]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hv/vmbus_drv.c
c01b689e39b17174e7d827d74096fafbdcf58176
[mirror_ubuntu-zesty-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device *hv_acpi_dev;
47
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50 static int irq;
51
52
53 static void hyperv_report_panic(struct pt_regs *regs)
54 {
55 static bool panic_reported;
56
57 /*
58 * We prefer to report panic on 'die' chain as we have proper
59 * registers to report, but if we miss it (e.g. on BUG()) we need
60 * to report it on 'panic'.
61 */
62 if (panic_reported)
63 return;
64 panic_reported = true;
65
66 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
67 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
68 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
69 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
70 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
71
72 /*
73 * Let Hyper-V know there is crash data available
74 */
75 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
76 }
77
78 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
79 void *args)
80 {
81 struct pt_regs *regs;
82
83 regs = current_pt_regs();
84
85 hyperv_report_panic(regs);
86 return NOTIFY_DONE;
87 }
88
89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
90 void *args)
91 {
92 struct die_args *die = (struct die_args *)args;
93 struct pt_regs *regs = die->regs;
94
95 hyperv_report_panic(regs);
96 return NOTIFY_DONE;
97 }
98
99 static struct notifier_block hyperv_die_block = {
100 .notifier_call = hyperv_die_event,
101 };
102 static struct notifier_block hyperv_panic_block = {
103 .notifier_call = hyperv_panic_event,
104 };
105
106 struct resource *hyperv_mmio;
107
108 static int vmbus_exists(void)
109 {
110 if (hv_acpi_dev == NULL)
111 return -ENODEV;
112
113 return 0;
114 }
115
116 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
117 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
118 {
119 int i;
120 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
121 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
122 }
123
124 static u8 channel_monitor_group(struct vmbus_channel *channel)
125 {
126 return (u8)channel->offermsg.monitorid / 32;
127 }
128
129 static u8 channel_monitor_offset(struct vmbus_channel *channel)
130 {
131 return (u8)channel->offermsg.monitorid % 32;
132 }
133
134 static u32 channel_pending(struct vmbus_channel *channel,
135 struct hv_monitor_page *monitor_page)
136 {
137 u8 monitor_group = channel_monitor_group(channel);
138 return monitor_page->trigger_group[monitor_group].pending;
139 }
140
141 static u32 channel_latency(struct vmbus_channel *channel,
142 struct hv_monitor_page *monitor_page)
143 {
144 u8 monitor_group = channel_monitor_group(channel);
145 u8 monitor_offset = channel_monitor_offset(channel);
146 return monitor_page->latency[monitor_group][monitor_offset];
147 }
148
149 static u32 channel_conn_id(struct vmbus_channel *channel,
150 struct hv_monitor_page *monitor_page)
151 {
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
154 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
155 }
156
157 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
158 char *buf)
159 {
160 struct hv_device *hv_dev = device_to_hv_device(dev);
161
162 if (!hv_dev->channel)
163 return -ENODEV;
164 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
165 }
166 static DEVICE_ATTR_RO(id);
167
168 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
169 char *buf)
170 {
171 struct hv_device *hv_dev = device_to_hv_device(dev);
172
173 if (!hv_dev->channel)
174 return -ENODEV;
175 return sprintf(buf, "%d\n", hv_dev->channel->state);
176 }
177 static DEVICE_ATTR_RO(state);
178
179 static ssize_t monitor_id_show(struct device *dev,
180 struct device_attribute *dev_attr, char *buf)
181 {
182 struct hv_device *hv_dev = device_to_hv_device(dev);
183
184 if (!hv_dev->channel)
185 return -ENODEV;
186 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
187 }
188 static DEVICE_ATTR_RO(monitor_id);
189
190 static ssize_t class_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
192 {
193 struct hv_device *hv_dev = device_to_hv_device(dev);
194
195 if (!hv_dev->channel)
196 return -ENODEV;
197 return sprintf(buf, "{%pUl}\n",
198 hv_dev->channel->offermsg.offer.if_type.b);
199 }
200 static DEVICE_ATTR_RO(class_id);
201
202 static ssize_t device_id_show(struct device *dev,
203 struct device_attribute *dev_attr, char *buf)
204 {
205 struct hv_device *hv_dev = device_to_hv_device(dev);
206
207 if (!hv_dev->channel)
208 return -ENODEV;
209 return sprintf(buf, "{%pUl}\n",
210 hv_dev->channel->offermsg.offer.if_instance.b);
211 }
212 static DEVICE_ATTR_RO(device_id);
213
214 static ssize_t modalias_show(struct device *dev,
