]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hv/hv_util.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / hv / hv_util.c
1 /*
2 * Copyright (c) 2010, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 */
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/sysctl.h>
28 #include <linux/reboot.h>
29 #include <linux/hyperv.h>
30 #include <linux/clockchips.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <asm/mshyperv.h>
33
34 #include "hyperv_vmbus.h"
35
36 #define SD_MAJOR 3
37 #define SD_MINOR 0
38 #define SD_VERSION (SD_MAJOR << 16 | SD_MINOR)
39
40 #define SD_MAJOR_1 1
41 #define SD_VERSION_1 (SD_MAJOR_1 << 16 | SD_MINOR)
42
43 #define TS_MAJOR 4
44 #define TS_MINOR 0
45 #define TS_VERSION (TS_MAJOR << 16 | TS_MINOR)
46
47 #define TS_MAJOR_1 1
48 #define TS_VERSION_1 (TS_MAJOR_1 << 16 | TS_MINOR)
49
50 #define TS_MAJOR_3 3
51 #define TS_VERSION_3 (TS_MAJOR_3 << 16 | TS_MINOR)
52
53 #define HB_MAJOR 3
54 #define HB_MINOR 0
55 #define HB_VERSION (HB_MAJOR << 16 | HB_MINOR)
56
57 #define HB_MAJOR_1 1
58 #define HB_VERSION_1 (HB_MAJOR_1 << 16 | HB_MINOR)
59
60 static int sd_srv_version;
61 static int ts_srv_version;
62 static int hb_srv_version;
63
64 #define SD_VER_COUNT 2
65 static const int sd_versions[] = {
66 SD_VERSION,
67 SD_VERSION_1
68 };
69
70 #define TS_VER_COUNT 3
71 static const int ts_versions[] = {
72 TS_VERSION,
73 TS_VERSION_3,
74 TS_VERSION_1
75 };
76
77 #define HB_VER_COUNT 2
78 static const int hb_versions[] = {
79 HB_VERSION,
80 HB_VERSION_1
81 };
82
83 #define FW_VER_COUNT 2
84 static const int fw_versions[] = {
85 UTIL_FW_VERSION,
86 UTIL_WS2K8_FW_VERSION
87 };
88
89 static void shutdown_onchannelcallback(void *context);
90 static struct hv_util_service util_shutdown = {
91 .util_cb = shutdown_onchannelcallback,
92 };
93
94 static int hv_timesync_init(struct hv_util_service *srv);
95 static void hv_timesync_deinit(void);
96
97 static void timesync_onchannelcallback(void *context);
98 static struct hv_util_service util_timesynch = {
99 .util_cb = timesync_onchannelcallback,
100 .util_init = hv_timesync_init,
101 .util_deinit = hv_timesync_deinit,
102 };
103
104 static void heartbeat_onchannelcallback(void *context);
105 static struct hv_util_service util_heartbeat = {
106 .util_cb = heartbeat_onchannelcallback,
107 };
108
109 static struct hv_util_service util_kvp = {
110 .util_cb = hv_kvp_onchannelcallback,
111 .util_init = hv_kvp_init,
112 .util_deinit = hv_kvp_deinit,
113 };
114
115 static struct hv_util_service util_vss = {
116 .util_cb = hv_vss_onchannelcallback,
117 .util_init = hv_vss_init,
118 .util_deinit = hv_vss_deinit,
119 };
120
121 static struct hv_util_service util_fcopy = {
122 .util_cb = hv_fcopy_onchannelcallback,
123 .util_init = hv_fcopy_init,
124 .util_deinit = hv_fcopy_deinit,
125 };
126
127 static void perform_shutdown(struct work_struct *dummy)
128 {
129 orderly_poweroff(true);
130 }
131
132 /*
133 * Perform the shutdown operation in a thread context.
