (IS_ERR(battery->ps))
3747 return PTR_ERR(battery->ps);
3748
3749 power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3750
3751 return ret;
3752 }
3753
3754 static void hidpp_overwrite_name(struct hid_device *hdev)
3755 {
3756 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3757 char *name;
3758
3759 if (hidpp->protocol_major < 2)
3760 return;
3761
3762 name = hidpp_get_device_name(hidpp);
3763
3764 if (!name) {
3765 hid_err(hdev, "unable to retrieve the name of the device");
3766 } else {
3767 dbg_hid("HID++: Got name: %s\n", name);
3768 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3769 }
3770
3771 kfree(name);
3772 }
3773
3774 static int hidpp_input_open(struct input_dev *dev)
3775 {
3776 struct hid_device *hid = input_get_drvdata(dev);
3777
3778 return hid_hw_open(hid);
3779 }
3780
3781 static void hidpp_input_close(struct input_dev *dev)
3782 {
3783 struct hid_device *hid = input_get_drvdata(dev);
3784
3785 hid_hw_close(hid);
3786 }
3787
3788 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3789 {
3790 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3791 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3792
3793 if (!input_dev)
3794 return NULL;
3795
3796 input_set_drvdata(input_dev, hdev);
3797 input_dev->open = hidpp_input_open;
3798 input_dev->close = hidpp_input_close;
3799
3800 input_dev->name = hidpp->name;
3801 input_dev->phys = hdev->phys;
3802 input_dev->uniq = hdev->uniq;
3803 input_dev->id.bustype = hdev->bus;
3804 input_dev->id.vendor = hdev->vendor;
3805 input_dev->id.product = hdev->product;
3806 input_dev->id.version = hdev->version;
3807 input_dev->dev.parent = &hdev->dev;
3808
3809 return input_dev;
3810 }
3811
3812 static void hidpp_connect_event(struct hidpp_device *hidpp)
3813 {
3814 struct hid_device *hdev = hidpp->hid_dev;
3815 int ret = 0;
3816 bool connected = atomic_read(&hidpp->connected);
3817 struct input_dev *input;
3818 char *name, *devm_name;
3819
3820 if (!connected) {
3821 if (hidpp->battery.ps) {
3822 hidpp->battery.online = false;
3823 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3824 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3825 power_supply_changed(hidpp->battery.ps);
3826 }
3827 return;
3828 }
3829
3830 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3831 ret = wtp_connect(hdev, connected);
3832 if (ret)
3833 return;
3834 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3835 ret = m560_send_config_command(hdev, connected);
3836 if (ret)
3837 return;
3838 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3839 ret = k400_connect(hdev, connected);
3840 if (ret)
3841 return;
3842 }
3843
3844 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3845 ret = hidpp10_wheel_connect(hidpp);
3846 if (ret)
3847 return;
3848 }
3849
3850 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3851 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3852 if (ret)
3853 return;
3854 }
3855
3856 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3857 ret = hidpp10_consumer_keys_connect(hidpp);
3858 if (ret)
3859 return;
3860 }
3861
3862 /* the device is already connected, we can ask for its name and
3863 * protocol */
3864 if (!hidpp->protocol_major) {
3865 ret = hidpp_root_get_protocol_version(hidpp);
3866 if (ret) {
3867 hid_err(hdev, "Can not get the protocol version.\n");
3868 return;
3869 }
3870 }
3871
3872 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3873 name = hidpp_get_device_name(hidpp);
3874 if (name) {
3875 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3876 "%s", name);
3877 kfree(name);
3878 if (!devm_name)
3879 return;
3880
3881 hidpp->name = devm_name;
3882 }
3883 }
3884
3885 hidpp_initialize_battery(hidpp);
3886
3887 /* forward current battery state */
3888 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3889 hidpp10_enable_battery_reporting(hidpp);
3890 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3891 hidpp10_query_battery_mileage(hidpp);
3892 else
3893 hidpp10_query_battery_status(hidpp);
3894 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3895 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3896 hidpp20_query_battery_voltage_info(hidpp);
3897 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3898 hidpp20_query_battery_info_1004(hidpp);
3899 else
3900 hidpp20_query_battery_info_1000(hidpp);
3901 }
3902 if (hidpp->battery.ps)
3903 power_supply_changed(hidpp->battery.ps);
3904
3905 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3906 hi_res_scroll_enable(hidpp);
3907
3908 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3909 /* if the input nodes are already created, we can stop now */
3910 return;
3911
3912 input = hidpp_allocate_input(hdev);
3913 if (!input) {
3914 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3915 return;
3916 }
3917
3918 hidpp_populate_input(hidpp, input);
