]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/hid/hid-rmi.c
Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-artful-kernel.git] / drivers / hid / hid-rmi.c
1 /*
2 * Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3 * Copyright (c) 2013 Synaptics Incorporated
4 * Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5 * Copyright (c) 2014 Red Hat, Inc
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23
24 #define RMI_MOUSE_REPORT_ID 0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID 0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID 0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID 0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID 0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID 0x0f /* Feature Report */
30
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING BIT(0)
33 #define RMI_READ_DATA_PENDING BIT(1)
34 #define RMI_STARTED BIT(2)
35
36 /* device flags */
37 #define RMI_DEVICE BIT(0)
38 #define RMI_DEVICE_HAS_PHYS_BUTTONS BIT(1)
39
40 enum rmi_mode_type {
41 RMI_MODE_OFF = 0,
42 RMI_MODE_ATTN_REPORTS = 1,
43 RMI_MODE_NO_PACKED_ATTN_REPORTS = 2,
44 };
45
46 struct rmi_function {
47 unsigned page; /* page of the function */
48 u16 query_base_addr; /* base address for queries */
49 u16 command_base_addr; /* base address for commands */
50 u16 control_base_addr; /* base address for controls */
51 u16 data_base_addr; /* base address for datas */
52 unsigned int interrupt_base; /* cross-function interrupt number
53 * (uniq in the device)*/
54 unsigned int interrupt_count; /* number of interrupts */
55 unsigned int report_size; /* size of a report */
56 unsigned long irq_mask; /* mask of the interrupts
57 * (to be applied against ATTN IRQ) */
58 };
59
60 /**
61 * struct rmi_data - stores information for hid communication
62 *
63 * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
64 * @page: Keeps track of the current virtual page
65 *
66 * @wait: Used for waiting for read data
67 *
68 * @writeReport: output buffer when writing RMI registers
69 * @readReport: input buffer when reading RMI registers
70 *
71 * @input_report_size: size of an input report (advertised by HID)
72 * @output_report_size: size of an output report (advertised by HID)
73 *
74 * @flags: flags for the current device (started, reading, etc...)
75 *
76 * @f11: placeholder of internal RMI function F11 description
77 * @f30: placeholder of internal RMI function F30 description
78 *
79 * @max_fingers: maximum finger count reported by the device
80 * @max_x: maximum x value reported by the device
81 * @max_y: maximum y value reported by the device
82 *
83 * @gpio_led_count: count of GPIOs + LEDs reported by F30
84 * @button_count: actual physical buttons count
85 * @button_mask: button mask used to decode GPIO ATTN reports
86 * @button_state_mask: pull state of the buttons
87 *
88 * @input: pointer to the kernel input device
89 *
90 * @reset_work: worker which will be called in case of a mouse report
91 * @hdev: pointer to the struct hid_device
92 */
93 struct rmi_data {
94 struct mutex page_mutex;
95 int page;
96
97 wait_queue_head_t wait;
98
99 u8 *writeReport;
100 u8 *readReport;
101
102 int input_report_size;
103 int output_report_size;
104
105 unsigned long flags;
106
107 struct rmi_function f01;
108 struct rmi_function f11;
109 struct rmi_function f30;
110
111 unsigned int max_fingers;
112 unsigned int max_x;
113 unsigned int max_y;
114 unsigned int x_size_mm;
115 unsigned int y_size_mm;
116
117 unsigned int gpio_led_count;
118 unsigned int button_count;
119 unsigned long button_mask;
120 unsigned long button_state_mask;
121
122 struct input_dev *input;
123
124 struct work_struct reset_work;
125 struct hid_device *hdev;
126
127 unsigned long device_flags;
128 unsigned long firmware_id;
129 };
130
131 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
132
133 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
134
135 /**
136 * rmi_set_page - Set RMI page
137 * @hdev: The pointer to the hid_device struct
138 * @page: The new page address.
139 *
140 * RMI devices have 16-bit addressing, but some of the physical
141 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
142 * a page address at 0xff of every page so we can reliable page addresses
143 * every 256 registers.
144 *
145 * The page_mutex lock must be held when this function is entered.
146 *
147 * Returns zero on success, non-zero on failure.
