]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hv/ring_buffer.c
Drivers: hv: vmbus: Move some ring buffer functions to hyperv.h
[mirror_ubuntu-zesty-kernel.git] / drivers / hv / ring_buffer.c
1 /*
2 *
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30
31 #include "hyperv_vmbus.h"
32
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 rbi->ring_buffer->interrupt_mask = 1;
36 virt_mb();
37 }
38
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41
42 rbi->ring_buffer->interrupt_mask = 0;
43 virt_mb();
44
45 /*
46 * Now check to see if the ring buffer is still empty.
47 * If it is not, we raced and we need to process new
48 * incoming messages.
49 */
50 return hv_get_bytes_to_read(rbi);
51 }
52
53 /*
54 * When we write to the ring buffer, check if the host needs to
55 * be signaled. Here is the details of this protocol:
56 *
57 * 1. The host guarantees that while it is draining the
58 * ring buffer, it will set the interrupt_mask to
59 * indicate it does not need to be interrupted when
60 * new data is placed.
61 *
62 * 2. The host guarantees that it will completely drain
63 * the ring buffer before exiting the read loop. Further,
64 * once the ring buffer is empty, it will clear the
65 * interrupt_mask and re-check to see if new data has
66 * arrived.
67 */
68
69 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
70 {
71 virt_mb();
72 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
73 return false;
74
75 /* check interrupt_mask before read_index */
76 virt_rmb();
77 /*
78 * This is the only case we need to signal when the
79 * ring transitions from being empty to non-empty.
80 */
81 if (old_write == READ_ONCE(rbi->ring_buffer->read_index))
82 return true;
83
84 return false;
85 }
86
87 /* Get the next write location for the specified ring buffer. */
88 static inline u32
89 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
90 {
91 u32 next = ring_info->ring_buffer->write_index;
92
93 return next;
94 }
95
96 /* Set the next write location for the specified ring buffer. */
97 static inline void
98 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
99 u32 next_write_location)
100 {
101 ring_info->ring_buffer->write_index = next_write_location;
102 }
103
104 /* Get the next read location for the specified ring buffer. */
105 static inline u32
106 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
107 {
108 u32 next = ring_info->ring_buffer->read_index;
109
110 return next;
111 }
112
113 /*
114 * Get the next read location + offset for the specified ring buffer.
115 * This allows the caller to skip.
116 */
117 static inline u32
118 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
119 u32 offset)
120 {
121 u32 next = ring_info->ring_buffer->read_index;
122
123 next += offset;
124 next %= ring_info->ring_datasize;
125
126 return next;
127 }
128
129 /* Set the next read location for the specified ring buffer. */
130 static inline void
131 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
132 u32 next_read_location)
133 {
134 ring_info->ring_buffer->read_index = next_read_location;
135 }
136
137 /* Get the size of the ring buffer. */
138 static inline u32
139 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
140 {
141 return ring_info->ring_datasize;
142 }
143
144 /* Get the read and write indices as u64 of the specified ring buffer. */
145 static inline u64
146 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
147 {
148 return (u64)ring_info->ring_buffer->write_index << 32;
149 }
150
151 /*
152 * Helper routine to copy to source from ring buffer.
153 * Assume there is enough room. Handles wrap-around in src case only!!
154 */
155 static u32 hv_copyfrom_ringbuffer(
156 struct hv_ring_buffer_info *ring_info,
157 void *dest,
158 u32 destlen,
159 u32 start_read_offset)
160 {
161 void *ring_buffer = hv_get_ring_buffer(ring_info);
162 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
163
164 u32 frag_len;
165
166 /* wrap-around detected at the src */
167 if (destlen > ring_buffer_size - start_read_offset) {
168 frag_len = ring_buffer_size - start_read_offset;
169
170 memcpy(dest, ring_buffer + start_read_offset, frag_len);
171 memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
172 } else
173
174 memcpy(dest, ring_buffer + start_read_offset, destlen);
175
176
177 start_read_offset += destlen;
178 start_read_offset %= ring_buffer_size;
179
180 return start_read_offset;
181 }
182
183
184 /*
185 * Helper routine to copy from source to ring buffer.
186 * Assume there is enough room. Handles wrap-around in dest case only!!