215 struct device_attribute *dev_attr, char *buf)
216 {
217 struct hv_device *hv_dev = device_to_hv_device(dev);
218 char alias_name[VMBUS_ALIAS_LEN + 1];
219
220 print_alias_name(hv_dev, alias_name);
221 return sprintf(buf, "vmbus:%s\n", alias_name);
222 }
223 static DEVICE_ATTR_RO(modalias);
224
225 static ssize_t server_monitor_pending_show(struct device *dev,
226 struct device_attribute *dev_attr,
227 char *buf)
228 {
229 struct hv_device *hv_dev = device_to_hv_device(dev);
230
231 if (!hv_dev->channel)
232 return -ENODEV;
233 return sprintf(buf, "%d\n",
234 channel_pending(hv_dev->channel,
235 vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(server_monitor_pending);
238
239 static ssize_t client_monitor_pending_show(struct device *dev,
240 struct device_attribute *dev_attr,
241 char *buf)
242 {
243 struct hv_device *hv_dev = device_to_hv_device(dev);
244
245 if (!hv_dev->channel)
246 return -ENODEV;
247 return sprintf(buf, "%d\n",
248 channel_pending(hv_dev->channel,
249 vmbus_connection.monitor_pages[1]));
250 }
251 static DEVICE_ATTR_RO(client_monitor_pending);
252
253 static ssize_t server_monitor_latency_show(struct device *dev,
254 struct device_attribute *dev_attr,
255 char *buf)
256 {
257 struct hv_device *hv_dev = device_to_hv_device(dev);
258
259 if (!hv_dev->channel)
260 return -ENODEV;
261 return sprintf(buf, "%d\n",
262 channel_latency(hv_dev->channel,
263 vmbus_connection.monitor_pages[0]));
264 }
265 static DEVICE_ATTR_RO(server_monitor_latency);
266
267 static ssize_t client_monitor_latency_show(struct device *dev,
268 struct device_attribute *dev_attr,
269 char *buf)
270 {
271 struct hv_device *hv_dev = device_to_hv_device(dev);
272
273 if (!hv_dev->channel)
274 return -ENODEV;
275 return sprintf(buf, "%d\n",
276 channel_latency(hv_dev->channel,
277 vmbus_connection.monitor_pages[1]));
278 }
279 static DEVICE_ATTR_RO(client_monitor_latency);
280
281 static ssize_t server_monitor_conn_id_show(struct device *dev,
282 struct device_attribute *dev_attr,
283 char *buf)
284 {
285 struct hv_device *hv_dev = device_to_hv_device(dev);
286
287 if (!hv_dev->channel)
288 return -ENODEV;
289 return sprintf(buf, "%d\n",
290 channel_conn_id(hv_dev->channel,
291 vmbus_connection.monitor_pages[0]));
292 }
293 static DEVICE_ATTR_RO(server_monitor_conn_id);
294
295 static ssize_t client_monitor_conn_id_show(struct device *dev,
296 struct device_attribute *dev_attr,
297 char *buf)
298 {
299 struct hv_device *hv_dev = device_to_hv_device(dev);
300
301 if (!hv_dev->channel)
302 return -ENODEV;
303 return sprintf(buf, "%d\n",
304 channel_conn_id(hv_dev->channel,
305 vmbus_connection.monitor_pages[1]));
306 }
307 static DEVICE_ATTR_RO(client_monitor_conn_id);
308
309 static ssize_t out_intr_mask_show(struct device *dev,
310 struct device_attribute *dev_attr, char *buf)
311 {
312 struct hv_device *hv_dev = device_to_hv_device(dev);
313 struct hv_ring_buffer_debug_info outbound;
314
315 if (!hv_dev->channel)
316 return -ENODEV;
317 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
318 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
319 }
320 static DEVICE_ATTR_RO(out_intr_mask);
321
322 static ssize_t out_read_index_show(struct device *dev,
323 struct device_attribute *dev_attr, char *buf)
324 {
325 struct hv_device *hv_dev = device_to_hv_device(dev);
326 struct hv_ring_buffer_debug_info outbound;
327
328 if (!hv_dev->channel)
329 return -ENODEV;
330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 return sprintf(buf, "%d\n", outbound.current_read_index);
332 }
333 static DEVICE_ATTR_RO(out_read_index);
334
335 static ssize_t out_write_index_show(struct device *dev,
336 struct device_attribute *dev_attr,
337 char *buf)
338 {
339 struct hv_device *hv_dev = device_to_hv_device(dev);
340 struct hv_ring_buffer_debug_info outbound;
341
342 if (!hv_dev->channel)
343 return -ENODEV;
344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 return sprintf(buf, "%d\n", outbound.current_write_index);
346 }
347 static DEVICE_ATTR_RO(out_write_index);
348
349 static ssize_t out_read_bytes_avail_show(struct device *dev,
350 struct device_attribute *dev_attr,
351 char *buf)
352 {
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
355
356 if (!hv_dev->channel)
357 return -ENODEV;
358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
360 }
361 static DEVICE_ATTR_RO(out_read_bytes_avail);
362
363 static ssize_t out_write_bytes_avail_show(struct device *dev,
364 struct device_attribute *dev_attr,
365 char *buf)
366 {
367 struct hv_device *hv_dev = device_to_hv_device(dev);
368 struct hv_ring_buffer_debug_info outbound;
369
370 if (!hv_dev->channel)
371 return -ENODEV;
372 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