148 */
149 static int rmi_set_page(struct hid_device *hdev, u8 page)
150 {
151 struct rmi_data *data = hid_get_drvdata(hdev);
152 int retval;
153
154 data->writeReport[0] = RMI_WRITE_REPORT_ID;
155 data->writeReport[1] = 1;
156 data->writeReport[2] = 0xFF;
157 data->writeReport[4] = page;
158
159 retval = rmi_write_report(hdev, data->writeReport,
160 data->output_report_size);
161 if (retval != data->output_report_size) {
162 dev_err(&hdev->dev,
163 "%s: set page failed: %d.", __func__, retval);
164 return retval;
165 }
166
167 data->page = page;
168 return 0;
169 }
170
171 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
172 {
173 int ret;
174 u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
175
176 ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
177 sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
178 if (ret < 0) {
179 dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
180 ret);
181 return ret;
182 }
183
184 return 0;
185 }
186
187 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
188 {
189 int ret;
190
191 ret = hid_hw_output_report(hdev, (void *)report, len);
192 if (ret < 0) {
193 dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
194 return ret;
195 }
196
197 return ret;
198 }
199
200 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
201 const int len)
202 {
203 struct rmi_data *data = hid_get_drvdata(hdev);
204 int ret;
205 int bytes_read;
206 int bytes_needed;
207 int retries;
208 int read_input_count;
209
210 mutex_lock(&data->page_mutex);
211
212 if (RMI_PAGE(addr) != data->page) {
213 ret = rmi_set_page(hdev, RMI_PAGE(addr));
214 if (ret < 0)
215 goto exit;
216 }
217
218 for (retries = 5; retries > 0; retries--) {
219 data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
220 data->writeReport[1] = 0; /* old 1 byte read count */
221 data->writeReport[2] = addr & 0xFF;
222 data->writeReport[3] = (addr >> 8) & 0xFF;
223 data->writeReport[4] = len & 0xFF;
224 data->writeReport[5] = (len >> 8) & 0xFF;
225
226 set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
227
228 ret = rmi_write_report(hdev, data->writeReport,
229 data->output_report_size);
230 if (ret != data->output_report_size) {
231 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
232 dev_err(&hdev->dev,
233 "failed to write request output report (%d)\n",
234 ret);
235 goto exit;
236 }
237
238 bytes_read = 0;
239 bytes_needed = len;
240 while (bytes_read < len) {
241 if (!wait_event_timeout(data->wait,
242 test_bit(RMI_READ_DATA_PENDING, &data->flags),
243 msecs_to_jiffies(1000))) {
244 hid_warn(hdev, "%s: timeout elapsed\n",
245 __func__);
246 ret = -EAGAIN;
247 break;
248 }
249
250 read_input_count = data->readReport[1];
251 memcpy(buf + bytes_read, &data->readReport[2],
252 read_input_count < bytes_needed ?
253 read_input_count : bytes_needed);
254
255 bytes_read += read_input_count;
256 bytes_needed -= read_input_count;
257 clear_bit(RMI_READ_DATA_PENDING, &data->flags);
258 }
259
260 if (ret >= 0) {
261 ret = 0;
262 break;
263 }
264 }
265
266 exit:
267 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
268 mutex_unlock(&data->page_mutex);
269 return ret;
270 }
271
272 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
273 {
274 return rmi_read_block(hdev, addr, buf, 1);
275 }
276
277 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
278 const int len)
279 {
280 struct rmi_data *data = hid_get_drvdata(hdev);
281 int ret;
282
283 mutex_lock(&data->page_mutex);
284
285 if (RMI_PAGE(addr) != data->page) {
286 ret = rmi_set_page(hdev, RMI_PAGE(addr));
287 if (ret < 0)
288 goto exit;
289 }
290
291 data->writeReport[0] = RMI_WRITE_REPORT_ID;
292 data->writeReport[1] = len;
293 data->writeReport[2] = addr & 0xFF;
294 data->writeReport[3] = (addr >> 8) & 0xFF;
295 memcpy(&data->writeReport[4], buf, len);
296
297 ret = rmi_write_report(hdev, data->writeReport,
298 data->output_report_size);
299 if (ret < 0) {
300 dev_err(&hdev->dev,
301 "failed to write request output report (%d)\n",
302 ret);
303 goto exit;
304 }
305 ret = 0;
306
307 exit:
308 mutex_unlock(&data->page_mutex);
309 return ret;
310 }
311
312 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
313 {
314 return rmi_write_block(hdev, addr, buf, 1);
315 }
316
317 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
318 u8 finger_state, u8 *touch_data)
319 {
320 int x, y, wx, wy;
321 int wide, major, minor;
322 int z;
323
324 input_mt_slot(hdata->input, slot);
325 input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
326 finger_state == 0x01);
327 if (finger_state == 0x01) {
