]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hv/hv.c
Drivers: hv vmbus: Move Hypercall page setup out of common code
[mirror_ubuntu-zesty-kernel.git] / drivers / hv / hv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 *
21 */
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hyperv.h>
29 #include <linux/version.h>
30 #include <linux/interrupt.h>
31 #include <linux/clockchips.h>
32 #include <asm/hyperv.h>
33 #include <asm/mshyperv.h>
34 #include "hyperv_vmbus.h"
35
36 /* The one and only */
37 struct hv_context hv_context = {
38 .synic_initialized = false,
39 .hypercall_page = NULL,
40 };
41
42 #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
43 #define HV_MAX_MAX_DELTA_TICKS 0xffffffff
44 #define HV_MIN_DELTA_TICKS 1
45
46 /*
47 * query_hypervisor_info - Get version info of the windows hypervisor
48 */
49 unsigned int host_info_eax;
50 unsigned int host_info_ebx;
51 unsigned int host_info_ecx;
52 unsigned int host_info_edx;
53
54 static int query_hypervisor_info(void)
55 {
56 unsigned int eax;
57 unsigned int ebx;
58 unsigned int ecx;
59 unsigned int edx;
60 unsigned int max_leaf;
61 unsigned int op;
62
63 /*
64 * Its assumed that this is called after confirming that Viridian
65 * is present. Query id and revision.
66 */
67 eax = 0;
68 ebx = 0;
69 ecx = 0;
70 edx = 0;
71 op = HVCPUID_VENDOR_MAXFUNCTION;
72 cpuid(op, &eax, &ebx, &ecx, &edx);
73
74 max_leaf = eax;
75
76 if (max_leaf >= HVCPUID_VERSION) {
77 eax = 0;
78 ebx = 0;
79 ecx = 0;
80 edx = 0;
81 op = HVCPUID_VERSION;
82 cpuid(op, &eax, &ebx, &ecx, &edx);
83 host_info_eax = eax;
84 host_info_ebx = ebx;
85 host_info_ecx = ecx;
86 host_info_edx = edx;
87 }
88 return max_leaf;
89 }
90
91 /*
92 * hv_do_hypercall- Invoke the specified hypercall
93 */
94 u64 hv_do_hypercall(u64 control, void *input, void *output)
95 {
96 u64 input_address = (input) ? virt_to_phys(input) : 0;
97 u64 output_address = (output) ? virt_to_phys(output) : 0;
98 void *hypercall_page = hv_context.hypercall_page;
99 #ifdef CONFIG_X86_64
100 u64 hv_status = 0;
101
102 if (!hypercall_page)
103 return (u64)ULLONG_MAX;
104
105 __asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
106 __asm__ __volatile__("call *%3" : "=a" (hv_status) :
107 "c" (control), "d" (input_address),
108 "m" (hypercall_page));
109
110 return hv_status;
111
112 #else
113
114 u32 control_hi = control >> 32;
115 u32 control_lo = control & 0xFFFFFFFF;
116 u32 hv_status_hi = 1;
117 u32 hv_status_lo = 1;
118 u32 input_address_hi = input_address >> 32;
119 u32 input_address_lo = input_address & 0xFFFFFFFF;
120 u32 output_address_hi = output_address >> 32;
121 u32 output_address_lo = output_address & 0xFFFFFFFF;
122
123 if (!hypercall_page)
124 return (u64)ULLONG_MAX;
125
126 __asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
127 "=a"(hv_status_lo) : "d" (control_hi),
128 "a" (control_lo), "b" (input_address_hi),
129 "c" (input_address_lo), "D"(output_address_hi),
130 "S"(output_address_lo), "m" (hypercall_page));
131
132 return hv_status_lo | ((u64)hv_status_hi << 32);
133 #endif /* !x86_64 */
134 }
135 EXPORT_SYMBOL_GPL(hv_do_hypercall);
136
137 #ifdef CONFIG_X86_64
138 static u64 read_hv_clock_tsc(struct clocksource *arg)
139 {
140 u64 current_tick;
141 struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
142
143 if (tsc_pg->tsc_sequence != 0) {
144 /*
145 * Use the tsc page to compute the value.
