]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hv/vmbus_drv.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51 struct list_head node;
52 struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63 {
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs);
69 return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74 {
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs);
79 return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112 return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117 return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(struct vmbus_channel *channel,
121 struct hv_monitor_page *monitor_page)
122 {
123 u8 monitor_group = channel_monitor_group(channel);
124 return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(struct vmbus_channel *channel,
128 struct hv_monitor_page *monitor_page)
129 {
130 u8 monitor_group = channel_monitor_group(channel);
131 u8 monitor_offset = channel_monitor_offset(channel);
132 return monitor_page->latency[monitor_group][monitor_offset];
133 }
134
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 struct hv_monitor_page *monitor_page)
137 {
138 u8 monitor_group = channel_monitor_group(channel);
139 u8 monitor_offset = channel_monitor_offset(channel);
140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 char *buf)
145 {
146 struct hv_device *hv_dev = device_to_hv_device(dev);
147
148 if (!hv_dev->channel)
149 return -ENODEV;
150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 char *buf)
156 {
157 struct hv_device *hv_dev = device_to_hv_device(dev);
158
159 if (!hv_dev->channel)
160 return -ENODEV;
161 return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164
165 static ssize_t monitor_id_show(struct device *dev,
166 struct device_attribute *dev_attr, char *buf)
167 {
168 struct hv_device *hv_dev = device_to_hv_device(dev);
169
170 if (!hv_dev->channel)
171 return -ENODEV;
172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175
176 static ssize_t class_id_show(struct device *dev,
177 struct device_attribute *dev_attr, char *buf)
178 {
179 struct hv_device *hv_dev = device_to_hv_device(dev);
180
181 if (!hv_dev->channel)
182 return -ENODEV;
183 return sprintf(buf, "{%pUl}\n",
184 hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187
188 static ssize_t device_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
190 {
191 struct hv_device *hv_dev = device_to_hv_device(dev);
192
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "{%pUl}\n",
196 hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199
200 static ssize_t modalias_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202 {
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204 char alias_name[VMBUS_ALIAS_LEN + 1];
205
206 print_alias_name(hv_dev, alias_name);
207 return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 struct device_attribute *dev_attr,
213 char *buf)
214 {
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "%d\n",
220 channel_pending(hv_dev->channel,
221 vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 struct device_attribute *dev_attr,
227 char *buf)
228 {
229 struct hv_device *hv_dev = device_to_hv_device(dev);
230
231 if (!hv_dev->channel)
232 return -ENODEV;
233 return sprintf(buf, "%d\n",
234 channel_pending(hv_dev->channel,
235 vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 struct device_attribute *dev_attr,
241 char *buf)
242 {
243 struct hv_device *hv_dev = device_to_hv_device(dev);
244
245 if (!hv_dev->channel)
246 return -ENODEV;
247 return sprintf(buf, "%d\n",
248 channel_latency(hv_dev->channel,
249 vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 struct device_attribute *dev_attr,
255 char *buf)
256 {
257 struct hv_device *hv_dev = device_to_hv_device(dev);
258
259 if (!hv_dev->channel)
260 return -ENODEV;
261 return sprintf(buf, "%d\n",
262 channel_latency(hv_dev->channel,
263 vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 struct device_attribute *dev_attr,
269 char *buf)
270 {
271 struct hv_device *hv_dev = device_to_hv_device(dev);
272
273 if (!hv_dev->channel)
274 return -ENODEV;
275 return sprintf(buf, "%d\n",
276 channel_conn_id(hv_dev->channel,
277 vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 struct device_attribute *dev_attr,
283 char *buf)
284 {
285 struct hv_device *hv_dev = device_to_hv_device(dev);
286
287 if (!hv_dev->channel)
288 return -ENODEV;
289 return sprintf(buf, "%d\n",
290 channel_conn_id(hv_dev->channel,
291 vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295 static ssize_t out_intr_mask_show(struct device *dev,
296 struct device_attribute *dev_attr, char *buf)
297 {
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299 struct hv_ring_buffer_debug_info outbound;
300
301 if (!hv_dev->channel)
302 return -ENODEV;
303 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307
308 static ssize_t out_read_index_show(struct device *dev,
309 struct device_attribute *dev_attr, char *buf)
310 {
311 struct hv_device *hv_dev = device_to_hv_device(dev);