328 x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
329 y = (touch_data[1] << 4) | (touch_data[2] >> 4);
330 wx = touch_data[3] & 0x0F;
331 wy = touch_data[3] >> 4;
332 wide = (wx > wy);
333 major = max(wx, wy);
334 minor = min(wx, wy);
335 z = touch_data[4];
336
337 /* y is inverted */
338 y = hdata->max_y - y;
339
340 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
341 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
342 input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
343 input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
344 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
345 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
346 }
347 }
348
349 static void rmi_reset_work(struct work_struct *work)
350 {
351 struct rmi_data *hdata = container_of(work, struct rmi_data,
352 reset_work);
353
354 /* switch the device to RMI if we receive a generic mouse report */
355 rmi_set_mode(hdata->hdev, RMI_MODE_ATTN_REPORTS);
356 }
357
358 static inline int rmi_schedule_reset(struct hid_device *hdev)
359 {
360 struct rmi_data *hdata = hid_get_drvdata(hdev);
361 return schedule_work(&hdata->reset_work);
362 }
363
364 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
365 int size)
366 {
367 struct rmi_data *hdata = hid_get_drvdata(hdev);
368 int offset;
369 int i;
370
371 if (!(irq & hdata->f11.irq_mask) || size <= 0)
372 return 0;
373
374 offset = (hdata->max_fingers >> 2) + 1;
375 for (i = 0; i < hdata->max_fingers; i++) {
376 int fs_byte_position = i >> 2;
377 int fs_bit_position = (i & 0x3) << 1;
378 int finger_state = (data[fs_byte_position] >> fs_bit_position) &
379 0x03;
380 int position = offset + 5 * i;
381
382 if (position + 5 > size) {
383 /* partial report, go on with what we received */
384 printk_once(KERN_WARNING
385 "%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
386 dev_driver_string(&hdev->dev),
387 dev_name(&hdev->dev));
388 hid_dbg(hdev, "Incomplete finger report\n");
389 break;
390 }
391
392 rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
393 }
394 input_mt_sync_frame(hdata->input);
395 input_sync(hdata->input);
396 return hdata->f11.report_size;
397 }
398
399 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
400 int size)
401 {
402 struct rmi_data *hdata = hid_get_drvdata(hdev);
403 int i;
404 int button = 0;
405 bool value;
406
407 if (!(irq & hdata->f30.irq_mask))
408 return 0;
409
410 if (size < (int)hdata->f30.report_size) {
411 hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
412 return 0;
413 }
414
415 for (i = 0; i < hdata->gpio_led_count; i++) {
416 if (test_bit(i, &hdata->button_mask)) {
417 value = (data[i / 8] >> (i & 0x07)) & BIT(0);
418 if (test_bit(i, &hdata->button_state_mask))
419 value = !value;
420 input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
421 value);
422 }
423 }
424 return hdata->f30.report_size;
425 }
426
427 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
428 {
429 struct rmi_data *hdata = hid_get_drvdata(hdev);
430 unsigned long irq_mask = 0;
431 unsigned index = 2;
432
433 if (!(test_bit(RMI_STARTED, &hdata->flags)))
434 return 0;
435
436 irq_mask |= hdata->f11.irq_mask;
437 irq_mask |= hdata->f30.irq_mask;
438
439 if (data[1] & ~irq_mask)
440 hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
441 data[1] & ~irq_mask, __FILE__, __LINE__);
442
443 if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
444 index += rmi_f11_input_event(hdev, data[1], &data[index],
445 size - index);
446 index += rmi_f30_input_event(hdev, data[1], &data[index],
447 size - index);
448 } else {
449 index += rmi_f30_input_event(hdev, data[1], &data[index],
450 size - index);
451 index += rmi_f11_input_event(hdev, data[1], &data[index],
452 size - index);
453 }
454
455 return 1;
456 }
457
458 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
459 {
460 struct rmi_data *hdata = hid_get_drvdata(hdev);
461
462 if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
463 hid_dbg(hdev, "no read request pending\n");
464 return 0;
465 }
466
467 memcpy(hdata->readReport, data, size < hdata->input_report_size ?
468 size : hdata->input_report_size);
469 set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
470 wake_up(&hdata->wait);
471
472 return 1;
473 }
474
475 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
476 {
477 int valid_size = size;
478 /*
479 * On the Dell XPS 13 9333, the bus sometimes get confused and fills
480 * the report with a sentinel value "ff". Synaptics told us that such
481 * behavior does not comes from the touchpad itself, so we filter out
482 * such reports here.