373 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
374 }
375 static DEVICE_ATTR_RO(out_write_bytes_avail);
376
377 static ssize_t in_intr_mask_show(struct device *dev,
378 struct device_attribute *dev_attr, char *buf)
379 {
380 struct hv_device *hv_dev = device_to_hv_device(dev);
381 struct hv_ring_buffer_debug_info inbound;
382
383 if (!hv_dev->channel)
384 return -ENODEV;
385 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
386 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
387 }
388 static DEVICE_ATTR_RO(in_intr_mask);
389
390 static ssize_t in_read_index_show(struct device *dev,
391 struct device_attribute *dev_attr, char *buf)
392 {
393 struct hv_device *hv_dev = device_to_hv_device(dev);
394 struct hv_ring_buffer_debug_info inbound;
395
396 if (!hv_dev->channel)
397 return -ENODEV;
398 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
399 return sprintf(buf, "%d\n", inbound.current_read_index);
400 }
401 static DEVICE_ATTR_RO(in_read_index);
402
403 static ssize_t in_write_index_show(struct device *dev,
404 struct device_attribute *dev_attr, char *buf)
405 {
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info inbound;
408
409 if (!hv_dev->channel)
410 return -ENODEV;
411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 return sprintf(buf, "%d\n", inbound.current_write_index);
413 }
414 static DEVICE_ATTR_RO(in_write_index);
415
416 static ssize_t in_read_bytes_avail_show(struct device *dev,
417 struct device_attribute *dev_attr,
418 char *buf)
419 {
420 struct hv_device *hv_dev = device_to_hv_device(dev);
421 struct hv_ring_buffer_debug_info inbound;
422
423 if (!hv_dev->channel)
424 return -ENODEV;
425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
427 }
428 static DEVICE_ATTR_RO(in_read_bytes_avail);
429
430 static ssize_t in_write_bytes_avail_show(struct device *dev,
431 struct device_attribute *dev_attr,
432 char *buf)
433 {
434 struct hv_device *hv_dev = device_to_hv_device(dev);
435 struct hv_ring_buffer_debug_info inbound;
436
437 if (!hv_dev->channel)
438 return -ENODEV;
439 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
440 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
441 }
442 static DEVICE_ATTR_RO(in_write_bytes_avail);
443
444 static ssize_t channel_vp_mapping_show(struct device *dev,
445 struct device_attribute *dev_attr,
446 char *buf)
447 {
448 struct hv_device *hv_dev = device_to_hv_device(dev);
449 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
450 unsigned long flags;
451 int buf_size = PAGE_SIZE, n_written, tot_written;
452 struct list_head *cur;
453
454 if (!channel)
455 return -ENODEV;
456
457 tot_written = snprintf(buf, buf_size, "%u:%u\n",
458 channel->offermsg.child_relid, channel->target_cpu);
459
460 spin_lock_irqsave(&channel->lock, flags);
461
462 list_for_each(cur, &channel->sc_list) {
463 if (tot_written >= buf_size - 1)
464 break;
465
466 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
467 n_written = scnprintf(buf + tot_written,
468 buf_size - tot_written,
469 "%u:%u\n",
470 cur_sc->offermsg.child_relid,
471 cur_sc->target_cpu);
472 tot_written += n_written;
473 }
474
475 spin_unlock_irqrestore(&channel->lock, flags);
476
477 return tot_written;
478 }
479 static DEVICE_ATTR_RO(channel_vp_mapping);
480
481 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
482 static struct attribute *vmbus_attrs[] = {
483 &dev_attr_id.attr,
484 &dev_attr_state.attr,
485 &dev_attr_monitor_id.attr,
486 &dev_attr_class_id.attr,
487 &dev_attr_device_id.attr,
488 &dev_attr_modalias.attr,
489 &dev_attr_server_monitor_pending.attr,
490 &dev_attr_client_monitor_pending.attr,
491 &dev_attr_server_monitor_latency.attr,
492 &dev_attr_client_monitor_latency.attr,
493 &dev_attr_server_monitor_conn_id.attr,
494 &dev_attr_client_monitor_conn_id.attr,
495 &dev_attr_out_intr_mask.attr,
496 &dev_attr_out_read_index.attr,
497 &dev_attr_out_write_index.attr,
498 &dev_attr_out_read_bytes_avail.attr,
499 &dev_attr_out_write_bytes_avail.attr,
500 &dev_attr_in_intr_mask.attr,
501 &dev_attr_in_read_index.attr,
502 &dev_attr_in_write_index.attr,
503 &dev_attr_in_read_bytes_avail.attr,
504 &dev_attr_in_write_bytes_avail.attr,
505 &dev_attr_channel_vp_mapping.attr,
506 NULL,
507 };
508 ATTRIBUTE_GROUPS(vmbus);
509
510 /*
511 * vmbus_uevent - add uevent for our device
512 *
513 * This routine is invoked when a device is added or removed on the vmbus to
514 * generate a uevent to udev in the userspace. The udev will then look at its
515 * rule and the uevent generated here to load the appropriate driver
516 *
517 * The alias string will be of the form vmbus:guid where guid is the string
518 * representation of the device guid (each byte of the guid will be
519 * represented with two hex characters.
