]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/hv/ring_buffer.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / drivers / hv / ring_buffer.c
1 /*
2 *
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
33
34 #include "hyperv_vmbus.h"
35
36 #define VMBUS_PKT_TRAILER 8
37
38 /*
39 * When we write to the ring buffer, check if the host needs to
40 * be signaled. Here is the details of this protocol:
41 *
42 * 1. The host guarantees that while it is draining the
43 * ring buffer, it will set the interrupt_mask to
44 * indicate it does not need to be interrupted when
45 * new data is placed.
46 *
47 * 2. The host guarantees that it will completely drain
48 * the ring buffer before exiting the read loop. Further,
49 * once the ring buffer is empty, it will clear the
50 * interrupt_mask and re-check to see if new data has
51 * arrived.
52 *
53 * KYS: Oct. 30, 2016:
54 * It looks like Windows hosts have logic to deal with DOS attacks that
55 * can be triggered if it receives interrupts when it is not expecting
56 * the interrupt. The host expects interrupts only when the ring
57 * transitions from empty to non-empty (or full to non full on the guest
58 * to host ring).
59 * So, base the signaling decision solely on the ring state until the
60 * host logic is fixed.
61 */
62
63 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
64 {
65 struct hv_ring_buffer_info *rbi = &channel->outbound;
66
67 virt_mb();
68 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
69 return;
70
71 /* check interrupt_mask before read_index */
72 virt_rmb();
73 /*
74 * This is the only case we need to signal when the
75 * ring transitions from being empty to non-empty.
76 */
77 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
78 ++channel->intr_out_empty;
79 vmbus_setevent(channel);
80 }
81 }
82
83 /* Get the next write location for the specified ring buffer. */
84 static inline u32
85 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
86 {
87 u32 next = ring_info->ring_buffer->write_index;
88
89 return next;
90 }
91
92 /* Set the next write location for the specified ring buffer. */
93 static inline void
94 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
95 u32 next_write_location)
96 {
97 ring_info->ring_buffer->write_index = next_write_location;
98 }
99
100 /* Set the next read location for the specified ring buffer. */
101 static inline void
102 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
103 u32 next_read_location)
104 {
105 ring_info->ring_buffer->read_index = next_read_location;
106 ring_info->priv_read_index = next_read_location;
107 }
108
109 /* Get the size of the ring buffer. */
110 static inline u32
111 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
112 {
113 return ring_info->ring_datasize;
114 }
115
116 /* Get the read and write indices as u64 of the specified ring buffer. */
117 static inline u64
118 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
119 {
120 return (u64)ring_info->ring_buffer->write_index << 32;
121 }
122
123 /*
124 * Helper routine to copy from source to ring buffer.
125 * Assume there is enough room. Handles wrap-around in dest case only!!
126 */
127 static u32 hv_copyto_ringbuffer(
128 struct hv_ring_buffer_info *ring_info,
129 u32 start_write_offset,
130 const void *src,
131 u32 srclen)
132 {
133 void *ring_buffer = hv_get_ring_buffer(ring_info);
134 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
135
136 memcpy(ring_buffer + start_write_offset, src, srclen);
137
138 start_write_offset += srclen;
139 if (start_write_offset >= ring_buffer_size)
140 start_write_offset -= ring_buffer_size;
141
142 return start_write_offset;
143 }
144
145 /*
146 *
147 * hv_get_ringbuffer_availbytes()
148 *
149 * Get number of bytes available to read and to write to
150 * for the specified ring buffer
151 */
152 static void
153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
154 u32 *read, u32 *write)
155 {
156 u32 read_loc, write_loc, dsize;
157
158 /* Capture the read/write indices before they changed */