312 struct hv_ring_buffer_debug_info outbound;
313
314 if (!hv_dev->channel)
315 return -ENODEV;
316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320
321 static ssize_t out_write_index_show(struct device *dev,
322 struct device_attribute *dev_attr,
323 char *buf)
324 {
325 struct hv_device *hv_dev = device_to_hv_device(dev);
326 struct hv_ring_buffer_debug_info outbound;
327
328 if (!hv_dev->channel)
329 return -ENODEV;
330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 struct device_attribute *dev_attr,
337 char *buf)
338 {
339 struct hv_device *hv_dev = device_to_hv_device(dev);
340 struct hv_ring_buffer_debug_info outbound;
341
342 if (!hv_dev->channel)
343 return -ENODEV;
344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 struct device_attribute *dev_attr,
351 char *buf)
352 {
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
355
356 if (!hv_dev->channel)
357 return -ENODEV;
358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362
363 static ssize_t in_intr_mask_show(struct device *dev,
364 struct device_attribute *dev_attr, char *buf)
365 {
366 struct hv_device *hv_dev = device_to_hv_device(dev);
367 struct hv_ring_buffer_debug_info inbound;
368
369 if (!hv_dev->channel)
370 return -ENODEV;
371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375
376 static ssize_t in_read_index_show(struct device *dev,
377 struct device_attribute *dev_attr, char *buf)
378 {
379 struct hv_device *hv_dev = device_to_hv_device(dev);
380 struct hv_ring_buffer_debug_info inbound;
381
382 if (!hv_dev->channel)
383 return -ENODEV;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388
389 static ssize_t in_write_index_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 struct device_attribute *dev_attr,
404 char *buf)
405 {
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info inbound;
408
409 if (!hv_dev->channel)
410 return -ENODEV;
411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 struct device_attribute *dev_attr,
418 char *buf)
419 {
420 struct hv_device *hv_dev = device_to_hv_device(dev);
421 struct hv_ring_buffer_debug_info inbound;
422
423 if (!hv_dev->channel)
424 return -ENODEV;
425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 struct device_attribute *dev_attr,
432 char *buf)
433 {
434 struct hv_device *hv_dev = device_to_hv_device(dev);
435 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 unsigned long flags;
437 int buf_size = PAGE_SIZE, n_written, tot_written;
438 struct list_head *cur;
439
440 if (!channel)
441 return -ENODEV;
442
443 tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 channel->offermsg.child_relid, channel->target_cpu);
445
446 spin_lock_irqsave(&channel->lock, flags);
447
448 list_for_each(cur, &channel->sc_list) {
449 if (tot_written >= buf_size - 1)
450 break;
451
452 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 n_written = scnprintf(buf + tot_written,
454 buf_size - tot_written,
455 "%u:%u\n",
456 cur_sc->offermsg.child_relid,
457 cur_sc->target_cpu);
458 tot_written += n_written;
459 }
460
461 spin_unlock_irqrestore(&channel->lock, flags);
462
463 return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466
467 static ssize_t vendor_show(struct device *dev,
468 struct device_attribute *dev_attr,
469 char *buf)
470 {
471 struct hv_device *hv_dev = device_to_hv_device(dev);
472 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475
476 static ssize_t device_show(struct device *dev,
477 struct device_attribute *dev_attr,
478 char *buf)
479 {
480 struct hv_device *hv_dev = device_to_hv_device(dev);
481 return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 &dev_attr_id.attr,
488 &dev_attr_state.attr,
489 &dev_attr_monitor_id.attr,
490 &dev_attr_class_id.attr,
491 &dev_attr_device_id.attr,
492 &dev_attr_modalias.attr,
493 &dev_attr_server_monitor_pending.attr,
494 &dev_attr_client_monitor_pending.attr,
495 &dev_attr_server_monitor_latency.attr,
496 &dev_attr_client_monitor_latency.attr,
497 &dev_attr_server_monitor_conn_id.attr,
498 &dev_attr_client_monitor_conn_id.attr,
499 &dev_attr_out_intr_mask.attr,
500 &dev_attr_out_read_index.attr,
501 &dev_attr_out_write_index.attr,
502 &dev_attr_out_read_bytes_avail.attr,
503 &dev_attr_out_write_bytes_avail.attr,
504 &dev_attr_in_intr_mask.attr,
505 &dev_attr_in_read_index.attr,
506 &dev_attr_in_write_index.attr,
507 &dev_attr_in_read_bytes_avail.attr,
508 &dev_attr_in_write_bytes_avail.attr,
509 &dev_attr_channel_vp_mapping.attr,
510 &dev_attr_vendor.attr,
511 &dev_attr_device.attr,
512 NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515
516 /*
517 * vmbus_uevent - add uevent for our device
518 *
519 * This routine is invoked when a device is added or removed on the vmbus to
520 * generate a uevent to udev in the userspace. The udev will then look at its
521 * rule and the uevent generated here to load the appropriate driver
522 *
523 * The alias string will be of the form vmbus:guid where guid is the string
524 * representation of the device guid (each byte of the guid will be
525 * represented with two hex characters.
