]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hv/vmbus_drv.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49 struct list_head node;
50 struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57
58 static void hyperv_report_panic(struct pt_regs *regs)
59 {
60 static bool panic_reported;
61
62 /*
63 * We prefer to report panic on 'die' chain as we have proper
64 * registers to report, but if we miss it (e.g. on BUG()) we need
65 * to report it on 'panic'.
66 */
67 if (panic_reported)
68 return;
69 panic_reported = true;
70
71 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
72 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
73 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
74 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
75 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
76
77 /*
78 * Let Hyper-V know there is crash data available
79 */
80 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
81 }
82
83 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
84 void *args)
85 {
86 struct pt_regs *regs;
87
88 regs = current_pt_regs();
89
90 hyperv_report_panic(regs);
91 return NOTIFY_DONE;
92 }
93
94 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
95 void *args)
96 {
97 struct die_args *die = (struct die_args *)args;
98 struct pt_regs *regs = die->regs;
99
100 hyperv_report_panic(regs);
101 return NOTIFY_DONE;
102 }
103
104 static struct notifier_block hyperv_die_block = {
105 .notifier_call = hyperv_die_event,
106 };
107 static struct notifier_block hyperv_panic_block = {
108 .notifier_call = hyperv_panic_event,
109 };
110
111 static const char *fb_mmio_name = "fb_range";
112 static struct resource *fb_mmio;
113 static struct resource *hyperv_mmio;
114 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
115
116 static int vmbus_exists(void)
117 {
118 if (hv_acpi_dev == NULL)
119 return -ENODEV;
120
121 return 0;
122 }
123
124 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
125 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
126 {
127 int i;
128 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
129 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
130 }
131
132 static u8 channel_monitor_group(struct vmbus_channel *channel)
133 {
134 return (u8)channel->offermsg.monitorid / 32;
135 }
136
137 static u8 channel_monitor_offset(struct vmbus_channel *channel)
138 {
139 return (u8)channel->offermsg.monitorid % 32;
140 }
141
142 static u32 channel_pending(struct vmbus_channel *channel,
143 struct hv_monitor_page *monitor_page)
144 {
145 u8 monitor_group = channel_monitor_group(channel);
146 return monitor_page->trigger_group[monitor_group].pending;
147 }
148
149 static u32 channel_latency(struct vmbus_channel *channel,
150 struct hv_monitor_page *monitor_page)
151 {
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
154 return monitor_page->latency[monitor_group][monitor_offset];
155 }
156
157 static u32 channel_conn_id(struct vmbus_channel *channel,
158 struct hv_monitor_page *monitor_page)
159 {
160 u8 monitor_group = channel_monitor_group(channel);
161 u8 monitor_offset = channel_monitor_offset(channel);
162 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
163 }
164
165 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
166 char *buf)
167 {
168 struct hv_device *hv_dev = device_to_hv_device(dev);
169
170 if (!hv_dev->channel)
171 return -ENODEV;
172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
173 }
174 static DEVICE_ATTR_RO(id);
175
176 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
177 char *buf)
178 {
179 struct hv_device *hv_dev = device_to_hv_device(dev);
180
181 if (!hv_dev->channel)
182 return -ENODEV;
183 return sprintf(buf, "%d\n", hv_dev->channel->state);
184 }
185 static DEVICE_ATTR_RO(state);
186
187 static ssize_t monitor_id_show(struct device *dev,
188 struct device_attribute *dev_attr, char *buf)
189 {
190 struct hv_device *hv_dev = device_to_hv_device(dev);
191
192 if (!hv_dev->channel)
193 return -ENODEV;
194 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
195 }
196 static DEVICE_ATTR_RO(monitor_id);
197
198 static ssize_t class_id_show(struct device *dev,
199 struct device_attribute *dev_attr, char *buf)
200 {
201 struct hv_device *hv_dev = device_to_hv_device(dev);
202
203 if (!hv_dev->channel)
204 return -ENODEV;
205 return sprintf(buf, "{%pUl}\n",
206 hv_dev->channel->offermsg.offer.if_type.b);
207 }
208 static DEVICE_ATTR_RO(class_id);
209
210 static ssize_t device_id_show(struct device *dev,
211 struct device_attribute *dev_attr, char *buf)
212 {
213 struct hv_device *hv_dev = device_to_hv_device(dev);
214
215 if (!hv_dev->channel)
216 return -ENODEV;
217 return sprintf(buf, "{%pUl}\n",
218 hv_dev->channel->offermsg.offer.if_instance.b);
219 }
220 static DEVICE_ATTR_RO(device_id);
221
222 static ssize_t modalias_show(struct device *dev,
223 struct device_attribute *dev_attr, char *buf)
224 {
225 struct hv_device *hv_dev = device_to_hv_device(dev);
226 char alias_name[VMBUS_ALIAS_LEN + 1];
227
228 print_alias_name(hv_dev, alias_name);
229 return sprintf(buf, "vmbus:%s\n", alias_name);
230 }
231 static DEVICE_ATTR_RO(modalias);
232