159 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
160 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
161 dsize = rbi->ring_datasize;
162
163 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
164 read_loc - write_loc;
165 *read = dsize - *write;
166 }
167
168 /* Get various debug metrics for the specified ring buffer. */
169 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
170 struct hv_ring_buffer_debug_info *debug_info)
171 {
172 u32 bytes_avail_towrite;
173 u32 bytes_avail_toread;
174
175 mutex_lock(&ring_info->ring_buffer_mutex);
176
177 if (!ring_info->ring_buffer) {
178 mutex_unlock(&ring_info->ring_buffer_mutex);
179 return -EINVAL;
180 }
181
182 hv_get_ringbuffer_availbytes(ring_info,
183 &bytes_avail_toread,
184 &bytes_avail_towrite);
185 debug_info->bytes_avail_toread = bytes_avail_toread;
186 debug_info->bytes_avail_towrite = bytes_avail_towrite;
187 debug_info->current_read_index = ring_info->ring_buffer->read_index;
188 debug_info->current_write_index = ring_info->ring_buffer->write_index;
189 debug_info->current_interrupt_mask
190 = ring_info->ring_buffer->interrupt_mask;
191 mutex_unlock(&ring_info->ring_buffer_mutex);
192
193 return 0;
194 }
195 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
196
197 /* Initialize a channel's ring buffer info mutex locks */
198 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
199 {
200 mutex_init(&channel->inbound.ring_buffer_mutex);
201 mutex_init(&channel->outbound.ring_buffer_mutex);
202 }
203
204 /* Initialize the ring buffer. */
205 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
206 struct page *pages, u32 page_cnt)
207 {
208 int i;
209 struct page **pages_wraparound;
210
211 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
212
213 /*
214 * First page holds struct hv_ring_buffer, do wraparound mapping for
215 * the rest.
216 */
217 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
218 GFP_KERNEL);
219 if (!pages_wraparound)
220 return -ENOMEM;
221
222 pages_wraparound[0] = pages;
223 for (i = 0; i < 2 * (page_cnt - 1); i++)
224 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
225
226 ring_info->ring_buffer = (struct hv_ring_buffer *)
227 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
228
229 kfree(pages_wraparound);
230
231
232 if (!ring_info->ring_buffer)
233 return -ENOMEM;
234
235 ring_info->ring_buffer->read_index =
236 ring_info->ring_buffer->write_index = 0;
237
238 /* Set the feature bit for enabling flow control. */
239 ring_info->ring_buffer->feature_bits.value = 1;
240
241 ring_info->ring_size = page_cnt << PAGE_SHIFT;
242 ring_info->ring_size_div10_reciprocal =
243 reciprocal_value(ring_info->ring_size / 10);
244 ring_info->ring_datasize = ring_info->ring_size -
245 sizeof(struct hv_ring_buffer);
246 ring_info->priv_read_index = 0;
247
248 spin_lock_init(&ring_info->ring_lock);
249
250 return 0;
251 }
252
253 /* Cleanup the ring buffer. */
254 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
255 {
256 mutex_lock(&ring_info->ring_buffer_mutex);
257 vunmap(ring_info->ring_buffer);
258 ring_info->ring_buffer = NULL;
259 mutex_unlock(&ring_info->ring_buffer_mutex);
260 }
261
262 /* Write to the ring buffer. */
263 int hv_ringbuffer_write(struct vmbus_channel *channel,
264 const struct kvec *kv_list, u32 kv_count)
265 {
266 int i;
267 u32 bytes_avail_towrite;
268 u32 totalbytes_towrite = sizeof(u64);
269 u32 next_write_location;
270 u32 old_write;
271 u64 prev_indices;
272 unsigned long flags;
273 struct hv_ring_buffer_info *outring_info = &channel->outbound;
274
275 if (channel->rescind)
276 return -ENODEV;
277
278 for (i = 0; i < kv_count; i++)
279 totalbytes_towrite += kv_list[i].iov_len;
280
281 spin_lock_irqsave(&outring_info->ring_lock, flags);
282
283 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
284
285 /*
286 * If there is only room for the packet, assume it is full.
287 * Otherwise, the next time around, we think the ring buffer
288 * is empty since the read index == write index.