526 */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529 struct hv_device *dev = device_to_hv_device(device);
530 int ret;
531 char alias_name[VMBUS_ALIAS_LEN + 1];
532
533 print_alias_name(dev, alias_name);
534 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 return ret;
536 }
537
538 static const uuid_le null_guid;
539
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542 if (uuid_le_cmp(*guid, null_guid))
543 return false;
544 return true;
545 }
546
547 /*
548 * Return a matching hv_vmbus_device_id pointer.
549 * If there is no match, return NULL.
550 */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 const uuid_le *guid)
553 {
554 const struct hv_vmbus_device_id *id = NULL;
555 struct vmbus_dynid *dynid;
556
557 /* Look at the dynamic ids first, before the static ones */
558 spin_lock(&drv->dynids.lock);
559 list_for_each_entry(dynid, &drv->dynids.list, node) {
560 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 id = &dynid->id;
562 break;
563 }
564 }
565 spin_unlock(&drv->dynids.lock);
566
567 if (id)
568 return id;
569
570 id = drv->id_table;
571 if (id == NULL)
572 return NULL; /* empty device table */
573
574 for (; !is_null_guid(&id->guid); id++)
575 if (!uuid_le_cmp(id->guid, *guid))
576 return id;
577
578 return NULL;
579 }
580
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584 struct vmbus_dynid *dynid;
585
586 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 if (!dynid)
588 return -ENOMEM;
589
590 dynid->id.guid = *guid;
591
592 spin_lock(&drv->dynids.lock);
593 list_add_tail(&dynid->node, &drv->dynids.list);
594 spin_unlock(&drv->dynids.lock);
595
596 return driver_attach(&drv->driver);
597 }
598
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601 struct vmbus_dynid *dynid, *n;
602
603 spin_lock(&drv->dynids.lock);
604 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 list_del(&dynid->node);
606 kfree(dynid);
607 }
608 spin_unlock(&drv->dynids.lock);
609 }
610
611 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
612 static int get_uuid_le(const char *str, uuid_le *uu)
613 {
614 unsigned int b[16];
615 int i;
616
617 if (strlen(str) < 37)
618 return -1;
619
620 for (i = 0; i < 36; i++) {
621 switch (i) {
622 case 8: case 13: case 18: case 23:
623 if (str[i] != '-')
624 return -1;
625 break;
626 default:
627 if (!isxdigit(str[i]))
628 return -1;
629 }
630 }
631
632 /* unparse little endian output byte order */
633 if (sscanf(str,
634 "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
635 &b[3], &b[2], &b[1], &b[0],
636 &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
637 &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
638 return -1;
639
640 for (i = 0; i < 16; i++)
641 uu->b[i] = b[i];
642 return 0;
643 }
644
645 /*
646 * store_new_id - sysfs frontend to vmbus_add_dynid()
647 *
648 * Allow GUIDs to be added to an existing driver via sysfs.
649 */
650 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
651 size_t count)
652 {
653 struct hv_driver *drv = drv_to_hv_drv(driver);
654 uuid_le guid = NULL_UUID_LE;
655 ssize_t retval;
656
657 if (get_uuid_le(buf, &guid) != 0)
658 return -EINVAL;
659
660 if (hv_vmbus_get_id(drv, &guid))
661 return -EEXIST;
662
663 retval = vmbus_add_dynid(drv, &guid);
664 if (retval)
665 return retval;
666 return count;
667 }
668 static DRIVER_ATTR_WO(new_id);
669
670 /*
671 * store_remove_id - remove a PCI device ID from this driver
672 *
673 * Removes a dynamic pci device ID to this driver.