233 static ssize_t server_monitor_pending_show(struct device *dev,
234 struct device_attribute *dev_attr,
235 char *buf)
236 {
237 struct hv_device *hv_dev = device_to_hv_device(dev);
238
239 if (!hv_dev->channel)
240 return -ENODEV;
241 return sprintf(buf, "%d\n",
242 channel_pending(hv_dev->channel,
243 vmbus_connection.monitor_pages[1]));
244 }
245 static DEVICE_ATTR_RO(server_monitor_pending);
246
247 static ssize_t client_monitor_pending_show(struct device *dev,
248 struct device_attribute *dev_attr,
249 char *buf)
250 {
251 struct hv_device *hv_dev = device_to_hv_device(dev);
252
253 if (!hv_dev->channel)
254 return -ENODEV;
255 return sprintf(buf, "%d\n",
256 channel_pending(hv_dev->channel,
257 vmbus_connection.monitor_pages[1]));
258 }
259 static DEVICE_ATTR_RO(client_monitor_pending);
260
261 static ssize_t server_monitor_latency_show(struct device *dev,
262 struct device_attribute *dev_attr,
263 char *buf)
264 {
265 struct hv_device *hv_dev = device_to_hv_device(dev);
266
267 if (!hv_dev->channel)
268 return -ENODEV;
269 return sprintf(buf, "%d\n",
270 channel_latency(hv_dev->channel,
271 vmbus_connection.monitor_pages[0]));
272 }
273 static DEVICE_ATTR_RO(server_monitor_latency);
274
275 static ssize_t client_monitor_latency_show(struct device *dev,
276 struct device_attribute *dev_attr,
277 char *buf)
278 {
279 struct hv_device *hv_dev = device_to_hv_device(dev);
280
281 if (!hv_dev->channel)
282 return -ENODEV;
283 return sprintf(buf, "%d\n",
284 channel_latency(hv_dev->channel,
285 vmbus_connection.monitor_pages[1]));
286 }
287 static DEVICE_ATTR_RO(client_monitor_latency);
288
289 static ssize_t server_monitor_conn_id_show(struct device *dev,
290 struct device_attribute *dev_attr,
291 char *buf)
292 {
293 struct hv_device *hv_dev = device_to_hv_device(dev);
294
295 if (!hv_dev->channel)
296 return -ENODEV;
297 return sprintf(buf, "%d\n",
298 channel_conn_id(hv_dev->channel,
299 vmbus_connection.monitor_pages[0]));
300 }
301 static DEVICE_ATTR_RO(server_monitor_conn_id);
302
303 static ssize_t client_monitor_conn_id_show(struct device *dev,
304 struct device_attribute *dev_attr,
305 char *buf)
306 {
307 struct hv_device *hv_dev = device_to_hv_device(dev);
308
309 if (!hv_dev->channel)
310 return -ENODEV;
311 return sprintf(buf, "%d\n",
312 channel_conn_id(hv_dev->channel,
313 vmbus_connection.monitor_pages[1]));
314 }
315 static DEVICE_ATTR_RO(client_monitor_conn_id);
316
317 static ssize_t out_intr_mask_show(struct device *dev,
318 struct device_attribute *dev_attr, char *buf)
319 {
320 struct hv_device *hv_dev = device_to_hv_device(dev);
321 struct hv_ring_buffer_debug_info outbound;
322
323 if (!hv_dev->channel)
324 return -ENODEV;
325 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
326 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329
330 static ssize_t out_read_index_show(struct device *dev,
331 struct device_attribute *dev_attr, char *buf)
332 {
333 struct hv_device *hv_dev = device_to_hv_device(dev);
334 struct hv_ring_buffer_debug_info outbound;
335
336 if (!hv_dev->channel)
337 return -ENODEV;
338 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
339 return sprintf(buf, "%d\n", outbound.current_read_index);
340 }
341 static DEVICE_ATTR_RO(out_read_index);
342
343 static ssize_t out_write_index_show(struct device *dev,
344 struct device_attribute *dev_attr,
345 char *buf)
346 {
347 struct hv_device *hv_dev = device_to_hv_device(dev);
348 struct hv_ring_buffer_debug_info outbound;
349
350 if (!hv_dev->channel)
351 return -ENODEV;
352 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
353 return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358 struct device_attribute *dev_attr,
359 char *buf)
360 {
361 struct hv_device *hv_dev = device_to_hv_device(dev);
362 struct hv_ring_buffer_debug_info outbound;
363
364 if (!hv_dev->channel)
365 return -ENODEV;
366 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
367 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
368 }
369 static DEVICE_ATTR_RO(out_read_bytes_avail);
370
371 static ssize_t out_write_bytes_avail_show(struct device *dev,
372 struct device_attribute *dev_attr,
373 char *buf)
374 {
375 struct hv_device *hv_dev = device_to_hv_device(dev);
376 struct hv_ring_buffer_debug_info outbound;
377
378 if (!hv_dev->channel)
379 return -ENODEV;
380 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
381 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
382 }
383 static DEVICE_ATTR_RO(out_write_bytes_avail);
384
385 static ssize_t in_intr_mask_show(struct device *dev,
386 struct device_attribute *dev_attr, char *buf)
387 {
388 struct hv_device *hv_dev = device_to_hv_device(dev);
389 struct hv_ring_buffer_debug_info inbound;
390
391 if (!hv_dev->channel)
392 return -ENODEV;
393 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
394 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
395 }
396 static DEVICE_ATTR_RO(in_intr_mask);
397
398 static ssize_t in_read_index_show(struct device *dev,
399 struct device_attribute *dev_attr, char *buf)
400 {
401 struct hv_device *hv_dev = device_to_hv_device(dev);
402 struct hv_ring_buffer_debug_info inbound;
403