134 */
135 static DECLARE_WORK(shutdown_work, perform_shutdown);
136
137 static void shutdown_onchannelcallback(void *context)
138 {
139 struct vmbus_channel *channel = context;
140 u32 recvlen;
141 u64 requestid;
142 bool execute_shutdown = false;
143 u8 *shut_txf_buf = util_shutdown.recv_buffer;
144
145 struct shutdown_msg_data *shutdown_msg;
146
147 struct icmsg_hdr *icmsghdrp;
148
149 vmbus_recvpacket(channel, shut_txf_buf,
150 PAGE_SIZE, &recvlen, &requestid);
151
152 if (recvlen > 0) {
153 icmsghdrp = (struct icmsg_hdr *)&shut_txf_buf[
154 sizeof(struct vmbuspipe_hdr)];
155
156 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
157 if (vmbus_prep_negotiate_resp(icmsghdrp, shut_txf_buf,
158 fw_versions, FW_VER_COUNT,
159 sd_versions, SD_VER_COUNT,
160 NULL, &sd_srv_version)) {
161 pr_info("Shutdown IC version %d.%d\n",
162 sd_srv_version >> 16,
163 sd_srv_version & 0xFFFF);
164 }
165 } else {
166 shutdown_msg =
167 (struct shutdown_msg_data *)&shut_txf_buf[
168 sizeof(struct vmbuspipe_hdr) +
169 sizeof(struct icmsg_hdr)];
170
171 switch (shutdown_msg->flags) {
172 case 0:
173 case 1:
174 icmsghdrp->status = HV_S_OK;
175 execute_shutdown = true;
176
177 pr_info("Shutdown request received -"
178 " graceful shutdown initiated\n");
179 break;
180 default:
181 icmsghdrp->status = HV_E_FAIL;
182 execute_shutdown = false;
183
184 pr_info("Shutdown request received -"
185 " Invalid request\n");
186 break;
187 }
188 }
189
190 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
191 | ICMSGHDRFLAG_RESPONSE;
192
193 vmbus_sendpacket(channel, shut_txf_buf,
194 recvlen, requestid,
195 VM_PKT_DATA_INBAND, 0);
196 }
197
198 if (execute_shutdown == true)
199 schedule_work(&shutdown_work);
200 }
201
202 /*
203 * Set the host time in a process context.
204 */
205
206 struct adj_time_work {
207 struct work_struct work;
208 u64 host_time;
209 u64 ref_time;
210 u8 flags;
211 };
212
213 static void hv_set_host_time(struct work_struct *work)
214 {
215 struct adj_time_work *wrk;
216 struct timespec64 host_ts;
217 u64 reftime, newtime;
218
219 wrk = container_of(work, struct adj_time_work, work);
220
221 reftime = hyperv_cs->read(hyperv_cs);
222 newtime = wrk->host_time + (reftime - wrk->ref_time);
223 host_ts = ns_to_timespec64((newtime - WLTIMEDELTA) * 100);
224
225 do_settimeofday64(&host_ts);
226 }
227
228 /*
229 * Synchronize time with host after reboot, restore, etc.
230 *
231 * ICTIMESYNCFLAG_SYNC flag bit indicates reboot, restore events of the VM.
232 * After reboot the flag ICTIMESYNCFLAG_SYNC is included in the first time
233 * message after the timesync channel is opened. Since the hv_utils module is
234 * loaded after hv_vmbus, the first message is usually missed. This bit is
235 * considered a hard request to discipline the clock.
236 *
237 * ICTIMESYNCFLAG_SAMPLE bit indicates a time sample from host. This is
238 * typically used as a hint to the guest. The guest is under no obligation
239 * to discipline the clock.
240 */
241 static struct adj_time_work wrk;
242
243 /*
244 * The last time sample, received from the host. PTP device responds to
245 * requests by using this data and the current partition-wide time reference
246 * count.
247 */
248 static struct {
249 u64 host_time;
250 u64 ref_time;
251 struct system_time_snapshot snap;
252 spinlock_t lock;
253 } host_ts;
254
255 static inline void adj_guesttime(u64 hosttime, u64 reftime, u8 adj_flags)
256 {
257 unsigned long flags;
258 u64 cur_reftime;
259
260 /*
261 * This check is safe since we are executing in the
262 * interrupt context and time synch messages are always
263 * delivered on the same CPU.