146 */
147
148 while (1) {
149 u64 tmp;
150 u32 sequence = tsc_pg->tsc_sequence;
151 u64 cur_tsc;
152 u64 scale = tsc_pg->tsc_scale;
153 s64 offset = tsc_pg->tsc_offset;
154
155 rdtscll(cur_tsc);
156 /* current_tick = ((cur_tsc *scale) >> 64) + offset */
157 asm("mulq %3"
158 : "=d" (current_tick), "=a" (tmp)
159 : "a" (cur_tsc), "r" (scale));
160
161 current_tick += offset;
162 if (tsc_pg->tsc_sequence == sequence)
163 return current_tick;
164
165 if (tsc_pg->tsc_sequence != 0)
166 continue;
167 /*
168 * Fallback using MSR method.
169 */
170 break;
171 }
172 }
173 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
174 return current_tick;
175 }
176
177 static struct clocksource hyperv_cs_tsc = {
178 .name = "hyperv_clocksource_tsc_page",
179 .rating = 425,
180 .read = read_hv_clock_tsc,
181 .mask = CLOCKSOURCE_MASK(64),
182 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
183 };
184 #endif
185
186
187 /*
188 * hv_init - Main initialization routine.
189 *
190 * This routine must be called before any other routines in here are called
191 */
192 int hv_init(void)
193 {
194 int max_leaf;
195 union hv_x64_msr_hypercall_contents hypercall_msr;
196
197 memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
198 memset(hv_context.synic_message_page, 0,
199 sizeof(void *) * NR_CPUS);
200 memset(hv_context.post_msg_page, 0,
201 sizeof(void *) * NR_CPUS);
202 memset(hv_context.vp_index, 0,
203 sizeof(int) * NR_CPUS);
204 memset(hv_context.event_dpc, 0,
205 sizeof(void *) * NR_CPUS);
206 memset(hv_context.msg_dpc, 0,
207 sizeof(void *) * NR_CPUS);
208 memset(hv_context.clk_evt, 0,
209 sizeof(void *) * NR_CPUS);
210
211 max_leaf = query_hypervisor_info();
212
213
214 /* See if the hypercall page is already set */
215 hypercall_msr.as_uint64 = 0;
216 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
217
218 if (!hypercall_msr.enable)
219 return -ENOTSUPP;
220
221 hv_context.hypercall_page = hv_hypercall_pg;
222
223 #ifdef CONFIG_X86_64
224 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
225 union hv_x64_msr_hypercall_contents tsc_msr;
226 void *va_tsc;
227
228 va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
229 if (!va_tsc)
230 goto cleanup;
231 hv_context.tsc_page = va_tsc;
232
233 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
234
235 tsc_msr.enable = 1;
236 tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
237
238 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
239 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
240 }
241 #endif
242 return 0;
243
244 cleanup:
245 return -ENOTSUPP;
246 }
247
248 /*
249 * hv_cleanup - Cleanup routine.
250 *
251 * This routine is called normally during driver unloading or exiting.
252 */
253 void hv_cleanup(bool crash)
254 {
255
256 #ifdef CONFIG_X86_64
257 union hv_x64_msr_hypercall_contents hypercall_msr;
258 /*
259 * Cleanup the TSC page based CS.
260 */
261 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
262 /*
263 * Crash can happen in an interrupt context and unregistering
264 * a clocksource is impossible and redundant in this case.
265 */
266 if (!oops_in_progress) {
267 clocksource_change_rating(&hyperv_cs_tsc, 10);
268 clocksource_unregister(&hyperv_cs_tsc);
269 }
270
271 hypercall_msr.as_uint64 = 0;
272 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
273 if (!crash) {
274 vfree(hv_context.tsc_page);
275 hv_context.tsc_page = NULL;
276 }
277 }
278 #endif
279 }
280
281 /*
282 * hv_post_message - Post a message using the hypervisor message IPC.
283 *
284 * This involves a hypercall.