520 */
521 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
522 {
523 struct hv_device *dev = device_to_hv_device(device);
524 int ret;
525 char alias_name[VMBUS_ALIAS_LEN + 1];
526
527 print_alias_name(dev, alias_name);
528 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
529 return ret;
530 }
531
532 static const uuid_le null_guid;
533
534 static inline bool is_null_guid(const __u8 *guid)
535 {
536 if (memcmp(guid, &null_guid, sizeof(uuid_le)))
537 return false;
538 return true;
539 }
540
541 /*
542 * Return a matching hv_vmbus_device_id pointer.
543 * If there is no match, return NULL.
544 */
545 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
546 const struct hv_vmbus_device_id *id,
547 const __u8 *guid)
548 {
549 for (; !is_null_guid(id->guid); id++)
550 if (!memcmp(&id->guid, guid, sizeof(uuid_le)))
551 return id;
552
553 return NULL;
554 }
555
556
557
558 /*
559 * vmbus_match - Attempt to match the specified device to the specified driver
560 */
561 static int vmbus_match(struct device *device, struct device_driver *driver)
562 {
563 struct hv_driver *drv = drv_to_hv_drv(driver);
564 struct hv_device *hv_dev = device_to_hv_device(device);
565
566 if (hv_vmbus_get_id(drv->id_table, hv_dev->dev_type.b))
567 return 1;
568
569 return 0;
570 }
571
572 /*
573 * vmbus_probe - Add the new vmbus's child device
574 */
575 static int vmbus_probe(struct device *child_device)
576 {
577 int ret = 0;
578 struct hv_driver *drv =
579 drv_to_hv_drv(child_device->driver);
580 struct hv_device *dev = device_to_hv_device(child_device);
581 const struct hv_vmbus_device_id *dev_id;
582
583 dev_id = hv_vmbus_get_id(drv->id_table, dev->dev_type.b);
584 if (drv->probe) {
585 ret = drv->probe(dev, dev_id);
586 if (ret != 0)
587 pr_err("probe failed for device %s (%d)\n",
588 dev_name(child_device), ret);
589
590 } else {
591 pr_err("probe not set for driver %s\n",
592 dev_name(child_device));
593 ret = -ENODEV;
594 }
595 return ret;
596 }
597
598 /*
599 * vmbus_remove - Remove a vmbus device
600 */
601 static int vmbus_remove(struct device *child_device)
602 {
603 struct hv_driver *drv;
604 struct hv_device *dev = device_to_hv_device(child_device);
605 u32 relid = dev->channel->offermsg.child_relid;
606
607 if (child_device->driver) {
608 drv = drv_to_hv_drv(child_device->driver);
609 if (drv->remove)
610 drv->remove(dev);
611 else {
612 hv_process_channel_removal(dev->channel, relid);
613 pr_err("remove not set for driver %s\n",
614 dev_name(child_device));
615 }
616 } else {
617 /*
618 * We don't have a driver for this device; deal with the
619 * rescind message by removing the channel.
620 */
621 hv_process_channel_removal(dev->channel, relid);
622 }
623
624 return 0;
625 }
626
627
628 /*
629 * vmbus_shutdown - Shutdown a vmbus device
630 */
631 static void vmbus_shutdown(struct device *child_device)
632 {
633 struct hv_driver *drv;
634 struct hv_device *dev = device_to_hv_device(child_device);
635
636
637 /* The device may not be attached yet */
638 if (!child_device->driver)
639 return;
640
641 drv = drv_to_hv_drv(child_device->driver);
642
643 if (drv->shutdown)
644 drv->shutdown(dev);
645
646 return;
647 }
648
649
650 /*
651 * vmbus_device_release - Final callback release of the vmbus child device
652 */
653 static void vmbus_device_release(struct device *device)
654 {
655 struct hv_device *hv_dev = device_to_hv_device(device);
656
657 kfree(hv_dev);
658
659 }
660
661 /* The one and only one */
662 static struct bus_type hv_bus = {
663 .name = "vmbus",
664 .match = vmbus_match,
665 .shutdown = vmbus_shutdown,
666 .remove = vmbus_remove,
667 .probe = vmbus_probe,
668 .uevent = vmbus_uevent,
669 .dev_groups = vmbus_groups,
670 };
671
672 struct onmessage_work_context {
673 struct work_struct work;
674 struct hv_message msg;
675 };
676
677 static void vmbus_onmessage_work(struct work_struct *work)
678 {
679 struct onmessage_work_context *ctx;
680
681 /* Do not process messages if we're in DISCONNECTED state */
682 if (vmbus_connection.conn_state == DISCONNECTED)
683 return;
684
685 ctx = container_of(work, struct onmessage_work_context,
686 work);
687 vmbus_onmessage(&ctx->msg);
688 kfree(ctx);
689 }
690
691 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
692 {
693 struct clock_event_device *dev = hv_context.clk_evt[cpu];
694
695 if (dev->event_handler)
696 dev->event_handler(dev);
697
698 msg->header.message_type = HVMSG_NONE;
699
700 /*