289 */
290 if (bytes_avail_towrite <= totalbytes_towrite) {
291 ++channel->out_full_total;
292
293 if (!channel->out_full_flag) {
294 ++channel->out_full_first;
295 channel->out_full_flag = true;
296 }
297
298 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
299 return -EAGAIN;
300 }
301
302 channel->out_full_flag = false;
303
304 /* Write to the ring buffer */
305 next_write_location = hv_get_next_write_location(outring_info);
306
307 old_write = next_write_location;
308
309 for (i = 0; i < kv_count; i++) {
310 next_write_location = hv_copyto_ringbuffer(outring_info,
311 next_write_location,
312 kv_list[i].iov_base,
313 kv_list[i].iov_len);
314 }
315
316 /* Set previous packet start */
317 prev_indices = hv_get_ring_bufferindices(outring_info);
318
319 next_write_location = hv_copyto_ringbuffer(outring_info,
320 next_write_location,
321 &prev_indices,
322 sizeof(u64));
323
324 /* Issue a full memory barrier before updating the write index */
325 virt_mb();
326
327 /* Now, update the write location */
328 hv_set_next_write_location(outring_info, next_write_location);
329
330
331 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
332
333 hv_signal_on_write(old_write, channel);
334
335 if (channel->rescind)
336 return -ENODEV;
337
338 return 0;
339 }
340
341 int hv_ringbuffer_read(struct vmbus_channel *channel,
342 void *buffer, u32 buflen, u32 *buffer_actual_len,
343 u64 *requestid, bool raw)
344 {
345 struct vmpacket_descriptor *desc;
346 u32 packetlen, offset;
347
348 if (unlikely(buflen == 0))
349 return -EINVAL;
350
351 *buffer_actual_len = 0;
352 *requestid = 0;
353
354 /* Make sure there is something to read */
355 desc = hv_pkt_iter_first(channel);
356 if (desc == NULL) {
357 /*
358 * No error is set when there is even no header, drivers are
359 * supposed to analyze buffer_actual_len.
360 */
361 return 0;
362 }
363
364 offset = raw ? 0 : (desc->offset8 << 3);
365 packetlen = (desc->len8 << 3) - offset;
366 *buffer_actual_len = packetlen;
367 *requestid = desc->trans_id;
368
369 if (unlikely(packetlen > buflen))
370 return -ENOBUFS;
371
372 /* since ring is double mapped, only one copy is necessary */
373 memcpy(buffer, (const char *)desc + offset, packetlen);
374
375 /* Advance ring index to next packet descriptor */
376 __hv_pkt_iter_next(channel, desc);
377
378 /* Notify host of update */
379 hv_pkt_iter_close(channel);
380
381 return 0;
382 }
383
384 /*
385 * Determine number of bytes available in ring buffer after
386 * the current iterator (priv_read_index) location.
387 *
388 * This is similar to hv_get_bytes_to_read but with private
389 * read index instead.
390 */
391 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
392 {
393 u32 priv_read_loc = rbi->priv_read_index;
394 u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
395
396 if (write_loc >= priv_read_loc)
397 return write_loc - priv_read_loc;
398 else
399 return (rbi->ring_datasize - priv_read_loc) + write_loc;
400 }
401
402 /*
403 * Get first vmbus packet from ring buffer after read_index
404 *
405 * If ring buffer is empty, returns NULL and no other action needed.
406 */
407 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
408 {
409 struct hv_ring_buffer_info *rbi = &channel->inbound;
410 struct vmpacket_descriptor *desc;
411
412 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
413 return NULL;
414
415 desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
416 if (desc)
417 prefetch((char *)desc + (desc->len8 << 3));
418
419 return desc;
420 }
421 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
422
423 /*
424 * Get next vmbus packet from ring buffer.
425 *
426 * Advances the current location (priv_read_index) and checks for more
427 * data. If the end of the ring buffer is reached, then return NULL.