404 if (!hv_dev->channel)
405 return -ENODEV;
406 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
407 return sprintf(buf, "%d\n", inbound.current_read_index);
408 }
409 static DEVICE_ATTR_RO(in_read_index);
410
411 static ssize_t in_write_index_show(struct device *dev,
412 struct device_attribute *dev_attr, char *buf)
413 {
414 struct hv_device *hv_dev = device_to_hv_device(dev);
415 struct hv_ring_buffer_debug_info inbound;
416
417 if (!hv_dev->channel)
418 return -ENODEV;
419 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
420 return sprintf(buf, "%d\n", inbound.current_write_index);
421 }
422 static DEVICE_ATTR_RO(in_write_index);
423
424 static ssize_t in_read_bytes_avail_show(struct device *dev,
425 struct device_attribute *dev_attr,
426 char *buf)
427 {
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
430
431 if (!hv_dev->channel)
432 return -ENODEV;
433 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
435 }
436 static DEVICE_ATTR_RO(in_read_bytes_avail);
437
438 static ssize_t in_write_bytes_avail_show(struct device *dev,
439 struct device_attribute *dev_attr,
440 char *buf)
441 {
442 struct hv_device *hv_dev = device_to_hv_device(dev);
443 struct hv_ring_buffer_debug_info inbound;
444
445 if (!hv_dev->channel)
446 return -ENODEV;
447 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
448 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
449 }
450 static DEVICE_ATTR_RO(in_write_bytes_avail);
451
452 static ssize_t channel_vp_mapping_show(struct device *dev,
453 struct device_attribute *dev_attr,
454 char *buf)
455 {
456 struct hv_device *hv_dev = device_to_hv_device(dev);
457 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
458 unsigned long flags;
459 int buf_size = PAGE_SIZE, n_written, tot_written;
460 struct list_head *cur;
461
462 if (!channel)
463 return -ENODEV;
464
465 tot_written = snprintf(buf, buf_size, "%u:%u\n",
466 channel->offermsg.child_relid, channel->target_cpu);
467
468 spin_lock_irqsave(&channel->lock, flags);
469
470 list_for_each(cur, &channel->sc_list) {
471 if (tot_written >= buf_size - 1)
472 break;
473
474 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
475 n_written = scnprintf(buf + tot_written,
476 buf_size - tot_written,
477 "%u:%u\n",
478 cur_sc->offermsg.child_relid,
479 cur_sc->target_cpu);
480 tot_written += n_written;
481 }
482
483 spin_unlock_irqrestore(&channel->lock, flags);
484
485 return tot_written;
486 }
487 static DEVICE_ATTR_RO(channel_vp_mapping);
488
489 static ssize_t vendor_show(struct device *dev,
490 struct device_attribute *dev_attr,
491 char *buf)
492 {
493 struct hv_device *hv_dev = device_to_hv_device(dev);
494 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
495 }
496 static DEVICE_ATTR_RO(vendor);
497
498 static ssize_t device_show(struct device *dev,
499 struct device_attribute *dev_attr,
500 char *buf)
501 {
502 struct hv_device *hv_dev = device_to_hv_device(dev);
503 return sprintf(buf, "0x%x\n", hv_dev->device_id);
504 }
505 static DEVICE_ATTR_RO(device);
506
507 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
508 static struct attribute *vmbus_dev_attrs[] = {
509 &dev_attr_id.attr,
510 &dev_attr_state.attr,
511 &dev_attr_monitor_id.attr,
512 &dev_attr_class_id.attr,
513 &dev_attr_device_id.attr,
514 &dev_attr_modalias.attr,
515 &dev_attr_server_monitor_pending.attr,
516 &dev_attr_client_monitor_pending.attr,
517 &dev_attr_server_monitor_latency.attr,
518 &dev_attr_client_monitor_latency.attr,
519 &dev_attr_server_monitor_conn_id.attr,
520 &dev_attr_client_monitor_conn_id.attr,
521 &dev_attr_out_intr_mask.attr,
522 &dev_attr_out_read_index.attr,
523 &dev_attr_out_write_index.attr,
524 &dev_attr_out_read_bytes_avail.attr,
525 &dev_attr_out_write_bytes_avail.attr,
526 &dev_attr_in_intr_mask.attr,
527 &dev_attr_in_read_index.attr,
528 &dev_attr_in_write_index.attr,
529 &dev_attr_in_read_bytes_avail.attr,
530 &dev_attr_in_write_bytes_avail.attr,
531 &dev_attr_channel_vp_mapping.attr,
532 &dev_attr_vendor.attr,
533 &dev_attr_device.attr,
534 NULL,
535 };
536 ATTRIBUTE_GROUPS(vmbus_dev);
537
538 /*
539 * vmbus_uevent - add uevent for our device
540 *
541 * This routine is invoked when a device is added or removed on the vmbus to
542 * generate a uevent to udev in the userspace. The udev will then look at its
543 * rule and the uevent generated here to load the appropriate driver
544 *
545 * The alias string will be of the form vmbus:guid where guid is the string
546 * representation of the device guid (each byte of the guid will be
547 * represented with two hex characters.
548 */
549 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
550 {
551 struct hv_device *dev = device_to_hv_device(device);
552 int ret;
553 char alias_name[VMBUS_ALIAS_LEN + 1];
554
555 print_alias_name(dev, alias_name);
556 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
557 return ret;
558 }
559
560 static const uuid_le null_guid;
561
562 static inline bool is_null_guid(const uuid_le *guid)
563 {
564 if (uuid_le_cmp(*guid, null_guid))
565 return false;
566 return true;
567 }
568
569 /*
570 * Return a matching hv_vmbus_device_id pointer.
571 * If there is no match, return NULL.