701 * Make sure the write to MessageType (ie set to
702 * HVMSG_NONE) happens before we read the
703 * MessagePending and EOMing. Otherwise, the EOMing
704 * will not deliver any more messages since there is
705 * no empty slot
706 */
707 mb();
708
709 if (msg->header.message_flags.msg_pending) {
710 /*
711 * This will cause message queue rescan to
712 * possibly deliver another msg from the
713 * hypervisor
714 */
715 wrmsrl(HV_X64_MSR_EOM, 0);
716 }
717 }
718
719 static void vmbus_on_msg_dpc(unsigned long data)
720 {
721 int cpu = smp_processor_id();
722 void *page_addr = hv_context.synic_message_page[cpu];
723 struct hv_message *msg = (struct hv_message *)page_addr +
724 VMBUS_MESSAGE_SINT;
725 struct vmbus_channel_message_header *hdr;
726 struct vmbus_channel_message_table_entry *entry;
727 struct onmessage_work_context *ctx;
728
729 while (1) {
730 if (msg->header.message_type == HVMSG_NONE)
731 /* no msg */
732 break;
733
734 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
735
736 if (hdr->msgtype >= CHANNELMSG_COUNT) {
737 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
738 goto msg_handled;
739 }
740
741 entry = &channel_message_table[hdr->msgtype];
742 if (entry->handler_type == VMHT_BLOCKING) {
743 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
744 if (ctx == NULL)
745 continue;
746
747 INIT_WORK(&ctx->work, vmbus_onmessage_work);
748 memcpy(&ctx->msg, msg, sizeof(*msg));
749
750 queue_work(vmbus_connection.work_queue, &ctx->work);
751 } else
752 entry->message_handler(hdr);
753
754 msg_handled:
755 msg->header.message_type = HVMSG_NONE;
756
757 /*
758 * Make sure the write to MessageType (ie set to
759 * HVMSG_NONE) happens before we read the
760 * MessagePending and EOMing. Otherwise, the EOMing
761 * will not deliver any more messages since there is
762 * no empty slot
763 */
764 mb();
765
766 if (msg->header.message_flags.msg_pending) {
767 /*
768 * This will cause message queue rescan to
769 * possibly deliver another msg from the
770 * hypervisor
771 */
772 wrmsrl(HV_X64_MSR_EOM, 0);
773 }
774 }
775 }
776
777 static void vmbus_isr(void)
778 {
779 int cpu = smp_processor_id();
780 void *page_addr;
781 struct hv_message *msg;
782 union hv_synic_event_flags *event;
783 bool handled = false;
784
785 page_addr = hv_context.synic_event_page[cpu];
786 if (page_addr == NULL)
787 return;
788
789 event = (union hv_synic_event_flags *)page_addr +
790 VMBUS_MESSAGE_SINT;
791 /*
792 * Check for events before checking for messages. This is the order
793 * in which events and messages are checked in Windows guests on
794 * Hyper-V, and the Windows team suggested we do the same.
795 */
796
797 if ((vmbus_proto_version == VERSION_WS2008) ||
798 (vmbus_proto_version == VERSION_WIN7)) {
799
800 /* Since we are a child, we only need to check bit 0 */
801 if (sync_test_and_clear_bit(0,
802 (unsigned long *) &event->flags32[0])) {
803 handled = true;
804 }
805 } else {
806 /*
807 * Our host is win8 or above. The signaling mechanism
808 * has changed and we can directly look at the event page.
809 * If bit n is set then we have an interrup on the channel
810 * whose id is n.
811 */
812 handled = true;
813 }
814
815 if (handled)
816 tasklet_schedule(hv_context.event_dpc[cpu]);
817
818
819 page_addr = hv_context.synic_message_page[cpu];
820 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
821
822 /* Check if there are actual msgs to be processed */
823 if (msg->header.message_type != HVMSG_NONE) {
824 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
825 hv_process_timer_expiration(msg, cpu);
826 else
827 tasklet_schedule(&msg_dpc);
828 }
829 }
830
831
832 /*
833 * vmbus_bus_init -Main vmbus driver initialization routine.
834 *
835 * Here, we
836 * - initialize the vmbus driver context
837 * - invoke the vmbus hv main init routine
838 * - get the irq resource
839 * - retrieve the channel offers
840 */
841 static int vmbus_bus_init(int irq)
842 {
843 int ret;
844
845 /* Hypervisor initialization...setup hypercall page..etc */
846 ret = hv_init();
847 if (ret != 0) {
848 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
849 return ret;
850 }
851
852 tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
853
854 ret = bus_register(&hv_bus);
855 if (ret)
856 goto err_cleanup;
857
858 hv_setup_vmbus_irq(vmbus_isr);
859
860 ret = hv_synic_alloc();
861 if (ret)
862 goto err_alloc;
863 /*
864 * Initialize the per-cpu interrupt state and
865 * connect to the host.