285 */
286 int hv_post_message(union hv_connection_id connection_id,
287 enum hv_message_type message_type,
288 void *payload, size_t payload_size)
289 {
290
291 struct hv_input_post_message *aligned_msg;
292 u64 status;
293
294 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
295 return -EMSGSIZE;
296
297 aligned_msg = (struct hv_input_post_message *)
298 hv_context.post_msg_page[get_cpu()];
299
300 aligned_msg->connectionid = connection_id;
301 aligned_msg->reserved = 0;
302 aligned_msg->message_type = message_type;
303 aligned_msg->payload_size = payload_size;
304 memcpy((void *)aligned_msg->payload, payload, payload_size);
305
306 status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
307
308 put_cpu();
309 return status & 0xFFFF;
310 }
311
312 static int hv_ce_set_next_event(unsigned long delta,
313 struct clock_event_device *evt)
314 {
315 u64 current_tick;
316
317 WARN_ON(!clockevent_state_oneshot(evt));
318
319 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
320 current_tick += delta;
321 wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
322 return 0;
323 }
324
325 static int hv_ce_shutdown(struct clock_event_device *evt)
326 {
327 wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
328 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
329
330 return 0;
331 }
332
333 static int hv_ce_set_oneshot(struct clock_event_device *evt)
334 {
335 union hv_timer_config timer_cfg;
336
337 timer_cfg.enable = 1;
338 timer_cfg.auto_enable = 1;
339 timer_cfg.sintx = VMBUS_MESSAGE_SINT;
340 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
341
342 return 0;
343 }
344
345 static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
346 {
347 dev->name = "Hyper-V clockevent";
348 dev->features = CLOCK_EVT_FEAT_ONESHOT;
349 dev->cpumask = cpumask_of(cpu);
350 dev->rating = 1000;
351 /*
352 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
353 * result in clockevents_config_and_register() taking additional
354 * references to the hv_vmbus module making it impossible to unload.
355 */
356
357 dev->set_state_shutdown = hv_ce_shutdown;
358 dev->set_state_oneshot = hv_ce_set_oneshot;
359 dev->set_next_event = hv_ce_set_next_event;
360 }
361
362
363 int hv_synic_alloc(void)
364 {
365 size_t size = sizeof(struct tasklet_struct);
366 size_t ced_size = sizeof(struct clock_event_device);
367 int cpu;
368
369 hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
370 GFP_ATOMIC);
371 if (hv_context.hv_numa_map == NULL) {
372 pr_err("Unable to allocate NUMA map\n");
373 goto err;
374 }
375
376 for_each_present_cpu(cpu) {
377 hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
378 if (hv_context.event_dpc[cpu] == NULL) {
379 pr_err("Unable to allocate event dpc\n");
380 goto err;
381 }
382 tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
383
384 hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
385 if (hv_context.msg_dpc[cpu] == NULL) {
386 pr_err("Unable to allocate event dpc\n");
387 goto err;
388 }
389 tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);
390
391 hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
392 if (hv_context.clk_evt[cpu] == NULL) {
393 pr_err("Unable to allocate clock event device\n");
394 goto err;
395 }
396
397 hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
398
399 hv_context.synic_message_page[cpu] =
400 (void *)get_zeroed_page(GFP_ATOMIC);
401
402 if (hv_context.synic_message_page[cpu] == NULL) {
403 pr_err("Unable to allocate SYNIC message page\n");
404 goto err;
405 }
406
407 hv_context.synic_event_page[cpu] =
408 (void *)get_zeroed_page(GFP_ATOMIC);
409
410 if (hv_context.synic_event_page[cpu] == NULL) {
411 pr_err("Unable to allocate SYNIC event page\n");
412 goto err;
413 }
414
415 hv_context.post_msg_page[cpu] =
416 (void *)get_zeroed_page(GFP_ATOMIC);
417
418 if (hv_context.post_msg_page[cpu] == NULL) {
419 pr_err("Unable to allocate post msg page\n");
420 goto err;
421 }
422
423 INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
424 }
425
426 return 0;
427 err:
428 return -ENOMEM;
429 }
430
431 static void hv_synic_free_cpu(int cpu)
432 {
433 kfree(hv_context.event_dpc[cpu]);
434 kfree(hv_context.msg_dpc[cpu]);
435 kfree(hv_context.clk_evt[cpu]);
436 if (hv_context.synic_event_page[cpu])
437 free_page((unsigned long)hv_context.synic_event_page[cpu]);
438 if (hv_context.synic_message_page[cpu])
439 free_page((unsigned long)hv_context.synic_message_page[cpu]);
440 if (hv_context.post_msg_page[cpu])
441 free_page((unsigned long)hv_context.post_msg_page[cpu]);
442 }
443
444 void hv_synic_free(void)
445 {
446 int cpu;
447
448 kfree(hv_context.hv_numa_map);
449 for_each_present_cpu(cpu)
450 hv_synic_free_cpu(cpu);
451 }
452
453 /*
454 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
455 *
456 * If it is already initialized by another entity (ie x2v shim), we need to
457 * retrieve the initialized message and event pages. Otherwise, we create and
458 * initialize the message and event pages.