483 */
484
485 while ((data[valid_size - 1] == 0xff) && valid_size > 0)
486 valid_size--;
487
488 return valid_size;
489 }
490
491 static int rmi_raw_event(struct hid_device *hdev,
492 struct hid_report *report, u8 *data, int size)
493 {
494 size = rmi_check_sanity(hdev, data, size);
495 if (size < 2)
496 return 0;
497
498 switch (data[0]) {
499 case RMI_READ_DATA_REPORT_ID:
500 return rmi_read_data_event(hdev, data, size);
501 case RMI_ATTN_REPORT_ID:
502 return rmi_input_event(hdev, data, size);
503 default:
504 return 1;
505 }
506
507 return 0;
508 }
509
510 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
511 struct hid_usage *usage, __s32 value)
512 {
513 struct rmi_data *data = hid_get_drvdata(hdev);
514
515 if ((data->device_flags & RMI_DEVICE) &&
516 (field->application == HID_GD_POINTER ||
517 field->application == HID_GD_MOUSE)) {
518 if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
519 if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
520 return 0;
521
522 if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
523 && !value)
524 return 1;
525 }
526
527 rmi_schedule_reset(hdev);
528 return 1;
529 }
530
531 return 0;
532 }
533
534 #ifdef CONFIG_PM
535 static int rmi_post_reset(struct hid_device *hdev)
536 {
537 return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
538 }
539
540 static int rmi_post_resume(struct hid_device *hdev)
541 {
542 return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
543 }
544 #endif /* CONFIG_PM */
545
546 #define RMI4_MAX_PAGE 0xff
547 #define RMI4_PAGE_SIZE 0x0100
548
549 #define PDT_START_SCAN_LOCATION 0x00e9
550 #define PDT_END_SCAN_LOCATION 0x0005
551 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
552
553 struct pdt_entry {
554 u8 query_base_addr:8;
555 u8 command_base_addr:8;
556 u8 control_base_addr:8;
557 u8 data_base_addr:8;
558 u8 interrupt_source_count:3;
559 u8 bits3and4:2;
560 u8 function_version:2;
561 u8 bit7:1;
562 u8 function_number:8;
563 } __attribute__((__packed__));
564
565 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
566 {
567 return GENMASK(irq_count + irq_base - 1, irq_base);
568 }
569
570 static void rmi_register_function(struct rmi_data *data,
571 struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
572 {
573 struct rmi_function *f = NULL;
574 u16 page_base = page << 8;
575
576 switch (pdt_entry->function_number) {
577 case 0x01:
578 f = &data->f01;
579 break;
580 case 0x11:
581 f = &data->f11;
582 break;
583 case 0x30:
584 f = &data->f30;
585 break;
586 }
587
588 if (f) {
589 f->page = page;
590 f->query_base_addr = page_base | pdt_entry->query_base_addr;
591 f->command_base_addr = page_base | pdt_entry->command_base_addr;
592 f->control_base_addr = page_base | pdt_entry->control_base_addr;
593 f->data_base_addr = page_base | pdt_entry->data_base_addr;
594 f->interrupt_base = interrupt_count;
595 f->interrupt_count = pdt_entry->interrupt_source_count;
596 f->irq_mask = rmi_gen_mask(f->interrupt_base,
597 f->interrupt_count);
598 }
599 }
600
601 static int rmi_scan_pdt(struct hid_device *hdev)
602 {
603 struct rmi_data *data = hid_get_drvdata(hdev);
604 struct pdt_entry entry;
605 int page;
606 bool page_has_function;
607 int i;
608 int retval;
609 int interrupt = 0;
610 u16 page_start, pdt_start , pdt_end;
611
612 hid_info(hdev, "Scanning PDT...\n");
613
614 for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
615 page_start = RMI4_PAGE_SIZE * page;
616 pdt_start = page_start + PDT_START_SCAN_LOCATION;
617 pdt_end = page_start + PDT_END_SCAN_LOCATION;
618
619 page_has_function = false;
620 for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
621 retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
622 if (retval) {
623 hid_err(hdev,
624 "Read of PDT entry at %#06x failed.\n",
625 i);
626 goto error_exit;
627 }
628
629 if (RMI4_END_OF_PDT(entry.function_number))
630 break;
631
632 page_has_function = true;
633
634 hid_info(hdev, "Found F%02X on page %#04x\n",
635 entry.function_number, page);
636
637 rmi_register_function(data, &entry, page, interrupt);
638 interrupt += entry.interrupt_source_count;
639 }
640
641 if (!page_has_function)
642 break;
643 }
644
645 hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