3919
3920 ret = input_register_device(input);
3921 if (ret)
3922 input_free_device(input);
3923
3924 hidpp->delayed_input = input;
3925 }
3926
3927 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3928
3929 static struct attribute *sysfs_attrs[] = {
3930 &dev_attr_builtin_power_supply.attr,
3931 NULL
3932 };
3933
3934 static const struct attribute_group ps_attribute_group = {
3935 .attrs = sysfs_attrs
3936 };
3937
3938 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3939 {
3940 struct hid_report_enum *re;
3941 struct hid_report *report;
3942
3943 re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3944 report = re->report_id_hash[id];
3945 if (!report)
3946 return 0;
3947
3948 return report->field[0]->report_count + 1;
3949 }
3950
3951 static u8 hidpp_validate_device(struct hid_device *hdev)
3952 {
3953 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3954 int id, report_length;
3955 u8 supported_reports = 0;
3956
3957 id = REPORT_ID_HIDPP_SHORT;
3958 report_length = hidpp_get_report_length(hdev, id);
3959 if (report_length) {
3960 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3961 goto bad_device;
3962
3963 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3964 }
3965
3966 id = REPORT_ID_HIDPP_LONG;
3967 report_length = hidpp_get_report_length(hdev, id);
3968 if (report_length) {
3969 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3970 goto bad_device;
3971
3972 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3973 }
3974
3975 id = REPORT_ID_HIDPP_VERY_LONG;
3976 report_length = hidpp_get_report_length(hdev, id);
3977 if (report_length) {
3978 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3979 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3980 goto bad_device;
3981
3982 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3983 hidpp->very_long_report_length = report_length;
3984 }
3985
3986 return supported_reports;
3987
3988 bad_device:
3989 hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3990 return false;
3991 }
3992
3993 static bool hidpp_application_equals(struct hid_device *hdev,
3994 unsigned int application)
3995 {
3996 struct list_head *report_list;
3997 struct hid_report *report;
3998
3999 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
4000 report = list_first_entry_or_null(report_list, struct hid_report, list);
4001 return report && report->application == application;
4002 }
4003
4004 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
4005 {
4006 struct hidpp_device *hidpp;
4007 int ret;
4008 bool connected;
4009 unsigned int connect_mask = HID_CONNECT_DEFAULT;
4010 struct hidpp_ff_private_data data;
4011
4012 /* report_fixup needs drvdata to be set before we call hid_parse */
4013 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4014 if (!hidpp)
4015 return -ENOMEM;
4016
4017 hidpp->hid_dev = hdev;
4018 hidpp->name = hdev->name;
4019 hidpp->quirks = id->driver_data;
4020 hid_set_drvdata(hdev, hidpp);
4021
4022 ret = hid_parse(hdev);
4023 if (ret) {
4024 hid_err(hdev, "%s:parse failed\n", __func__);
4025 return ret;
4026 }
4027
4028 /*
4029 * Make sure the device is HID++ capable, otherwise treat as generic HID
4030 */
4031 hidpp->supported_reports = hidpp_validate_device(hdev);
4032
4033 if (!hidpp->supported_reports) {
4034 hid_set_drvdata(hdev, NULL);
4035 devm_kfree(&hdev->dev, hidpp);
4036 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4037 }
4038
4039 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4040 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4041
4042 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4043 hidpp_application_equals(hdev, HID_GD_MOUSE))
4044 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4045 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4046
4047 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4048 hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4049 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4050
4051 if (disable_raw_mode) {
4052 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4053 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4054 }
4055
4056 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4057 ret = wtp_allocate(hdev, id);
4058 if (ret)
4059 return ret;
4060 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4061 ret = k400_allocate(hdev);
4062 if (ret)
4063 return ret;
4064 }
4065
4066 INIT_WORK(&hidpp->work, delayed_work_cb);
4067 mutex_init(&hidpp->send_mutex);
4068 init_waitqueue_head(&hidpp->wait);
4069
4070 /* indicates we are handling the battery properties in the kernel */
4071 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4072 if (ret)
4073 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4074 hdev->name);
4075
4076 /*
4077 * Plain USB connections need to actually call start and open
4078 * on the transport driver to allow incoming data.