572 */
573 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
574 const uuid_le *guid)
575 {
576 const struct hv_vmbus_device_id *id = NULL;
577 struct vmbus_dynid *dynid;
578
579 /* Look at the dynamic ids first, before the static ones */
580 spin_lock(&drv->dynids.lock);
581 list_for_each_entry(dynid, &drv->dynids.list, node) {
582 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
583 id = &dynid->id;
584 break;
585 }
586 }
587 spin_unlock(&drv->dynids.lock);
588
589 if (id)
590 return id;
591
592 id = drv->id_table;
593 if (id == NULL)
594 return NULL; /* empty device table */
595
596 for (; !is_null_guid(&id->guid); id++)
597 if (!uuid_le_cmp(id->guid, *guid))
598 return id;
599
600 return NULL;
601 }
602
603 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
604 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
605 {
606 struct vmbus_dynid *dynid;
607
608 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
609 if (!dynid)
610 return -ENOMEM;
611
612 dynid->id.guid = *guid;
613
614 spin_lock(&drv->dynids.lock);
615 list_add_tail(&dynid->node, &drv->dynids.list);
616 spin_unlock(&drv->dynids.lock);
617
618 return driver_attach(&drv->driver);
619 }
620
621 static void vmbus_free_dynids(struct hv_driver *drv)
622 {
623 struct vmbus_dynid *dynid, *n;
624
625 spin_lock(&drv->dynids.lock);
626 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
627 list_del(&dynid->node);
628 kfree(dynid);
629 }
630 spin_unlock(&drv->dynids.lock);
631 }
632
633 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
634 static int get_uuid_le(const char *str, uuid_le *uu)
635 {
636 unsigned int b[16];
637 int i;
638
639 if (strlen(str) < 37)
640 return -1;
641
642 for (i = 0; i < 36; i++) {
643 switch (i) {
644 case 8: case 13: case 18: case 23:
645 if (str[i] != '-')
646 return -1;
647 break;
648 default:
649 if (!isxdigit(str[i]))
650 return -1;
651 }
652 }
653
654 /* unparse little endian output byte order */
655 if (sscanf(str,
656 "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
657 &b[3], &b[2], &b[1], &b[0],
658 &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
659 &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
660 return -1;
661
662 for (i = 0; i < 16; i++)
663 uu->b[i] = b[i];
664 return 0;
665 }
666
667 /*
668 * store_new_id - sysfs frontend to vmbus_add_dynid()
669 *
670 * Allow GUIDs to be added to an existing driver via sysfs.
671 */
672 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
673 size_t count)
674 {
675 struct hv_driver *drv = drv_to_hv_drv(driver);
676 uuid_le guid = NULL_UUID_LE;
677 ssize_t retval;
678
679 if (get_uuid_le(buf, &guid) != 0)
680 return -EINVAL;
681
682 if (hv_vmbus_get_id(drv, &guid))
683 return -EEXIST;
684
685 retval = vmbus_add_dynid(drv, &guid);
686 if (retval)
687 return retval;
688 return count;
689 }
690 static DRIVER_ATTR_WO(new_id);
691
692 /*
693 * store_remove_id - remove a PCI device ID from this driver
694 *
695 * Removes a dynamic pci device ID to this driver.
696 */
697 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
698 size_t count)
699 {
700 struct hv_driver *drv = drv_to_hv_drv(driver);
701 struct vmbus_dynid *dynid, *n;
702 uuid_le guid = NULL_UUID_LE;
703 size_t retval = -ENODEV;
704
705 if (get_uuid_le(buf, &guid))
706 return -EINVAL;
707
708 spin_lock(&drv->dynids.lock);
709 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
710 struct hv_vmbus_device_id *id = &dynid->id;
711
712 if (!uuid_le_cmp(id->guid, guid)) {
713 list_del(&dynid->node);
714 kfree(dynid);
715 retval = count;
716 break;
717 }
718 }
719 spin_unlock(&drv->dynids.lock);
720
721 return retval;
722 }
723 static DRIVER_ATTR_WO(remove_id);
724
725 static struct attribute *vmbus_drv_attrs[] = {
726 &driver_attr_new_id.attr,
727 &driver_attr_remove_id.attr,
728 NULL,
729 };
730 ATTRIBUTE_GROUPS(vmbus_drv);
731
732
733 /*
734 * vmbus_match - Attempt to match the specified device to the specified driver
735 */
736 static int vmbus_match(struct device *device, struct device_driver *driver)
737 {
738 struct hv_driver *drv = drv_to_hv_drv(driver);
739 struct hv_device *hv_dev = device_to_hv_device(device);
740
741 /* The hv_sock driver handles all hv_sock offers. */
742 if (is_hvsock_channel(hv_dev->channel))
743 return drv->hvsock;
744
745 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
746 return 1;
747
748 return 0;
749 }
750
751 /*
752 * vmbus_probe - Add the new vmbus's child device
753 */
754 static int vmbus_probe(struct device *child_device)
755 {
756 int ret = 0;
757 struct hv_driver *drv =
758 drv_to_hv_drv(child_device->driver);
759 struct hv_device *dev = device_to_hv_device(child_device);
760 const struct hv_vmbus_device_id *dev_id;
761
762 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
763 if (drv->probe) {
764 ret = drv->probe(dev, dev_id);
765 if (ret != 0)
766 pr_err("probe failed for device %s (%d)\n",
767 dev_name(child_device), ret);
768
769 } else {
770 pr_err("probe not set for driver %s\n",
771 dev_name(child_device));
772 ret = -ENODEV;
773 }
774 return ret;
775 }
776
777 /*
778 * vmbus_remove - Remove a vmbus device
779 */
780 static int vmbus_remove(struct device *child_device)
781 {
782 struct hv_driver *drv;
783 struct hv_device *dev = device_to_hv_device(child_device);
784
785 if (child_device->driver) {
786 drv = drv_to_hv_drv(child_device->driver);
787 if (drv->remove)
788 drv->remove(dev);
789 }
790
791 return 0;