428 */
429 struct vmpacket_descriptor *
430 __hv_pkt_iter_next(struct vmbus_channel *channel,
431 const struct vmpacket_descriptor *desc)
432 {
433 struct hv_ring_buffer_info *rbi = &channel->inbound;
434 u32 packetlen = desc->len8 << 3;
435 u32 dsize = rbi->ring_datasize;
436
437 /* bump offset to next potential packet */
438 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
439 if (rbi->priv_read_index >= dsize)
440 rbi->priv_read_index -= dsize;
441
442 /* more data? */
443 return hv_pkt_iter_first(channel);
444 }
445 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
446
447 /* How many bytes were read in this iterator cycle */
448 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
449 u32 start_read_index)
450 {
451 if (rbi->priv_read_index >= start_read_index)
452 return rbi->priv_read_index - start_read_index;
453 else
454 return rbi->ring_datasize - start_read_index +
455 rbi->priv_read_index;
456 }
457
458 /*
459 * Update host ring buffer after iterating over packets. If the host has
460 * stopped queuing new entries because it found the ring buffer full, and
461 * sufficient space is being freed up, signal the host. But be careful to
462 * only signal the host when necessary, both for performance reasons and
463 * because Hyper-V protects itself by throttling guests that signal
464 * inappropriately.
465 *
466 * Determining when to signal is tricky. There are three key data inputs
467 * that must be handled in this order to avoid race conditions:
468 *
469 * 1. Update the read_index
470 * 2. Read the pending_send_sz
471 * 3. Read the current write_index
472 *
473 * The interrupt_mask is not used to determine when to signal. The
474 * interrupt_mask is used only on the guest->host ring buffer when
475 * sending requests to the host. The host does not use it on the host->
476 * guest ring buffer to indicate whether it should be signaled.
477 */
478 void hv_pkt_iter_close(struct vmbus_channel *channel)
479 {
480 struct hv_ring_buffer_info *rbi = &channel->inbound;
481 u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
482
483 /*
484 * Make sure all reads are done before we update the read index since
485 * the writer may start writing to the read area once the read index
486 * is updated.
487 */
488 virt_rmb();
489 start_read_index = rbi->ring_buffer->read_index;
490 rbi->ring_buffer->read_index = rbi->priv_read_index;
491
492 /*
493 * Older versions of Hyper-V (before WS2102 and Win8) do not
494 * implement pending_send_sz and simply poll if the host->guest
495 * ring buffer is full. No signaling is needed or expected.
496 */
497 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
498 return;
499
500 /*
501 * Issue a full memory barrier before making the signaling decision.
502 * If reading pending_send_sz were to be reordered and happen
503 * before we commit the new read_index, a race could occur. If the
504 * host were to set the pending_send_sz after we have sampled
505 * pending_send_sz, and the ring buffer blocks before we commit the
506 * read index, we could miss sending the interrupt. Issue a full
507 * memory barrier to address this.
508 */
509 virt_mb();
510
511 /*
512 * If the pending_send_sz is zero, then the ring buffer is not
513 * blocked and there is no need to signal. This is far by the
514 * most common case, so exit quickly for best performance.
515 */
516 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
517 if (!pending_sz)
518 return;
519
520 /*
521 * Ensure the read of write_index in hv_get_bytes_to_write()
522 * happens after the read of pending_send_sz.
523 */
524 virt_rmb();
525 curr_write_sz = hv_get_bytes_to_write(rbi);
526 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
527
528 /*
529 * We want to signal the host only if we're transitioning
530 * from a "not enough free space" state to a "enough free
531 * space" state. For example, it's possible that this function
532 * could run and free up enough space to signal the host, and then
533 * run again and free up additional space before the host has a
534 * chance to clear the pending_send_sz. The 2nd invocation would
535 * be a null transition from "enough free space" to "enough free
536 * space", which doesn't warrant a signal.
537 *
538 * Exactly filling the ring buffer is treated as "not enough
539 * space". The ring buffer always must have at least one byte
540 * empty so the empty and full conditions are distinguishable.
541 * hv_get_bytes_to_write() doesn't fully tell the truth in
542 * this regard.
543 *
544 * So first check if we were in the "enough free space" state
545 * before we began the iteration. If so, the host was not
546 * blocked, and there's no need to signal.
547 */
548 if (curr_write_sz - bytes_read > pending_sz)
549 return;
550
551 /*
552 * Similarly, if the new state is "not enough space", then
553 * there's no need to signal.
554 */
555 if (curr_write_sz <= pending_sz)
556 return;
557
558 ++channel->intr_in_full;
559 vmbus_setevent(channel);
560 }
561 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);