4079 */
4080 ret = hid_hw_start(hdev, 0);
4081 if (ret) {
4082 hid_err(hdev, "hw start failed\n");
4083 goto hid_hw_start_fail;
4084 }
4085
4086 ret = hid_hw_open(hdev);
4087 if (ret < 0) {
4088 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4089 __func__, ret);
4090 goto hid_hw_open_fail;
4091 }
4092
4093 /* Allow incoming packets */
4094 hid_device_io_start(hdev);
4095
4096 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4097 hidpp_unifying_init(hidpp);
4098
4099 connected = hidpp_root_get_protocol_version(hidpp) == 0;
4100 atomic_set(&hidpp->connected, connected);
4101 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4102 if (!connected) {
4103 ret = -ENODEV;
4104 hid_err(hdev, "Device not connected");
4105 goto hid_hw_init_fail;
4106 }
4107
4108 hidpp_overwrite_name(hdev);
4109 }
4110
4111 if (connected && hidpp->protocol_major >= 2) {
4112 ret = hidpp_set_wireless_feature_index(hidpp);
4113 if (ret == -ENOENT)
4114 hidpp->wireless_feature_index = 0;
4115 else if (ret)
4116 goto hid_hw_init_fail;
4117 }
4118
4119 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4120 ret = wtp_get_config(hidpp);
4121 if (ret)
4122 goto hid_hw_init_fail;
4123 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4124 ret = g920_get_config(hidpp, &data);
4125 if (ret)
4126 goto hid_hw_init_fail;
4127 }
4128
4129 hidpp_connect_event(hidpp);
4130
4131 /* Reset the HID node state */
4132 hid_device_io_stop(hdev);
4133 hid_hw_close(hdev);
4134 hid_hw_stop(hdev);
4135
4136 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4137 connect_mask &= ~HID_CONNECT_HIDINPUT;
4138
4139 /* Now export the actual inputs and hidraw nodes to the world */
4140 ret = hid_hw_start(hdev, connect_mask);
4141 if (ret) {
4142 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4143 goto hid_hw_start_fail;
4144 }
4145
4146 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4147 ret = hidpp_ff_init(hidpp, &data);
4148 if (ret)
4149 hid_warn(hidpp->hid_dev,
4150 "Unable to initialize force feedback support, errno %d\n",
4151 ret);
4152 }
4153
4154 return ret;
4155
4156 hid_hw_init_fail:
4157 hid_hw_close(hdev);
4158 hid_hw_open_fail:
4159 hid_hw_stop(hdev);
4160 hid_hw_start_fail:
4161 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4162 cancel_work_sync(&hidpp->work);
4163 mutex_destroy(&hidpp->send_mutex);
4164 return ret;
4165 }
4166
4167 static void hidpp_remove(struct hid_device *hdev)
4168 {
4169 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4170
4171 if (!hidpp)
4172 return hid_hw_stop(hdev);
4173
4174 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4175
4176 hid_hw_stop(hdev);
4177 cancel_work_sync(&hidpp->work);
4178 mutex_destroy(&hidpp->send_mutex);
4179 }
4180
4181 #define LDJ_DEVICE(product) \
4182 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4183 USB_VENDOR_ID_LOGITECH, (product))
4184
4185 #define L27MHZ_DEVICE(product) \
4186 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4187 USB_VENDOR_ID_LOGITECH, (product))
4188
4189 static const struct hid_device_id hidpp_devices[] = {
4190 { /* wireless touchpad */
4191 LDJ_DEVICE(0x4011),
4192 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4193 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4194 { /* wireless touchpad T650 */
4195 LDJ_DEVICE(0x4101),
4196 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4197 { /* wireless touchpad T651 */
4198 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4199 USB_DEVICE_ID_LOGITECH_T651),
4200 .driver_data = HIDPP_QUIRK_CLASS_WTP },
4201 { /* Mouse Logitech Anywhere MX */
4202 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4203 { /* Mouse Logitech Cube */
4204 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4205 { /* Mouse Logitech M335 */
4206 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207 { /* Mouse Logitech M515 */
4208 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4209 { /* Mouse logitech M560 */
4210 LDJ_DEVICE(0x402d),
4211 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4212 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4213 { /* Mouse Logitech M705 (firmware RQM17) */
4214 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4215 { /* Mouse Logitech M705 (firmware RQM67) */
4216 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217 { /* Mouse Logitech M720 */
4218 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219 { /* Mouse Logitech MX Anywhere 2 */
4220 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4222 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4223 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4224 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4225 { /* Mouse Logitech MX Anywhere 2S */