792 }
793
794
795 /*
796 * vmbus_shutdown - Shutdown a vmbus device
797 */
798 static void vmbus_shutdown(struct device *child_device)
799 {
800 struct hv_driver *drv;
801 struct hv_device *dev = device_to_hv_device(child_device);
802
803
804 /* The device may not be attached yet */
805 if (!child_device->driver)
806 return;
807
808 drv = drv_to_hv_drv(child_device->driver);
809
810 if (drv->shutdown)
811 drv->shutdown(dev);
812
813 return;
814 }
815
816
817 /*
818 * vmbus_device_release - Final callback release of the vmbus child device
819 */
820 static void vmbus_device_release(struct device *device)
821 {
822 struct hv_device *hv_dev = device_to_hv_device(device);
823 struct vmbus_channel *channel = hv_dev->channel;
824
825 hv_process_channel_removal(channel,
826 channel->offermsg.child_relid);
827 kfree(hv_dev);
828
829 }
830
831 /* The one and only one */
832 static struct bus_type hv_bus = {
833 .name = "vmbus",
834 .match = vmbus_match,
835 .shutdown = vmbus_shutdown,
836 .remove = vmbus_remove,
837 .probe = vmbus_probe,
838 .uevent = vmbus_uevent,
839 .dev_groups = vmbus_dev_groups,
840 .drv_groups = vmbus_drv_groups,
841 };
842
843 struct onmessage_work_context {
844 struct work_struct work;
845 struct hv_message msg;
846 };
847
848 static void vmbus_onmessage_work(struct work_struct *work)
849 {
850 struct onmessage_work_context *ctx;
851
852 /* Do not process messages if we're in DISCONNECTED state */
853 if (vmbus_connection.conn_state == DISCONNECTED)
854 return;
855
856 ctx = container_of(work, struct onmessage_work_context,
857 work);
858 vmbus_onmessage(&ctx->msg);
859 kfree(ctx);
860 }
861
862 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
863 {
864 struct clock_event_device *dev = hv_context.clk_evt[cpu];
865
866 if (dev->event_handler)
867 dev->event_handler(dev);
868
869 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
870 }
871
872 void vmbus_on_msg_dpc(unsigned long data)
873 {
874 int cpu = smp_processor_id();
875 void *page_addr = hv_context.synic_message_page[cpu];
876 struct hv_message *msg = (struct hv_message *)page_addr +
877 VMBUS_MESSAGE_SINT;
878 struct vmbus_channel_message_header *hdr;
879 struct vmbus_channel_message_table_entry *entry;
880 struct onmessage_work_context *ctx;
881 u32 message_type = msg->header.message_type;
882
883 if (message_type == HVMSG_NONE)
884 /* no msg */
885 return;
886
887 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
888
889 if (hdr->msgtype >= CHANNELMSG_COUNT) {
890 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
891 goto msg_handled;
892 }
893
894 entry = &channel_message_table[hdr->msgtype];
895 if (entry->handler_type == VMHT_BLOCKING) {
896 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
897 if (ctx == NULL)
898 return;
899
900 INIT_WORK(&ctx->work, vmbus_onmessage_work);
901 memcpy(&ctx->msg, msg, sizeof(*msg));
902
903 queue_work(vmbus_connection.work_queue, &ctx->work);
904 } else
905 entry->message_handler(hdr);
906
907 msg_handled:
908 vmbus_signal_eom(msg, message_type);
909 }
910
911 static void vmbus_isr(void)
912 {
913 int cpu = smp_processor_id();
914 void *page_addr;
915 struct hv_message *msg;
916 union hv_synic_event_flags *event;
917 bool handled = false;
918
919 page_addr = hv_context.synic_event_page[cpu];
920 if (page_addr == NULL)
921 return;
922
923 event = (union hv_synic_event_flags *)page_addr +
924 VMBUS_MESSAGE_SINT;
925 /*
926 * Check for events before checking for messages. This is the order
927 * in which events and messages are checked in Windows guests on
928 * Hyper-V, and the Windows team suggested we do the same.
929 */
930
931 if ((vmbus_proto_version == VERSION_WS2008) ||
932 (vmbus_proto_version == VERSION_WIN7)) {
933
934 /* Since we are a child, we only need to check bit 0 */
935 if (sync_test_and_clear_bit(0,
936 (unsigned long *) &event->flags32[0])) {
937 handled = true;
938 }
939 } else {
940 /*
941 * Our host is win8 or above. The signaling mechanism
942 * has changed and we can directly look at the event page.
943 * If bit n is set then we have an interrup on the channel
944 * whose id is n.
945 */
946 handled = true;
947 }
948
949 if (handled)
950 tasklet_schedule(hv_context.event_dpc[cpu]);
951
952
953 page_addr = hv_context.synic_message_page[cpu];
954 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
955
956 /* Check if there are actual msgs to be processed */
957 if (msg->header.message_type != HVMSG_NONE) {
958 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
959 hv_process_timer_expiration(msg, cpu);
960 else
961 tasklet_schedule(hv_context.msg_dpc[cpu]);
962 }
963
964 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
965 }
966
967
968 /*
969 * vmbus_bus_init -Main vmbus driver initialization routine.
970 *
971 * Here, we
972 * - initialize the vmbus driver context
973 * - invoke the vmbus hv main init routine
974 * - retrieve the channel offers
975 */
976 static int vmbus_bus_init(void)
977 {
978 int ret;
979
980 /* Hypervisor initialization...setup hypercall page..etc */
981 ret = hv_init();
982 if (ret != 0) {
983 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
984 return ret;
985 }
986
987 ret = bus_register(&hv_bus);
988 if (ret)
989 goto err_cleanup;
990
991 hv_setup_vmbus_irq(vmbus_isr);
992
993 ret = hv_synic_alloc();
994 if (ret)
995 goto err_alloc;
996 /*
997 * Initialize the per-cpu interrupt state and
998 * connect to the host.