646 retval = 0;
647
648 error_exit:
649 return retval;
650 }
651
652 #define RMI_DEVICE_F01_BASIC_QUERY_LEN 11
653
654 static int rmi_populate_f01(struct hid_device *hdev)
655 {
656 struct rmi_data *data = hid_get_drvdata(hdev);
657 u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
658 u8 info[3];
659 int ret;
660 bool has_query42;
661 bool has_lts;
662 bool has_sensor_id;
663 bool has_ds4_queries = false;
664 bool has_build_id_query = false;
665 bool has_package_id_query = false;
666 u16 query_offset = data->f01.query_base_addr;
667 u16 prod_info_addr;
668 u8 ds4_query_len;
669
670 ret = rmi_read_block(hdev, query_offset, basic_queries,
671 RMI_DEVICE_F01_BASIC_QUERY_LEN);
672 if (ret) {
673 hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
674 return ret;
675 }
676
677 has_lts = !!(basic_queries[0] & BIT(2));
678 has_sensor_id = !!(basic_queries[1] & BIT(3));
679 has_query42 = !!(basic_queries[1] & BIT(7));
680
681 query_offset += 11;
682 prod_info_addr = query_offset + 6;
683 query_offset += 10;
684
685 if (has_lts)
686 query_offset += 20;
687
688 if (has_sensor_id)
689 query_offset++;
690
691 if (has_query42) {
692 ret = rmi_read(hdev, query_offset, info);
693 if (ret) {
694 hid_err(hdev, "Can not read query42.\n");
695 return ret;
696 }
697 has_ds4_queries = !!(info[0] & BIT(0));
698 query_offset++;
699 }
700
701 if (has_ds4_queries) {
702 ret = rmi_read(hdev, query_offset, &ds4_query_len);
703 if (ret) {
704 hid_err(hdev, "Can not read DS4 Query length.\n");
705 return ret;
706 }
707 query_offset++;
708
709 if (ds4_query_len > 0) {
710 ret = rmi_read(hdev, query_offset, info);
711 if (ret) {
712 hid_err(hdev, "Can not read DS4 query.\n");
713 return ret;
714 }
715
716 has_package_id_query = !!(info[0] & BIT(0));
717 has_build_id_query = !!(info[0] & BIT(1));
718 }
719 }
720
721 if (has_package_id_query)
722 prod_info_addr++;
723
724 if (has_build_id_query) {
725 ret = rmi_read_block(hdev, prod_info_addr, info, 3);
726 if (ret) {
727 hid_err(hdev, "Can not read product info.\n");
728 return ret;
729 }
730
731 data->firmware_id = info[1] << 8 | info[0];
732 data->firmware_id += info[2] * 65536;
733 }
734
735 return 0;
736 }
737
738 static int rmi_populate_f11(struct hid_device *hdev)
739 {
740 struct rmi_data *data = hid_get_drvdata(hdev);
741 u8 buf[20];
742 int ret;
743 bool has_query9;
744 bool has_query10 = false;
745 bool has_query11;
746 bool has_query12;
747 bool has_query27;
748 bool has_query28;
749 bool has_query36 = false;
750 bool has_physical_props;
751 bool has_gestures;
752 bool has_rel;
753 bool has_data40 = false;
754 bool has_dribble = false;
755 bool has_palm_detect = false;
756 unsigned x_size, y_size;
757 u16 query_offset;
758
759 if (!data->f11.query_base_addr) {
760 hid_err(hdev, "No 2D sensor found, giving up.\n");
761 return -ENODEV;
762 }
763
764 /* query 0 contains some useful information */
765 ret = rmi_read(hdev, data->f11.query_base_addr, buf);
766 if (ret) {
767 hid_err(hdev, "can not get query 0: %d.\n", ret);
768 return ret;
769 }
770 has_query9 = !!(buf[0] & BIT(3));
771 has_query11 = !!(buf[0] & BIT(4));
772 has_query12 = !!(buf[0] & BIT(5));
773 has_query27 = !!(buf[0] & BIT(6));
774 has_query28 = !!(buf[0] & BIT(7));
775
776 /* query 1 to get the max number of fingers */
777 ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
778 if (ret) {
779 hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
780 return ret;
781 }
782 data->max_fingers = (buf[0] & 0x07) + 1;
783 if (data->max_fingers > 5)
784 data->max_fingers = 10;
785
786 data->f11.report_size = data->max_fingers * 5 +
787 DIV_ROUND_UP(data->max_fingers, 4);
788
789 if (!(buf[0] & BIT(4))) {
790 hid_err(hdev, "No absolute events, giving up.\n");
791 return -ENODEV;
792 }
793
794 has_rel = !!(buf[0] & BIT(3));
795 has_gestures = !!(buf[0] & BIT(5));
796
797 ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
798 if (ret) {
799 hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
800 return ret;
801 }
802
803 has_dribble = !!(buf[0] & BIT(4));
804
805 /*
806 * At least 4 queries are guaranteed to be present in F11
807 * +1 for query 5 which is present since absolute events are
808 * reported and +1 for query 12.