866 */
867 on_each_cpu(hv_synic_init, NULL, 1);
868 ret = vmbus_connect();
869 if (ret)
870 goto err_connect;
871
872 if (vmbus_proto_version > VERSION_WIN7)
873 cpu_hotplug_disable();
874
875 /*
876 * Only register if the crash MSRs are available
877 */
878 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
879 register_die_notifier(&hyperv_die_block);
880 atomic_notifier_chain_register(&panic_notifier_list,
881 &hyperv_panic_block);
882 }
883
884 vmbus_request_offers();
885
886 return 0;
887
888 err_connect:
889 on_each_cpu(hv_synic_cleanup, NULL, 1);
890 err_alloc:
891 hv_synic_free();
892 hv_remove_vmbus_irq();
893
894 bus_unregister(&hv_bus);
895
896 err_cleanup:
897 hv_cleanup();
898
899 return ret;
900 }
901
902 /**
903 * __vmbus_child_driver_register() - Register a vmbus's driver
904 * @hv_driver: Pointer to driver structure you want to register
905 * @owner: owner module of the drv
906 * @mod_name: module name string
907 *
908 * Registers the given driver with Linux through the 'driver_register()' call
909 * and sets up the hyper-v vmbus handling for this driver.
910 * It will return the state of the 'driver_register()' call.
911 *
912 */
913 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
914 {
915 int ret;
916
917 pr_info("registering driver %s\n", hv_driver->name);
918
919 ret = vmbus_exists();
920 if (ret < 0)
921 return ret;
922
923 hv_driver->driver.name = hv_driver->name;
924 hv_driver->driver.owner = owner;
925 hv_driver->driver.mod_name = mod_name;
926 hv_driver->driver.bus = &hv_bus;
927
928 ret = driver_register(&hv_driver->driver);
929
930 return ret;
931 }
932 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
933
934 /**
935 * vmbus_driver_unregister() - Unregister a vmbus's driver
936 * @hv_driver: Pointer to driver structure you want to
937 * un-register
938 *
939 * Un-register the given driver that was previous registered with a call to
940 * vmbus_driver_register()
941 */
942 void vmbus_driver_unregister(struct hv_driver *hv_driver)
943 {
944 pr_info("unregistering driver %s\n", hv_driver->name);
945
946 if (!vmbus_exists())
947 driver_unregister(&hv_driver->driver);
948 }
949 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
950
951 /*
952 * vmbus_device_create - Creates and registers a new child device
953 * on the vmbus.
954 */
955 struct hv_device *vmbus_device_create(const uuid_le *type,
956 const uuid_le *instance,
957 struct vmbus_channel *channel)
958 {
959 struct hv_device *child_device_obj;
960
961 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
962 if (!child_device_obj) {
963 pr_err("Unable to allocate device object for child device\n");
964 return NULL;
965 }
966
967 child_device_obj->channel = channel;
968 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
969 memcpy(&child_device_obj->dev_instance, instance,
970 sizeof(uuid_le));
971
972
973 return child_device_obj;
974 }
975
976 /*
977 * vmbus_device_register - Register the child device
978 */
979 int vmbus_device_register(struct hv_device *child_device_obj)
980 {
981 int ret = 0;
982
983 dev_set_name(&child_device_obj->device, "vmbus_%d",
984 child_device_obj->channel->id);
985
986 child_device_obj->device.bus = &hv_bus;
987 child_device_obj->device.parent = &hv_acpi_dev->dev;
988 child_device_obj->device.release = vmbus_device_release;
989
990 /*
991 * Register with the LDM. This will kick off the driver/device
992 * binding...which will eventually call vmbus_match() and vmbus_probe()
993 */
994 ret = device_register(&child_device_obj->device);
995
996 if (ret)
997 pr_err("Unable to register child device\n");
998 else
999 pr_debug("child device %s registered\n",
1000 dev_name(&child_device_obj->device));
1001
1002 return ret;
1003 }
1004
1005 /*
1006 * vmbus_device_unregister - Remove the specified child device
1007 * from the vmbus.
1008 */
1009 void vmbus_device_unregister(struct hv_device *device_obj)
1010 {
1011 pr_debug("child device %s unregistered\n",
1012 dev_name(&device_obj->device));
1013
1014 /*
1015 * Kick off the process of unregistering the device.
1016 * This will call vmbus_remove() and eventually vmbus_device_release()
1017 */
1018 device_unregister(&device_obj->device);
1019 }
1020
1021
1022 /*
1023 * VMBUS is an acpi enumerated device. Get the information we
1024 * need from DSDT.