999 */
1000 on_each_cpu(hv_synic_init, NULL, 1);
1001 ret = vmbus_connect();
1002 if (ret)
1003 goto err_connect;
1004
1005 if (vmbus_proto_version > VERSION_WIN7)
1006 cpu_hotplug_disable();
1007
1008 /*
1009 * Only register if the crash MSRs are available
1010 */
1011 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1012 register_die_notifier(&hyperv_die_block);
1013 atomic_notifier_chain_register(&panic_notifier_list,
1014 &hyperv_panic_block);
1015 }
1016
1017 vmbus_request_offers();
1018
1019 return 0;
1020
1021 err_connect:
1022 on_each_cpu(hv_synic_cleanup, NULL, 1);
1023 err_alloc:
1024 hv_synic_free();
1025 hv_remove_vmbus_irq();
1026
1027 bus_unregister(&hv_bus);
1028
1029 err_cleanup:
1030 hv_cleanup(false);
1031
1032 return ret;
1033 }
1034
1035 /**
1036 * __vmbus_child_driver_register() - Register a vmbus's driver
1037 * @hv_driver: Pointer to driver structure you want to register
1038 * @owner: owner module of the drv
1039 * @mod_name: module name string
1040 *
1041 * Registers the given driver with Linux through the 'driver_register()' call
1042 * and sets up the hyper-v vmbus handling for this driver.
1043 * It will return the state of the 'driver_register()' call.
1044 *
1045 */
1046 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1047 {
1048 int ret;
1049
1050 pr_info("registering driver %s\n", hv_driver->name);
1051
1052 ret = vmbus_exists();
1053 if (ret < 0)
1054 return ret;
1055
1056 hv_driver->driver.name = hv_driver->name;
1057 hv_driver->driver.owner = owner;
1058 hv_driver->driver.mod_name = mod_name;
1059 hv_driver->driver.bus = &hv_bus;
1060
1061 spin_lock_init(&hv_driver->dynids.lock);
1062 INIT_LIST_HEAD(&hv_driver->dynids.list);
1063
1064 ret = driver_register(&hv_driver->driver);
1065
1066 return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1069
1070 /**
1071 * vmbus_driver_unregister() - Unregister a vmbus's driver
1072 * @hv_driver: Pointer to driver structure you want to
1073 * un-register
1074 *
1075 * Un-register the given driver that was previous registered with a call to
1076 * vmbus_driver_register()
1077 */
1078 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1079 {
1080 pr_info("unregistering driver %s\n", hv_driver->name);
1081
1082 if (!vmbus_exists()) {
1083 driver_unregister(&hv_driver->driver);
1084 vmbus_free_dynids(hv_driver);
1085 }
1086 }
1087 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1088
1089 /*
1090 * vmbus_device_create - Creates and registers a new child device
1091 * on the vmbus.
1092 */
1093 struct hv_device *vmbus_device_create(const uuid_le *type,
1094 const uuid_le *instance,
1095 struct vmbus_channel *channel)
1096 {
1097 struct hv_device *child_device_obj;
1098
1099 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1100 if (!child_device_obj) {
1101 pr_err("Unable to allocate device object for child device\n");
1102 return NULL;
1103 }
1104
1105 child_device_obj->channel = channel;
1106 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1107 memcpy(&child_device_obj->dev_instance, instance,
1108 sizeof(uuid_le));
1109 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1110
1111
1112 return child_device_obj;
1113 }
1114
1115 /*
1116 * vmbus_device_register - Register the child device
1117 */
1118 int vmbus_device_register(struct hv_device *child_device_obj)
1119 {
1120 int ret = 0;
1121
1122 dev_set_name(&child_device_obj->device, "%pUl",
1123 child_device_obj->channel->offermsg.offer.if_instance.b);
1124
1125 child_device_obj->device.bus = &hv_bus;
1126 child_device_obj->device.parent = &hv_acpi_dev->dev;
1127 child_device_obj->device.release = vmbus_device_release;
1128
1129 /*
1130 * Register with the LDM. This will kick off the driver/device
1131 * binding...which will eventually call vmbus_match() and vmbus_probe()
1132 */
1133 ret = device_register(&child_device_obj->device);
1134
1135 if (ret)
1136 pr_err("Unable to register child device\n");
1137 else
1138 pr_debug("child device %s registered\n",
1139 dev_name(&child_device_obj->device));
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * vmbus_device_unregister - Remove the specified child device
1146 * from the vmbus.
1147 */
1148 void vmbus_device_unregister(struct hv_device *device_obj)
1149 {
1150 pr_debug("child device %s unregistered\n",
1151 dev_name(&device_obj->device));
1152
1153 /*
1154 * Kick off the process of unregistering the device.
1155 * This will call vmbus_remove() and eventually vmbus_device_release()
1156 */
1157 device_unregister(&device_obj->device);
1158 }
1159
1160
1161 /*
1162 * VMBUS is an acpi enumerated device. Get the information we
1163 * need from DSDT.
1164 */
1165 #define VTPM_BASE_ADDRESS 0xfed40000
1166 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1167 {
1168 resource_size_t start = 0;
1169 resource_size_t end = 0;
1170 struct resource *new_res;
1171 struct resource **old_res = &hyperv_mmio;
1172 struct resource **prev_res = NULL;
1173
1174 switch (res->type) {
1175
1176 /*
1177 * "Address" descriptors are for bus windows. Ignore
1178 * "memory" descriptors, which are for registers on
1179 * devices.