809 */
810 query_offset = 6;
811
812 if (has_rel)
813 ++query_offset; /* query 6 is present */
814
815 if (has_gestures) {
816 /* query 8 to find out if query 10 exists */
817 ret = rmi_read(hdev,
818 data->f11.query_base_addr + query_offset + 1, buf);
819 if (ret) {
820 hid_err(hdev, "can not read gesture information: %d.\n",
821 ret);
822 return ret;
823 }
824 has_palm_detect = !!(buf[0] & BIT(0));
825 has_query10 = !!(buf[0] & BIT(2));
826
827 query_offset += 2; /* query 7 and 8 are present */
828 }
829
830 if (has_query9)
831 ++query_offset;
832
833 if (has_query10)
834 ++query_offset;
835
836 if (has_query11)
837 ++query_offset;
838
839 /* query 12 to know if the physical properties are reported */
840 if (has_query12) {
841 ret = rmi_read(hdev, data->f11.query_base_addr
842 + query_offset, buf);
843 if (ret) {
844 hid_err(hdev, "can not get query 12: %d.\n", ret);
845 return ret;
846 }
847 has_physical_props = !!(buf[0] & BIT(5));
848
849 if (has_physical_props) {
850 query_offset += 1;
851 ret = rmi_read_block(hdev,
852 data->f11.query_base_addr
853 + query_offset, buf, 4);
854 if (ret) {
855 hid_err(hdev, "can not read query 15-18: %d.\n",
856 ret);
857 return ret;
858 }
859
860 x_size = buf[0] | (buf[1] << 8);
861 y_size = buf[2] | (buf[3] << 8);
862
863 data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
864 data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
865
866 hid_info(hdev, "%s: size in mm: %d x %d\n",
867 __func__, data->x_size_mm, data->y_size_mm);
868
869 /*
870 * query 15 - 18 contain the size of the sensor
871 * and query 19 - 26 contain bezel dimensions
872 */
873 query_offset += 12;
874 }
875 }
876
877 if (has_query27)
878 ++query_offset;
879
880 if (has_query28) {
881 ret = rmi_read(hdev, data->f11.query_base_addr
882 + query_offset, buf);
883 if (ret) {
884 hid_err(hdev, "can not get query 28: %d.\n", ret);
885 return ret;
886 }
887
888 has_query36 = !!(buf[0] & BIT(6));
889 }
890
891 if (has_query36) {
892 query_offset += 2;
893 ret = rmi_read(hdev, data->f11.query_base_addr
894 + query_offset, buf);
895 if (ret) {
896 hid_err(hdev, "can not get query 36: %d.\n", ret);
897 return ret;
898 }
899
900 has_data40 = !!(buf[0] & BIT(5));
901 }
902
903
904 if (has_data40)
905 data->f11.report_size += data->max_fingers * 2;
906
907 /*
908 * retrieve the ctrl registers
909 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
910 * and there is no way to know if the first 20 bytes are here or not.
911 * We use only the first 12 bytes, so get only them.
912 */
913 ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, 12);
914 if (ret) {
915 hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
916 return ret;
917 }
918
919 data->max_x = buf[6] | (buf[7] << 8);
920 data->max_y = buf[8] | (buf[9] << 8);
921
922 if (has_dribble) {
923 buf[0] = buf[0] & ~BIT(6);
924 ret = rmi_write(hdev, data->f11.control_base_addr, buf);
925 if (ret) {
926 hid_err(hdev, "can not write to control reg 0: %d.\n",
927 ret);
928 return ret;
929 }
930 }
931
932 if (has_palm_detect) {
933 buf[11] = buf[11] & ~BIT(0);
934 ret = rmi_write(hdev, data->f11.control_base_addr + 11,
935 &buf[11]);
936 if (ret) {
937 hid_err(hdev, "can not write to control reg 11: %d.\n",
938 ret);
939 return ret;
940 }
941 }
942
943 return 0;
944 }
945
946 static int rmi_populate_f30(struct hid_device *hdev)
947 {
948 struct rmi_data *data = hid_get_drvdata(hdev);
949 u8 buf[20];
950 int ret;
951 bool has_gpio, has_led;
952 unsigned bytes_per_ctrl;
953 u8 ctrl2_addr;
954 int ctrl2_3_length;
955 int i;
956
957 /* function F30 is for physical buttons */
958 if (!data->f30.query_base_addr) {
959 hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
960 return -ENODEV;
961 }
962
963 ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
964 if (ret) {
965 hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
966 return ret;
967 }
968
969 has_gpio = !!(buf[0] & BIT(3));
970 has_led = !!(buf[0] & BIT(2));
971 data->gpio_led_count = buf[1] & 0x1f;
972
973 /* retrieve ctrl 2 & 3 registers */
974 bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
975 /* Ctrl0 is present only if both has_gpio and has_led are set*/
976 ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
977 /* Ctrl1 is always be present */