187 */
188 static u32 hv_copyto_ringbuffer(
189 struct hv_ring_buffer_info *ring_info,
190 u32 start_write_offset,
191 void *src,
192 u32 srclen)
193 {
194 void *ring_buffer = hv_get_ring_buffer(ring_info);
195 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
196 u32 frag_len;
197
198 /* wrap-around detected! */
199 if (srclen > ring_buffer_size - start_write_offset) {
200 frag_len = ring_buffer_size - start_write_offset;
201 memcpy(ring_buffer + start_write_offset, src, frag_len);
202 memcpy(ring_buffer, src + frag_len, srclen - frag_len);
203 } else
204 memcpy(ring_buffer + start_write_offset, src, srclen);
205
206 start_write_offset += srclen;
207 start_write_offset %= ring_buffer_size;
208
209 return start_write_offset;
210 }
211
212 /* Get various debug metrics for the specified ring buffer. */
213 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
214 struct hv_ring_buffer_debug_info *debug_info)
215 {
216 u32 bytes_avail_towrite;
217 u32 bytes_avail_toread;
218
219 if (ring_info->ring_buffer) {
220 hv_get_ringbuffer_availbytes(ring_info,
221 &bytes_avail_toread,
222 &bytes_avail_towrite);
223
224 debug_info->bytes_avail_toread = bytes_avail_toread;
225 debug_info->bytes_avail_towrite = bytes_avail_towrite;
226 debug_info->current_read_index =
227 ring_info->ring_buffer->read_index;
228 debug_info->current_write_index =
229 ring_info->ring_buffer->write_index;
230 debug_info->current_interrupt_mask =
231 ring_info->ring_buffer->interrupt_mask;
232 }
233 }
234
235 /* Initialize the ring buffer. */
236 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
237 void *buffer, u32 buflen)
238 {
239 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
240 return -EINVAL;
241
242 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
243
244 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
245 ring_info->ring_buffer->read_index =
246 ring_info->ring_buffer->write_index = 0;
247
248 /* Set the feature bit for enabling flow control. */
249 ring_info->ring_buffer->feature_bits.value = 1;
250
251 ring_info->ring_size = buflen;
252 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
253
254 spin_lock_init(&ring_info->ring_lock);
255
256 return 0;
257 }
258
259 /* Cleanup the ring buffer. */
260 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
261 {
262 }
263
264 /* Write to the ring buffer. */
265 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
266 struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
267 {
268 int i = 0;
269 u32 bytes_avail_towrite;
270 u32 totalbytes_towrite = 0;
271
272 u32 next_write_location;
273 u32 old_write;
274 u64 prev_indices = 0;
275 unsigned long flags = 0;
276
277 for (i = 0; i < kv_count; i++)
278 totalbytes_towrite += kv_list[i].iov_len;
279
280 totalbytes_towrite += sizeof(u64);
281
282 if (lock)
283 spin_lock_irqsave(&outring_info->ring_lock, flags);
284
285 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
286
287 /*
288 * If there is only room for the packet, assume it is full.
289 * Otherwise, the next time around, we think the ring buffer
290 * is empty since the read index == write index.
291 */
292 if (bytes_avail_towrite <= totalbytes_towrite) {
293 if (lock)
294 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
295 return -EAGAIN;
296 }
297
298 /* Write to the ring buffer */
299 next_write_location = hv_get_next_write_location(outring_info);
300
301 old_write = next_write_location;
302
303 for (i = 0; i < kv_count; i++) {
304 next_write_location = hv_copyto_ringbuffer(outring_info,
305 next_write_location,
306 kv_list[i].iov_base,
307 kv_list[i].iov_len);
308 }
309
310 /* Set previous packet start */
311 prev_indices = hv_get_ring_bufferindices(outring_info);
312
313 next_write_location = hv_copyto_ringbuffer(outring_info,
314 next_write_location,
315 &prev_indices,
316 sizeof(u64));
317
318 /* Issue a full memory barrier before updating the write index */
319 virt_mb();
320
321 /* Now, update the write location */
322 hv_set_next_write_location(outring_info, next_write_location);
323
324
325 if (lock)
326 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
327
328 *signal = hv_need_to_signal(old_write, outring_info);
329 return 0;
330 }
331
332 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
333 void *buffer, u32 buflen, u32 *buffer_actual_len,
334 u64 *requestid, bool *signal, bool raw)
335 {
336 u32 bytes_avail_toread;
337 u32 next_read_location = 0;
338 u64 prev_indices = 0;
339 struct vmpacket_descriptor desc;
340 u32 offset;
341 u32 packetlen;
342 int ret = 0;
343
344 if (buflen <= 0)
345 return -EINVAL;
346
347
348 *buffer_actual_len = 0;
349 *requestid = 0;
350
351 bytes_avail_toread = hv_get_bytes_to_read(inring_info);
352 /* Make sure there is something to read */
353 if (bytes_avail_toread < sizeof(desc)) {
354 /*
355 * No error is set when there is even no header, drivers are
356 * supposed to analyze buffer_actual_len.
357 */
358 return ret;
359 }
360
361 next_read_location = hv_get_next_read_location(inring_info);
362 next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
363 sizeof(desc),
364 next_read_location);
365
366 offset = raw ? 0 : (desc.offset8 << 3);
367 packetlen = (desc.len8 << 3) - offset;
368 *buffer_actual_len = packetlen;
369 *requestid = desc.trans_id;
370
371 if (bytes_avail_toread < packetlen + offset)
372 return -EAGAIN;
373
374 if (packetlen > buflen)
375 return -ENOBUFS;
376
377 next_read_location =
378 hv_get_next_readlocation_withoffset(inring_info, offset);
379
380 next_read_location = hv_copyfrom_ringbuffer(inring_info,
381 buffer,
382 packetlen,
383 next_read_location);
384
385 next_read_location = hv_copyfrom_ringbuffer(inring_info,
386 &prev_indices,
387 sizeof(u64),
388 next_read_location);
389
390 /*
391 * Make sure all reads are done before we update the read index since
392 * the writer may start writing to the read area once the read index
393 * is updated.
394 */
395 virt_mb();
396
397 /* Update the read index */
398 hv_set_next_read_location(inring_info, next_read_location);
399
400 *signal = hv_need_to_signal_on_read(inring_info);
401
402 return ret;
403 }