1180 */
1181 case ACPI_RESOURCE_TYPE_ADDRESS32:
1182 start = res->data.address32.address.minimum;
1183 end = res->data.address32.address.maximum;
1184 break;
1185
1186 case ACPI_RESOURCE_TYPE_ADDRESS64:
1187 start = res->data.address64.address.minimum;
1188 end = res->data.address64.address.maximum;
1189 break;
1190
1191 default:
1192 /* Unused resource type */
1193 return AE_OK;
1194
1195 }
1196 /*
1197 * Ignore ranges that are below 1MB, as they're not
1198 * necessary or useful here.
1199 */
1200 if (end < 0x100000)
1201 return AE_OK;
1202
1203 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1204 if (!new_res)
1205 return AE_NO_MEMORY;
1206
1207 /* If this range overlaps the virtual TPM, truncate it. */
1208 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1209 end = VTPM_BASE_ADDRESS;
1210
1211 new_res->name = "hyperv mmio";
1212 new_res->flags = IORESOURCE_MEM;
1213 new_res->start = start;
1214 new_res->end = end;
1215
1216 /*
1217 * If two ranges are adjacent, merge them.
1218 */
1219 do {
1220 if (!*old_res) {
1221 *old_res = new_res;
1222 break;
1223 }
1224
1225 if (((*old_res)->end + 1) == new_res->start) {
1226 (*old_res)->end = new_res->end;
1227 kfree(new_res);
1228 break;
1229 }
1230
1231 if ((*old_res)->start == new_res->end + 1) {
1232 (*old_res)->start = new_res->start;
1233 kfree(new_res);
1234 break;
1235 }
1236
1237 if ((*old_res)->start > new_res->end) {
1238 new_res->sibling = *old_res;
1239 if (prev_res)
1240 (*prev_res)->sibling = new_res;
1241 *old_res = new_res;
1242 break;
1243 }
1244
1245 prev_res = old_res;
1246 old_res = &(*old_res)->sibling;
1247
1248 } while (1);
1249
1250 return AE_OK;
1251 }
1252
1253 static int vmbus_acpi_remove(struct acpi_device *device)
1254 {
1255 struct resource *cur_res;
1256 struct resource *next_res;
1257
1258 if (hyperv_mmio) {
1259 if (fb_mmio) {
1260 __release_region(hyperv_mmio, fb_mmio->start,
1261 resource_size(fb_mmio));
1262 fb_mmio = NULL;
1263 }
1264
1265 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1266 next_res = cur_res->sibling;
1267 kfree(cur_res);
1268 }
1269 }
1270
1271 return 0;
1272 }
1273
1274 static void vmbus_reserve_fb(void)
1275 {
1276 int size;
1277 /*
1278 * Make a claim for the frame buffer in the resource tree under the
1279 * first node, which will be the one below 4GB. The length seems to
1280 * be underreported, particularly in a Generation 1 VM. So start out
1281 * reserving a larger area and make it smaller until it succeeds.
1282 */
1283
1284 if (screen_info.lfb_base) {
1285 if (efi_enabled(EFI_BOOT))
1286 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1287 else
1288 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1289
1290 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1291 fb_mmio = __request_region(hyperv_mmio,
1292 screen_info.lfb_base, size,
1293 fb_mmio_name, 0);
1294 }
1295 }
1296 }
1297
1298 /**
1299 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1300 * @new: If successful, supplied a pointer to the
1301 * allocated MMIO space.
1302 * @device_obj: Identifies the caller
1303 * @min: Minimum guest physical address of the
1304 * allocation
1305 * @max: Maximum guest physical address
1306 * @size: Size of the range to be allocated
1307 * @align: Alignment of the range to be allocated
1308 * @fb_overlap_ok: Whether this allocation can be allowed
1309 * to overlap the video frame buffer.
1310 *
1311 * This function walks the resources granted to VMBus by the
1312 * _CRS object in the ACPI namespace underneath the parent
1313 * "bridge" whether that's a root PCI bus in the Generation 1
1314 * case or a Module Device in the Generation 2 case. It then
1315 * attempts to allocate from the global MMIO pool in a way that
1316 * matches the constraints supplied in these parameters and by
1317 * that _CRS.
1318 *
1319 * Return: 0 on success, -errno on failure
1320 */
1321 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1322 resource_size_t min, resource_size_t max,
1323 resource_size_t size, resource_size_t align,
1324 bool fb_overlap_ok)
1325 {
1326 struct resource *iter, *shadow;
1327 resource_size_t range_min, range_max, start;
1328 const char *dev_n = dev_name(&device_obj->device);
1329 int retval;
1330
1331 retval = -ENXIO;
1332 down(&hyperv_mmio_lock);
1333
1334 /*
1335 * If overlaps with frame buffers are allowed, then first attempt to
1336 * make the allocation from within the reserved region. Because it
1337 * is already reserved, no shadow allocation is necessary.
1338 */
1339 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1340 !(max < fb_mmio->start)) {
1341
1342 range_min = fb_mmio->start;
1343 range_max = fb_mmio->end;
1344 start = (range_min + align - 1) & ~(align - 1);
1345 for (; start + size - 1 <= range_max; start += align) {
1346 *new = request_mem_region_exclusive(start, size, dev_n);
1347 if (*new) {
1348 retval = 0;
1349 goto exit;
1350 }
1351 }
1352 }
1353
1354 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1355 if ((iter->start >= max) || (iter->end <= min))
1356 continue;
1357
1358 range_min = iter->start;
1359 range_max = iter->end;
1360 start = (range_min + align - 1) & ~(align - 1);
1361 for (; start + size - 1 <= range_max; start += align) {
1362 shadow = __request_region(iter, start, size, NULL,
1363 IORESOURCE_BUSY);
1364 if (!shadow)
1365 continue;
1366
1367 *new = request_mem_region_exclusive(start, size, dev_n);
1368 if (*new) {
1369 shadow->name = (char *)*new;
1370 retval = 0;
1371 goto exit;
1372 }
1373
1374 __release_region(iter, start, size);
1375 }
1376 }
1377
1378 exit:
1379 up(&hyperv_mmio_lock);
1380 return retval;
1381 }
1382 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1383
1384 /**
1385 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1386 * @start: Base address of region to release.