978 ctrl2_addr += bytes_per_ctrl;
979 ctrl2_3_length = 2 * bytes_per_ctrl;
980
981 data->f30.report_size = bytes_per_ctrl;
982
983 ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
984 buf, ctrl2_3_length);
985 if (ret) {
986 hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
987 ctrl2_3_length, ret);
988 return ret;
989 }
990
991 for (i = 0; i < data->gpio_led_count; i++) {
992 int byte_position = i >> 3;
993 int bit_position = i & 0x07;
994 u8 dir_byte = buf[byte_position];
995 u8 data_byte = buf[byte_position + bytes_per_ctrl];
996 bool dir = (dir_byte >> bit_position) & BIT(0);
997 bool dat = (data_byte >> bit_position) & BIT(0);
998
999 if (dir == 0) {
1000 /* input mode */
1001 if (dat) {
1002 /* actual buttons have pull up resistor */
1003 data->button_count++;
1004 set_bit(i, &data->button_mask);
1005 set_bit(i, &data->button_state_mask);
1006 }
1007 }
1008
1009 }
1010
1011 return 0;
1012 }
1013
1014 static int rmi_populate(struct hid_device *hdev)
1015 {
1016 int ret;
1017
1018 ret = rmi_scan_pdt(hdev);
1019 if (ret) {
1020 hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1021 return ret;
1022 }
1023
1024 ret = rmi_populate_f01(hdev);
1025 if (ret) {
1026 hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1027 return ret;
1028 }
1029
1030 ret = rmi_populate_f11(hdev);
1031 if (ret) {
1032 hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1033 return ret;
1034 }
1035
1036 ret = rmi_populate_f30(hdev);
1037 if (ret)
1038 hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1039
1040 return 0;
1041 }
1042
1043 static void rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1044 {
1045 struct rmi_data *data = hid_get_drvdata(hdev);
1046 struct input_dev *input = hi->input;
1047 int ret;
1048 int res_x, res_y, i;
1049
1050 data->input = input;
1051
1052 hid_dbg(hdev, "Opening low level driver\n");
1053 ret = hid_hw_open(hdev);
1054 if (ret)
1055 return;
1056
1057 if (!(data->device_flags & RMI_DEVICE))
1058 return;
1059
1060 /* Allow incoming hid reports */
1061 hid_device_io_start(hdev);
1062
1063 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1064 if (ret < 0) {
1065 dev_err(&hdev->dev, "failed to set rmi mode\n");
1066 goto exit;
1067 }
1068
1069 ret = rmi_set_page(hdev, 0);
1070 if (ret < 0) {
1071 dev_err(&hdev->dev, "failed to set page select to 0.\n");
1072 goto exit;
1073 }
1074
1075 ret = rmi_populate(hdev);
1076 if (ret)
1077 goto exit;
1078
1079 hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1080
1081 __set_bit(EV_ABS, input->evbit);
1082 input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1083 input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1084
1085 if (data->x_size_mm && data->y_size_mm) {
1086 res_x = (data->max_x - 1) / data->x_size_mm;
1087 res_y = (data->max_y - 1) / data->y_size_mm;
1088
1089 input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1090 input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1091 }
1092
1093 input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1094 input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1095 input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1096 input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1097
1098 input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1099
1100 if (data->button_count) {
1101 __set_bit(EV_KEY, input->evbit);
1102 for (i = 0; i < data->button_count; i++)
1103 __set_bit(BTN_LEFT + i, input->keybit);
1104
1105 if (data->button_count == 1)
1106 __set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1107 }
1108
1109 set_bit(RMI_STARTED, &data->flags);
1110
1111 exit:
1112 hid_device_io_stop(hdev);
1113 hid_hw_close(hdev);
1114 }
1115
1116 static int rmi_input_mapping(struct hid_device *hdev,
1117 struct hid_input *hi, struct hid_field *field,
1118 struct hid_usage *usage, unsigned long **bit, int *max)
1119 {
1120 struct rmi_data *data = hid_get_drvdata(hdev);
1121
1122 /*
1123 * we want to make HID ignore the advertised HID collection
1124 * for RMI deivces
1125 */
1126 if (data->device_flags & RMI_DEVICE) {
1127 if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1128 ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1129 return 0;
1130
1131 return -1;
1132 }
1133
1134 return 0;