264 */
265 if (adj_flags & ICTIMESYNCFLAG_SYNC) {
266 /* Queue a job to do do_settimeofday64() */
267 if (work_pending(&wrk.work))
268 return;
269
270 wrk.host_time = hosttime;
271 wrk.ref_time = reftime;
272 wrk.flags = adj_flags;
273 schedule_work(&wrk.work);
274 } else {
275 /*
276 * Save the adjusted time sample from the host and the snapshot
277 * of the current system time for PTP device.
278 */
279 spin_lock_irqsave(&host_ts.lock, flags);
280
281 cur_reftime = hyperv_cs->read(hyperv_cs);
282 host_ts.host_time = hosttime;
283 host_ts.ref_time = cur_reftime;
284 ktime_get_snapshot(&host_ts.snap);
285
286 /*
287 * TimeSync v4 messages contain reference time (guest's Hyper-V
288 * clocksource read when the time sample was generated), we can
289 * improve the precision by adding the delta between now and the
290 * time of generation.
291 */
292 if (ts_srv_version > TS_VERSION_3)
293 host_ts.host_time += (cur_reftime - reftime);
294
295 spin_unlock_irqrestore(&host_ts.lock, flags);
296 }
297 }
298
299 /*
300 * Time Sync Channel message handler.
301 */
302 static void timesync_onchannelcallback(void *context)
303 {
304 struct vmbus_channel *channel = context;
305 u32 recvlen;
306 u64 requestid;
307 struct icmsg_hdr *icmsghdrp;
308 struct ictimesync_data *timedatap;
309 struct ictimesync_ref_data *refdata;
310 u8 *time_txf_buf = util_timesynch.recv_buffer;
311
312 vmbus_recvpacket(channel, time_txf_buf,
313 PAGE_SIZE, &recvlen, &requestid);
314
315 if (recvlen > 0) {
316 icmsghdrp = (struct icmsg_hdr *)&time_txf_buf[
317 sizeof(struct vmbuspipe_hdr)];
318
319 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
320 if (vmbus_prep_negotiate_resp(icmsghdrp, time_txf_buf,
321 fw_versions, FW_VER_COUNT,
322 ts_versions, TS_VER_COUNT,
323 NULL, &ts_srv_version)) {
324 pr_info("TimeSync IC version %d.%d\n",
325 ts_srv_version >> 16,
326 ts_srv_version & 0xFFFF);
327 }
328 } else {
329 if (ts_srv_version > TS_VERSION_3) {
330 refdata = (struct ictimesync_ref_data *)
331 &time_txf_buf[
332 sizeof(struct vmbuspipe_hdr) +
333 sizeof(struct icmsg_hdr)];
334
335 adj_guesttime(refdata->parenttime,
336 refdata->vmreferencetime,
337 refdata->flags);
338 } else {
339 timedatap = (struct ictimesync_data *)
340 &time_txf_buf[
341 sizeof(struct vmbuspipe_hdr) +
342 sizeof(struct icmsg_hdr)];
343 adj_guesttime(timedatap->parenttime,
344 0,
345 timedatap->flags);
346 }
347 }
348
349 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
350 | ICMSGHDRFLAG_RESPONSE;
351
352 vmbus_sendpacket(channel, time_txf_buf,
353 recvlen, requestid,
354 VM_PKT_DATA_INBAND, 0);
355 }
356 }
357
358 /*
359 * Heartbeat functionality.
360 * Every two seconds, Hyper-V send us a heartbeat request message.
361 * we respond to this message, and Hyper-V knows we are alive.