459 */
460 int hv_synic_init(unsigned int cpu)
461 {
462 u64 version;
463 union hv_synic_simp simp;
464 union hv_synic_siefp siefp;
465 union hv_synic_sint shared_sint;
466 union hv_synic_scontrol sctrl;
467 u64 vp_index;
468
469 if (!hv_context.hypercall_page)
470 return -EFAULT;
471
472 /* Check the version */
473 rdmsrl(HV_X64_MSR_SVERSION, version);
474
475 /* Setup the Synic's message page */
476 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
477 simp.simp_enabled = 1;
478 simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
479 >> PAGE_SHIFT;
480
481 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
482
483 /* Setup the Synic's event page */
484 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
485 siefp.siefp_enabled = 1;
486 siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
487 >> PAGE_SHIFT;
488
489 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
490
491 /* Setup the shared SINT. */
492 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
493
494 shared_sint.as_uint64 = 0;
495 shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
496 shared_sint.masked = false;
497 shared_sint.auto_eoi = true;
498
499 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
500
501 /* Enable the global synic bit */
502 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
503 sctrl.enable = 1;
504
505 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
506
507 hv_context.synic_initialized = true;
508
509 /*
510 * Setup the mapping between Hyper-V's notion
511 * of cpuid and Linux' notion of cpuid.
512 * This array will be indexed using Linux cpuid.
513 */
514 rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
515 hv_context.vp_index[cpu] = (u32)vp_index;
516
517 /*
518 * Register the per-cpu clockevent source.
519 */
520 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
521 clockevents_config_and_register(hv_context.clk_evt[cpu],
522 HV_TIMER_FREQUENCY,
523 HV_MIN_DELTA_TICKS,
524 HV_MAX_MAX_DELTA_TICKS);
525 return 0;
526 }
527
528 /*
529 * hv_synic_clockevents_cleanup - Cleanup clockevent devices
530 */
531 void hv_synic_clockevents_cleanup(void)
532 {
533 int cpu;
534
535 if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
536 return;
537
538 for_each_present_cpu(cpu)
539 clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
540 }
541
542 /*
543 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
544 */
545 int hv_synic_cleanup(unsigned int cpu)
546 {
547 union hv_synic_sint shared_sint;
548 union hv_synic_simp simp;
549 union hv_synic_siefp siefp;
550 union hv_synic_scontrol sctrl;
551 struct vmbus_channel *channel, *sc;
552 bool channel_found = false;
553 unsigned long flags;
554
555 if (!hv_context.synic_initialized)
556 return -EFAULT;
557
558 /*
559 * Search for channels which are bound to the CPU we're about to
560 * cleanup. In case we find one and vmbus is still connected we need to
561 * fail, this will effectively prevent CPU offlining. There is no way
562 * we can re-bind channels to different CPUs for now.
563 */
564 mutex_lock(&vmbus_connection.channel_mutex);
565 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
566 if (channel->target_cpu == cpu) {
567 channel_found = true;
568 break;
569 }
570 spin_lock_irqsave(&channel->lock, flags);
571 list_for_each_entry(sc, &channel->sc_list, sc_list) {
572 if (sc->target_cpu == cpu) {
573 channel_found = true;
574 break;
575 }
576 }
577 spin_unlock_irqrestore(&channel->lock, flags);
578 if (channel_found)
579 break;
580 }
581 mutex_unlock(&vmbus_connection.channel_mutex);
582
583 if (channel_found && vmbus_connection.conn_state == CONNECTED)
584 return -EBUSY;
585
586 /* Turn off clockevent device */
587 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) {
588 clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
589 hv_ce_shutdown(hv_context.clk_evt[cpu]);
590 }
591
592 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
593
594 shared_sint.masked = 1;
595
596 /* Need to correctly cleanup in the case of SMP!!! */
597 /* Disable the interrupt */
598 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
599
600 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
601 simp.simp_enabled = 0;
602 simp.base_simp_gpa = 0;
603
604 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
605
606 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
607 siefp.siefp_enabled = 0;
608 siefp.base_siefp_gpa = 0;
609
610 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
611
612 /* Disable the global synic bit */
613 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
614 sctrl.enable = 0;
615 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
616
617 return 0;
618 }