1135 }
1136
1137 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1138 unsigned id, struct hid_report **report)
1139 {
1140 int i;
1141
1142 *report = hdev->report_enum[type].report_id_hash[id];
1143 if (*report) {
1144 for (i = 0; i < (*report)->maxfield; i++) {
1145 unsigned app = (*report)->field[i]->application;
1146 if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1147 return 1;
1148 }
1149 }
1150
1151 return 0;
1152 }
1153
1154 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1155 {
1156 struct rmi_data *data = NULL;
1157 int ret;
1158 size_t alloc_size;
1159 struct hid_report *input_report;
1160 struct hid_report *output_report;
1161 struct hid_report *feature_report;
1162
1163 data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1164 if (!data)
1165 return -ENOMEM;
1166
1167 INIT_WORK(&data->reset_work, rmi_reset_work);
1168 data->hdev = hdev;
1169
1170 hid_set_drvdata(hdev, data);
1171
1172 hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1173
1174 ret = hid_parse(hdev);
1175 if (ret) {
1176 hid_err(hdev, "parse failed\n");
1177 return ret;
1178 }
1179
1180 if (id->driver_data)
1181 data->device_flags = id->driver_data;
1182
1183 /*
1184 * Check for the RMI specific report ids. If they are misisng
1185 * simply return and let the events be processed by hid-input
1186 */
1187 if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1188 RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1189 hid_dbg(hdev, "device does not have set mode feature report\n");
1190 goto start;
1191 }
1192
1193 if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1194 RMI_ATTN_REPORT_ID, &input_report)) {
1195 hid_dbg(hdev, "device does not have attention input report\n");
1196 goto start;
1197 }
1198
1199 data->input_report_size = hid_report_len(input_report);
1200
1201 if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1202 RMI_WRITE_REPORT_ID, &output_report)) {
1203 hid_dbg(hdev,
1204 "device does not have rmi write output report\n");
1205 goto start;
1206 }
1207
1208 data->output_report_size = hid_report_len(output_report);
1209
1210 data->device_flags |= RMI_DEVICE;
1211 alloc_size = data->output_report_size + data->input_report_size;
1212
1213 data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1214 if (!data->writeReport) {
1215 ret = -ENOMEM;
1216 return ret;
1217 }
1218
1219 data->readReport = data->writeReport + data->output_report_size;
1220
1221 init_waitqueue_head(&data->wait);
1222
1223 mutex_init(&data->page_mutex);
1224
1225 start:
1226 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1227 if (ret) {
1228 hid_err(hdev, "hw start failed\n");
1229 return ret;
1230 }
1231
1232 if ((data->device_flags & RMI_DEVICE) &&
1233 !test_bit(RMI_STARTED, &data->flags))
1234 /*
1235 * The device maybe in the bootloader if rmi_input_configured
1236 * failed to find F11 in the PDT. Print an error, but don't
1237 * return an error from rmi_probe so that hidraw will be
1238 * accessible from userspace. That way a userspace tool
1239 * can be used to reload working firmware on the touchpad.
1240 */
1241 hid_err(hdev, "Device failed to be properly configured\n");
1242
1243 return 0;
1244 }
1245
1246 static void rmi_remove(struct hid_device *hdev)
1247 {
1248 struct rmi_data *hdata = hid_get_drvdata(hdev);
1249
1250 clear_bit(RMI_STARTED, &hdata->flags);
1251
1252 hid_hw_stop(hdev);
1253 }
1254
1255 static const struct hid_device_id rmi_id[] = {
1256 { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1257 .driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1258 { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1259 { }
1260 };
1261 MODULE_DEVICE_TABLE(hid, rmi_id);
1262
1263 static struct hid_driver rmi_driver = {
1264 .name = "hid-rmi",
1265 .id_table = rmi_id,
1266 .probe = rmi_probe,
1267 .remove = rmi_remove,
1268 .event = rmi_event,
1269 .raw_event = rmi_raw_event,
1270 .input_mapping = rmi_input_mapping,
1271 .input_configured = rmi_input_configured,
1272 #ifdef CONFIG_PM
1273 .resume = rmi_post_resume,
1274 .reset_resume = rmi_post_reset,
1275 #endif
1276 };
1277
1278 module_hid_driver(rmi_driver);
1279
1280 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1281 MODULE_DESCRIPTION("RMI HID driver");
1282 MODULE_LICENSE("GPL");