362 */
363 static void heartbeat_onchannelcallback(void *context)
364 {
365 struct vmbus_channel *channel = context;
366 u32 recvlen;
367 u64 requestid;
368 struct icmsg_hdr *icmsghdrp;
369 struct heartbeat_msg_data *heartbeat_msg;
370 u8 *hbeat_txf_buf = util_heartbeat.recv_buffer;
371
372 while (1) {
373
374 vmbus_recvpacket(channel, hbeat_txf_buf,
375 PAGE_SIZE, &recvlen, &requestid);
376
377 if (!recvlen)
378 break;
379
380 icmsghdrp = (struct icmsg_hdr *)&hbeat_txf_buf[
381 sizeof(struct vmbuspipe_hdr)];
382
383 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
384 if (vmbus_prep_negotiate_resp(icmsghdrp,
385 hbeat_txf_buf,
386 fw_versions, FW_VER_COUNT,
387 hb_versions, HB_VER_COUNT,
388 NULL, &hb_srv_version)) {
389
390 pr_info("Heartbeat IC version %d.%d\n",
391 hb_srv_version >> 16,
392 hb_srv_version & 0xFFFF);
393 }
394 } else {
395 heartbeat_msg =
396 (struct heartbeat_msg_data *)&hbeat_txf_buf[
397 sizeof(struct vmbuspipe_hdr) +
398 sizeof(struct icmsg_hdr)];
399
400 heartbeat_msg->seq_num += 1;
401 }
402
403 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
404 | ICMSGHDRFLAG_RESPONSE;
405
406 vmbus_sendpacket(channel, hbeat_txf_buf,
407 recvlen, requestid,
408 VM_PKT_DATA_INBAND, 0);
409 }
410 }
411
412 static int util_probe(struct hv_device *dev,
413 const struct hv_vmbus_device_id *dev_id)
414 {
415 struct hv_util_service *srv =
416 (struct hv_util_service *)dev_id->driver_data;
417 int ret;
418
419 srv->recv_buffer = kmalloc(PAGE_SIZE * 4, GFP_KERNEL);
420 if (!srv->recv_buffer)
421 return -ENOMEM;
422 srv->channel = dev->channel;
423 if (srv->util_init) {
424 ret = srv->util_init(srv);
425 if (ret) {
426 ret = -ENODEV;
427 goto error1;
428 }
429 }
430
431 /*
432 * The set of services managed by the util driver are not performance
433 * critical and do not need batched reading. Furthermore, some services
434 * such as KVP can only handle one message from the host at a time.
435 * Turn off batched reading for all util drivers before we open the
436 * channel.
437 */
438 set_channel_read_mode(dev->channel, HV_CALL_DIRECT);
439
440 hv_set_drvdata(dev, srv);
441
442 ret = vmbus_open(dev->channel, 4 * PAGE_SIZE, 4 * PAGE_SIZE, NULL, 0,
443 srv->util_cb, dev->channel);
444 if (ret)
445 goto error;
446
447 return 0;
448
449 error:
450 if (srv->util_deinit)
451 srv->util_deinit();
452 error1:
453 kfree(srv->recv_buffer);
454 return ret;
455 }
456
457 static int util_remove(struct hv_device *dev)
458 {
459 struct hv_util_service *srv = hv_get_drvdata(dev);
460
461 if (srv->util_deinit)
462 srv->util_deinit();
463 vmbus_close(dev->channel);
464 kfree(srv->recv_buffer);
465
466 return 0;
467 }
468
469 static const struct hv_vmbus_device_id id_table[] = {
470 /* Shutdown guid */
471 { HV_SHUTDOWN_GUID,
472 .driver_data = (unsigned long)&util_shutdown
473 },
474 /* Time synch guid */
475 { HV_TS_GUID,
476 .driver_data = (unsigned long)&util_timesynch
477 },
478 /* Heartbeat guid */
479 { HV_HEART_BEAT_GUID,
480 .driver_data = (unsigned long)&util_heartbeat
481 },
482 /* KVP guid */
483 { HV_KVP_GUID,
484 .driver_data = (unsigned long)&util_kvp
485 },
486 /* VSS GUID */
487 { HV_VSS_GUID,
488 .driver_data = (unsigned long)&util_vss
489 },
490 /* File copy GUID */
491 { HV_FCOPY_GUID,
492 .driver_data = (unsigned long)&util_fcopy
493 },
494 { },
495 };
496
497 MODULE_DEVICE_TABLE(vmbus, id_table);
498
499 /* The one and only one */
500 static struct hv_driver util_drv = {
501 .name = "hv_util",
502 .id_table = id_table,
503 .probe = util_probe,