1025 */
1026 #define VTPM_BASE_ADDRESS 0xfed40000
1027 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1028 {
1029 resource_size_t start = 0;
1030 resource_size_t end = 0;
1031 struct resource *new_res;
1032 struct resource **old_res = &hyperv_mmio;
1033 struct resource **prev_res = NULL;
1034
1035 switch (res->type) {
1036 case ACPI_RESOURCE_TYPE_IRQ:
1037 irq = res->data.irq.interrupts[0];
1038 return AE_OK;
1039
1040 /*
1041 * "Address" descriptors are for bus windows. Ignore
1042 * "memory" descriptors, which are for registers on
1043 * devices.
1044 */
1045 case ACPI_RESOURCE_TYPE_ADDRESS32:
1046 start = res->data.address32.address.minimum;
1047 end = res->data.address32.address.maximum;
1048 break;
1049
1050 case ACPI_RESOURCE_TYPE_ADDRESS64:
1051 start = res->data.address64.address.minimum;
1052 end = res->data.address64.address.maximum;
1053 break;
1054
1055 default:
1056 /* Unused resource type */
1057 return AE_OK;
1058
1059 }
1060 /*
1061 * Ignore ranges that are below 1MB, as they're not
1062 * necessary or useful here.
1063 */
1064 if (end < 0x100000)
1065 return AE_OK;
1066
1067 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1068 if (!new_res)
1069 return AE_NO_MEMORY;
1070
1071 /* If this range overlaps the virtual TPM, truncate it. */
1072 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1073 end = VTPM_BASE_ADDRESS;
1074
1075 new_res->name = "hyperv mmio";
1076 new_res->flags = IORESOURCE_MEM;
1077 new_res->start = start;
1078 new_res->end = end;
1079
1080 do {
1081 if (!*old_res) {
1082 *old_res = new_res;
1083 break;
1084 }
1085
1086 if ((*old_res)->end < new_res->start) {
1087 new_res->sibling = *old_res;
1088 if (prev_res)
1089 (*prev_res)->sibling = new_res;
1090 *old_res = new_res;
1091 break;
1092 }
1093
1094 prev_res = old_res;
1095 old_res = &(*old_res)->sibling;
1096
1097 } while (1);
1098
1099 return AE_OK;
1100 }
1101
1102 static int vmbus_acpi_remove(struct acpi_device *device)
1103 {
1104 struct resource *cur_res;
1105 struct resource *next_res;
1106
1107 if (hyperv_mmio) {
1108 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1109 next_res = cur_res->sibling;
1110 kfree(cur_res);
1111 }
1112 }
1113
1114 return 0;
1115 }
1116
1117 /**
1118 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1119 * @new: If successful, supplied a pointer to the
1120 * allocated MMIO space.
1121 * @device_obj: Identifies the caller
1122 * @min: Minimum guest physical address of the
1123 * allocation
1124 * @max: Maximum guest physical address
1125 * @size: Size of the range to be allocated
1126 * @align: Alignment of the range to be allocated
1127 * @fb_overlap_ok: Whether this allocation can be allowed
1128 * to overlap the video frame buffer.
1129 *
1130 * This function walks the resources granted to VMBus by the
1131 * _CRS object in the ACPI namespace underneath the parent
1132 * "bridge" whether that's a root PCI bus in the Generation 1
1133 * case or a Module Device in the Generation 2 case. It then
1134 * attempts to allocate from the global MMIO pool in a way that
1135 * matches the constraints supplied in these parameters and by
1136 * that _CRS.
1137 *
1138 * Return: 0 on success, -errno on failure
1139 */
1140 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1141 resource_size_t min, resource_size_t max,
1142 resource_size_t size, resource_size_t align,
1143 bool fb_overlap_ok)
1144 {
1145 struct resource *iter;
1146 resource_size_t range_min, range_max, start, local_min, local_max;
1147 const char *dev_n = dev_name(&device_obj->device);
1148 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1149 int i;
1150
1151 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1152 if ((iter->start >= max) || (iter->end <= min))
1153 continue;
1154
1155 range_min = iter->start;
1156 range_max = iter->end;
1157
1158 /* If this range overlaps the frame buffer, split it into
1159 two tries. */
1160 for (i = 0; i < 2; i++) {
1161 local_min = range_min;
1162 local_max = range_max;
1163 if (fb_overlap_ok || (range_min >= fb_end) ||
1164 (range_max <= screen_info.lfb_base)) {
1165 i++;
1166 } else {
1167 if ((range_min <= screen_info.lfb_base) &&
1168 (range_max >= screen_info.lfb_base)) {
1169 /*
1170 * The frame buffer is in this window,
1171 * so trim this into the part that
1172 * preceeds the frame buffer.