4226 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4227 { /* Mouse Logitech MX Master */
4228 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4229 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4230 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4231 { /* Mouse Logitech MX Master 2S */
4232 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4233 { /* Mouse Logitech MX Master 3 */
4234 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4235 { /* Mouse Logitech Performance MX */
4236 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4237 { /* Keyboard logitech K400 */
4238 LDJ_DEVICE(0x4024),
4239 .driver_data = HIDPP_QUIRK_CLASS_K400 },
4240 { /* Solar Keyboard Logitech K750 */
4241 LDJ_DEVICE(0x4002),
4242 .driver_data = HIDPP_QUIRK_CLASS_K750 },
4243 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4244 LDJ_DEVICE(0xb305),
4245 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4246 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4247 LDJ_DEVICE(0xb309),
4248 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4249 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4250 LDJ_DEVICE(0xb30b),
4251 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4252
4253 { LDJ_DEVICE(HID_ANY_ID) },
4254
4255 { /* Keyboard LX501 (Y-RR53) */
4256 L27MHZ_DEVICE(0x0049),
4257 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4258 { /* Keyboard MX3000 (Y-RAM74) */
4259 L27MHZ_DEVICE(0x0057),
4260 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4261 { /* Keyboard MX3200 (Y-RAV80) */
4262 L27MHZ_DEVICE(0x005c),
4263 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4264 { /* S510 Media Remote */
4265 L27MHZ_DEVICE(0x00fe),
4266 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4267
4268 { L27MHZ_DEVICE(HID_ANY_ID) },
4269
4270 { /* Logitech G403 Wireless Gaming Mouse over USB */
4271 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4272 { /* Logitech G703 Gaming Mouse over USB */
4273 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4274 { /* Logitech G703 Hero Gaming Mouse over USB */
4275 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4276 { /* Logitech G900 Gaming Mouse over USB */
4277 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4278 { /* Logitech G903 Gaming Mouse over USB */
4279 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4280 { /* Logitech G903 Hero Gaming Mouse over USB */
4281 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4282 { /* Logitech G920 Wheel over USB */
4283 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4284 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4285 { /* Logitech G Pro Gaming Mouse over USB */
4286 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4287
4288 { /* MX5000 keyboard over Bluetooth */
4289 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4290 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4291 { /* Dinovo Edge keyboard over Bluetooth */
4292 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4293 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4294 { /* MX5500 keyboard over Bluetooth */
4295 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4296 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4297 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4298 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4299 { /* MX Master mouse over Bluetooth */
4300 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4301 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4302 { /* MX Ergo trackball over Bluetooth */
4303 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4304 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4305 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4306 { /* MX Master 3 mouse over Bluetooth */
4307 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4308 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4309 {}
4310 };
4311
4312 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4313
4314 static const struct hid_usage_id hidpp_usages[] = {
4315 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4316 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4317 };
4318
4319 static struct hid_driver hidpp_driver = {
4320 .name = "logitech-hidpp-device",
4321 .id_table = hidpp_devices,
4322 .report_fixup = hidpp_report_fixup,
4323 .probe = hidpp_probe,
4324 .remove = hidpp_remove,
4325 .raw_event = hidpp_raw_event,
4326 .usage_table = hidpp_usages,
4327 .event = hidpp_event,
4328 .input_configured = hidpp_input_configured,
4329 .input_mapping = hidpp_input_mapping,
4330 .input_mapped = hidpp_input_mapped,
4331 };
4332
4333 module_hid_driver(hidpp_driver);