504 .remove = util_remove,
505 };
506
507 static int hv_ptp_enable(struct ptp_clock_info *info,
508 struct ptp_clock_request *request, int on)
509 {
510 return -EOPNOTSUPP;
511 }
512
513 static int hv_ptp_settime(struct ptp_clock_info *p, const struct timespec64 *ts)
514 {
515 return -EOPNOTSUPP;
516 }
517
518 static int hv_ptp_adjfreq(struct ptp_clock_info *ptp, s32 delta)
519 {
520 return -EOPNOTSUPP;
521 }
522 static int hv_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
523 {
524 return -EOPNOTSUPP;
525 }
526
527 static int hv_ptp_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
528 {
529 unsigned long flags;
530 u64 newtime, reftime;
531
532 spin_lock_irqsave(&host_ts.lock, flags);
533 reftime = hyperv_cs->read(hyperv_cs);
534 newtime = host_ts.host_time + (reftime - host_ts.ref_time);
535 *ts = ns_to_timespec64((newtime - WLTIMEDELTA) * 100);
536 spin_unlock_irqrestore(&host_ts.lock, flags);
537
538 return 0;
539 }
540
541 static int hv_ptp_get_syncdevicetime(ktime_t *device,
542 struct system_counterval_t *system,
543 void *ctx)
544 {
545 system->cs = hyperv_cs;
546 system->cycles = host_ts.ref_time;
547 *device = ns_to_ktime((host_ts.host_time - WLTIMEDELTA) * 100);
548
549 return 0;
550 }
551
552 static int hv_ptp_getcrosststamp(struct ptp_clock_info *ptp,
553 struct system_device_crosststamp *xtstamp)
554 {
555 unsigned long flags;
556 int ret;
557
558 spin_lock_irqsave(&host_ts.lock, flags);
559
560 /*
561 * host_ts contains the last time sample from the host and the snapshot
562 * of system time. We don't need to calculate the time delta between
563 * the reception and now as get_device_system_crosststamp() does the
564 * required interpolation.
565 */
566 ret = get_device_system_crosststamp(hv_ptp_get_syncdevicetime,
567 NULL, &host_ts.snap, xtstamp);
568
569 spin_unlock_irqrestore(&host_ts.lock, flags);
570
571 return ret;
572 }
573
574 static struct ptp_clock_info ptp_hyperv_info = {
575 .name = "hyperv",
576 .enable = hv_ptp_enable,
577 .adjtime = hv_ptp_adjtime,
578 .adjfreq = hv_ptp_adjfreq,
579 .gettime64 = hv_ptp_gettime,
580 .getcrosststamp = hv_ptp_getcrosststamp,
581 .settime64 = hv_ptp_settime,
582 .owner = THIS_MODULE,
583 };
584
585 static struct ptp_clock *hv_ptp_clock;
586
587 static int hv_timesync_init(struct hv_util_service *srv)
588 {
589 /* TimeSync requires Hyper-V clocksource. */
590 if (!hyperv_cs)
591 return -ENODEV;
592
593 INIT_WORK(&wrk.work, hv_set_host_time);
594
595 /*
596 * ptp_clock_register() returns NULL when CONFIG_PTP_1588_CLOCK is
597 * disabled but the driver is still useful without the PTP device
598 * as it still handles the ICTIMESYNCFLAG_SYNC case.
599 */
600 hv_ptp_clock = ptp_clock_register(&ptp_hyperv_info, NULL);
601 if (IS_ERR_OR_NULL(hv_ptp_clock)) {
602 pr_err("cannot register PTP clock: %ld\n",
603 PTR_ERR(hv_ptp_clock));
604 hv_ptp_clock = NULL;
605 }
606
607 return 0;
608 }
609
610 static void hv_timesync_deinit(void)
611 {
612 if (hv_ptp_clock)
613 ptp_clock_unregister(hv_ptp_clock);
614 cancel_work_sync(&wrk.work);
615 }
616
617 static int __init init_hyperv_utils(void)
618 {
619 pr_info("Registering HyperV Utility Driver\n");
620
621 return vmbus_driver_register(&util_drv);
622 }
623
624 static void exit_hyperv_utils(void)
625 {
626 pr_info("De-Registered HyperV Utility Driver\n");
627
628 vmbus_driver_unregister(&util_drv);
629 }
630
631 module_init(init_hyperv_utils);
632 module_exit(exit_hyperv_utils);
633
634 MODULE_DESCRIPTION("Hyper-V Utilities");
635 MODULE_LICENSE("GPL");