1173 */
1174 local_max = screen_info.lfb_base - 1;
1175 range_min = fb_end;
1176 } else {
1177 range_min = fb_end;
1178 continue;
1179 }
1180 }
1181
1182 start = (local_min + align - 1) & ~(align - 1);
1183 for (; start + size - 1 <= local_max; start += align) {
1184 *new = request_mem_region_exclusive(start, size,
1185 dev_n);
1186 if (*new)
1187 return 0;
1188 }
1189 }
1190 }
1191
1192 return -ENXIO;
1193 }
1194 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1195
1196 /**
1197 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1198 * @cpu_number: CPU number in Linux terms
1199 *
1200 * This function returns the mapping between the Linux processor
1201 * number and the hypervisor's virtual processor number, useful
1202 * in making hypercalls and such that talk about specific
1203 * processors.
1204 *
1205 * Return: Virtual processor number in Hyper-V terms
1206 */
1207 int vmbus_cpu_number_to_vp_number(int cpu_number)
1208 {
1209 return hv_context.vp_index[cpu_number];
1210 }
1211 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1212
1213 static int vmbus_acpi_add(struct acpi_device *device)
1214 {
1215 acpi_status result;
1216 int ret_val = -ENODEV;
1217 struct acpi_device *ancestor;
1218
1219 hv_acpi_dev = device;
1220
1221 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1222 vmbus_walk_resources, NULL);
1223
1224 if (ACPI_FAILURE(result))
1225 goto acpi_walk_err;
1226 /*
1227 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1228 * firmware) is the VMOD that has the mmio ranges. Get that.
1229 */
1230 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1231 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1232 vmbus_walk_resources, NULL);
1233
1234 if (ACPI_FAILURE(result))
1235 continue;
1236 if (hyperv_mmio)
1237 break;
1238 }
1239 ret_val = 0;
1240
1241 acpi_walk_err:
1242 complete(&probe_event);
1243 if (ret_val)
1244 vmbus_acpi_remove(device);
1245 return ret_val;
1246 }
1247
1248 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1249 {"VMBUS", 0},
1250 {"VMBus", 0},
1251 {"", 0},
1252 };
1253 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1254
1255 static struct acpi_driver vmbus_acpi_driver = {
1256 .name = "vmbus",
1257 .ids = vmbus_acpi_device_ids,
1258 .ops = {
1259 .add = vmbus_acpi_add,
1260 .remove = vmbus_acpi_remove,
1261 },
1262 };
1263
1264 static void hv_kexec_handler(void)
1265 {
1266 int cpu;
1267
1268 hv_synic_clockevents_cleanup();
1269 vmbus_initiate_unload();
1270 for_each_online_cpu(cpu)
1271 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1272 hv_cleanup();
1273 };
1274
1275 static void hv_crash_handler(struct pt_regs *regs)
1276 {
1277 vmbus_initiate_unload();
1278 /*
1279 * In crash handler we can't schedule synic cleanup for all CPUs,
1280 * doing the cleanup for current CPU only. This should be sufficient
1281 * for kdump.
1282 */
1283 hv_synic_cleanup(NULL);
1284 hv_cleanup();
1285 };
1286
1287 static int __init hv_acpi_init(void)
1288 {
1289 int ret, t;
1290
1291 if (x86_hyper != &x86_hyper_ms_hyperv)
1292 return -ENODEV;
1293
1294 init_completion(&probe_event);
1295
1296 /*
1297 * Get irq resources first.
1298 */
1299 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1300
1301 if (ret)
1302 return ret;
1303
1304 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1305 if (t == 0) {
1306 ret = -ETIMEDOUT;
1307 goto cleanup;
1308 }
1309
1310 if (irq <= 0) {
1311 ret = -ENODEV;
1312 goto cleanup;
1313 }
1314
1315 ret = vmbus_bus_init(irq);
1316 if (ret)
1317 goto cleanup;
1318
1319 hv_setup_kexec_handler(hv_kexec_handler);
1320 hv_setup_crash_handler(hv_crash_handler);
1321
1322 return 0;
1323
1324 cleanup:
1325 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1326 hv_acpi_dev = NULL;
1327 return ret;
1328 }
1329
1330 static void __exit vmbus_exit(void)
1331 {
1332 int cpu;
1333
1334 hv_remove_kexec_handler();
1335 hv_remove_crash_handler();
1336 vmbus_connection.conn_state = DISCONNECTED;
1337 hv_synic_clockevents_cleanup();
1338 vmbus_disconnect();
1339 hv_remove_vmbus_irq();
1340 tasklet_kill(&msg_dpc);
1341 vmbus_free_channels();
1342 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1343 unregister_die_notifier(&hyperv_die_block);
1344 atomic_notifier_chain_unregister(&panic_notifier_list,
1345 &hyperv_panic_block);
1346 }
1347 bus_unregister(&hv_bus);
1348 hv_cleanup();
1349 for_each_online_cpu(cpu) {
1350 tasklet_kill(hv_context.event_dpc[cpu]);
1351 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1352 }
1353 hv_synic_free();
1354 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1355 if (vmbus_proto_version > VERSION_WIN7)
1356 cpu_hotplug_enable();
1357 }
1358
1359
1360 MODULE_LICENSE("GPL");
1361
1362 subsys_initcall(hv_acpi_init);
1363 module_exit(vmbus_exit);