1387 * @size: Size of the range to be allocated
1388 *
1389 * This function releases anything requested by
1390 * vmbus_mmio_allocate().
1391 */
1392 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1393 {
1394 struct resource *iter;
1395
1396 down(&hyperv_mmio_lock);
1397 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1398 if ((iter->start >= start + size) || (iter->end <= start))
1399 continue;
1400
1401 __release_region(iter, start, size);
1402 }
1403 release_mem_region(start, size);
1404 up(&hyperv_mmio_lock);
1405
1406 }
1407 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1408
1409 /**
1410 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1411 * @cpu_number: CPU number in Linux terms
1412 *
1413 * This function returns the mapping between the Linux processor
1414 * number and the hypervisor's virtual processor number, useful
1415 * in making hypercalls and such that talk about specific
1416 * processors.
1417 *
1418 * Return: Virtual processor number in Hyper-V terms
1419 */
1420 int vmbus_cpu_number_to_vp_number(int cpu_number)
1421 {
1422 return hv_context.vp_index[cpu_number];
1423 }
1424 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1425
1426 static int vmbus_acpi_add(struct acpi_device *device)
1427 {
1428 acpi_status result;
1429 int ret_val = -ENODEV;
1430 struct acpi_device *ancestor;
1431
1432 hv_acpi_dev = device;
1433
1434 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1435 vmbus_walk_resources, NULL);
1436
1437 if (ACPI_FAILURE(result))
1438 goto acpi_walk_err;
1439 /*
1440 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1441 * firmware) is the VMOD that has the mmio ranges. Get that.
1442 */
1443 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1444 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1445 vmbus_walk_resources, NULL);
1446
1447 if (ACPI_FAILURE(result))
1448 continue;
1449 if (hyperv_mmio) {
1450 vmbus_reserve_fb();
1451 break;
1452 }
1453 }
1454 ret_val = 0;
1455
1456 acpi_walk_err:
1457 complete(&probe_event);
1458 if (ret_val)
1459 vmbus_acpi_remove(device);
1460 return ret_val;
1461 }
1462
1463 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1464 {"VMBUS", 0},
1465 {"VMBus", 0},
1466 {"", 0},
1467 };
1468 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1469
1470 static struct acpi_driver vmbus_acpi_driver = {
1471 .name = "vmbus",
1472 .ids = vmbus_acpi_device_ids,
1473 .ops = {
1474 .add = vmbus_acpi_add,
1475 .remove = vmbus_acpi_remove,
1476 },
1477 };
1478
1479 static void hv_kexec_handler(void)
1480 {
1481 int cpu;
1482
1483 hv_synic_clockevents_cleanup();
1484 vmbus_initiate_unload(false);
1485 for_each_online_cpu(cpu)
1486 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1487 hv_cleanup(false);
1488 };
1489
1490 static void hv_crash_handler(struct pt_regs *regs)
1491 {
1492 vmbus_initiate_unload(true);
1493 /*
1494 * In crash handler we can't schedule synic cleanup for all CPUs,
1495 * doing the cleanup for current CPU only. This should be sufficient
1496 * for kdump.
1497 */
1498 hv_synic_cleanup(NULL);
1499 hv_cleanup(true);
1500 };
1501
1502 static int __init hv_acpi_init(void)
1503 {
1504 int ret, t;
1505
1506 if (x86_hyper != &x86_hyper_ms_hyperv)
1507 return -ENODEV;
1508
1509 init_completion(&probe_event);
1510
1511 /*
1512 * Get ACPI resources first.
1513 */
1514 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1515
1516 if (ret)
1517 return ret;
1518
1519 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1520 if (t == 0) {
1521 ret = -ETIMEDOUT;
1522 goto cleanup;
1523 }
1524
1525 ret = vmbus_bus_init();
1526 if (ret)
1527 goto cleanup;
1528
1529 hv_setup_kexec_handler(hv_kexec_handler);
1530 hv_setup_crash_handler(hv_crash_handler);
1531
1532 return 0;
1533
1534 cleanup:
1535 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1536 hv_acpi_dev = NULL;
1537 return ret;
1538 }
1539
1540 static void __exit vmbus_exit(void)
1541 {
1542 int cpu;
1543
1544 hv_remove_kexec_handler();
1545 hv_remove_crash_handler();
1546 vmbus_connection.conn_state = DISCONNECTED;
1547 hv_synic_clockevents_cleanup();
1548 vmbus_disconnect();
1549 hv_remove_vmbus_irq();
1550 for_each_online_cpu(cpu)
1551 tasklet_kill(hv_context.msg_dpc[cpu]);
1552 vmbus_free_channels();
1553 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1554 unregister_die_notifier(&hyperv_die_block);
1555 atomic_notifier_chain_unregister(&panic_notifier_list,
1556 &hyperv_panic_block);
1557 }
1558 bus_unregister(&hv_bus);
1559 hv_cleanup(false);
1560 for_each_online_cpu(cpu) {
1561 tasklet_kill(hv_context.event_dpc[cpu]);
1562 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1563 }
1564 hv_synic_free();
1565 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1566 if (vmbus_proto_version > VERSION_WIN7)
1567 cpu_hotplug_enable();
1568 }
1569
1570
1571 MODULE_LICENSE("GPL");
1572
1573 subsys_initcall(hv_acpi_init);
1574 module_exit(vmbus_exit);