674 */
675 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
676 size_t count)
677 {
678 struct hv_driver *drv = drv_to_hv_drv(driver);
679 struct vmbus_dynid *dynid, *n;
680 uuid_le guid = NULL_UUID_LE;
681 size_t retval = -ENODEV;
682
683 if (get_uuid_le(buf, &guid))
684 return -EINVAL;
685
686 spin_lock(&drv->dynids.lock);
687 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
688 struct hv_vmbus_device_id *id = &dynid->id;
689
690 if (!uuid_le_cmp(id->guid, guid)) {
691 list_del(&dynid->node);
692 kfree(dynid);
693 retval = count;
694 break;
695 }
696 }
697 spin_unlock(&drv->dynids.lock);
698
699 return retval;
700 }
701 static DRIVER_ATTR_WO(remove_id);
702
703 static struct attribute *vmbus_drv_attrs[] = {
704 &driver_attr_new_id.attr,
705 &driver_attr_remove_id.attr,
706 NULL,
707 };
708 ATTRIBUTE_GROUPS(vmbus_drv);
709
710
711 /*
712 * vmbus_match - Attempt to match the specified device to the specified driver
713 */
714 static int vmbus_match(struct device *device, struct device_driver *driver)
715 {
716 struct hv_driver *drv = drv_to_hv_drv(driver);
717 struct hv_device *hv_dev = device_to_hv_device(device);
718
719 /* The hv_sock driver handles all hv_sock offers. */
720 if (is_hvsock_channel(hv_dev->channel))
721 return drv->hvsock;
722
723 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
724 return 1;
725
726 return 0;
727 }
728
729 /*
730 * vmbus_probe - Add the new vmbus's child device
731 */
732 static int vmbus_probe(struct device *child_device)
733 {
734 int ret = 0;
735 struct hv_driver *drv =
736 drv_to_hv_drv(child_device->driver);
737 struct hv_device *dev = device_to_hv_device(child_device);
738 const struct hv_vmbus_device_id *dev_id;
739
740 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
741 if (drv->probe) {
742 ret = drv->probe(dev, dev_id);
743 if (ret != 0)
744 pr_err("probe failed for device %s (%d)\n",
745 dev_name(child_device), ret);
746
747 } else {
748 pr_err("probe not set for driver %s\n",
749 dev_name(child_device));
750 ret = -ENODEV;
751 }
752 return ret;
753 }
754
755 /*
756 * vmbus_remove - Remove a vmbus device
757 */
758 static int vmbus_remove(struct device *child_device)
759 {
760 struct hv_driver *drv;
761 struct hv_device *dev = device_to_hv_device(child_device);
762
763 if (child_device->driver) {
764 drv = drv_to_hv_drv(child_device->driver);
765 if (drv->remove)
766 drv->remove(dev);
767 }
768
769 return 0;
770 }
771
772
773 /*
774 * vmbus_shutdown - Shutdown a vmbus device
775 */
776 static void vmbus_shutdown(struct device *child_device)
777 {
778 struct hv_driver *drv;
779 struct hv_device *dev = device_to_hv_device(child_device);
780
781
782 /* The device may not be attached yet */
783 if (!child_device->driver)
784 return;
785
786 drv = drv_to_hv_drv(child_device->driver);
787
788 if (drv->shutdown)
789 drv->shutdown(dev);
790
791 return;
792 }
793
794
795 /*
796 * vmbus_device_release - Final callback release of the vmbus child device
797 */
798 static void vmbus_device_release(struct device *device)
799 {
800 struct hv_device *hv_dev = device_to_hv_device(device);
801 struct vmbus_channel *channel = hv_dev->channel;
802
803 hv_process_channel_removal(channel,
804 channel->offermsg.child_relid);
805 kfree(hv_dev);
806
807 }
808
809 /* The one and only one */
810 static struct bus_type hv_bus = {
811 .name = "vmbus",
812 .match = vmbus_match,
813 .shutdown = vmbus_shutdown,
814 .remove = vmbus_remove,
815 .probe = vmbus_probe,
816 .uevent = vmbus_uevent,
817 .dev_groups = vmbus_dev_groups,
818 .drv_groups = vmbus_drv_groups,
819 };
820
821 struct onmessage_work_context {
822 struct work_struct work;
823 struct hv_message msg;
824 };
825
826 static void vmbus_onmessage_work(struct work_struct *work)
827 {
828 struct onmessage_work_context *ctx;
829
830 /* Do not process messages if we're in DISCONNECTED state */
831 if (vmbus_connection.conn_state == DISCONNECTED)
832 return;
833
834 ctx = container_of(work, struct onmessage_work_context,
835 work);
836 vmbus_onmessage(&ctx->msg);
837 kfree(ctx);
838 }
839
840 static void hv_process_timer_expiration(struct hv_message *msg,
841 struct hv_per_cpu_context *hv_cpu)
842 {
843 struct clock_event_device *dev = hv_cpu->clk_evt;
844
845 if (dev->event_handler)
846 dev->event_handler(dev);
847
848 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
849 }
850
851 void vmbus_on_msg_dpc(unsigned long data)
852 {
853 struct hv_per_cpu_context *hv_cpu = (void *)data;
854 void *page_addr = hv_cpu->synic_message_page;
855 struct hv_message *msg = (struct hv_message *)page_addr +
856 VMBUS_MESSAGE_SINT;
857 struct vmbus_channel_message_header *hdr;
858 struct vmbus_channel_message_table_entry *entry;
859 struct onmessage_work_context *ctx;
860 u32 message_type = msg->header.message_type;
861
862 if (message_type == HVMSG_NONE)
863 /* no msg */
864 return;
865
866 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
867
868 if (hdr->msgtype >= CHANNELMSG_COUNT) {
869 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
870 goto msg_handled;
871 }
872
873 entry = &channel_message_table[hdr->msgtype];
874 if (entry->handler_type == VMHT_BLOCKING) {
875 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
876 if (ctx == NULL)
877 return;
878
879 INIT_WORK(&ctx->work, vmbus_onmessage_work);
880 memcpy(&ctx->msg, msg, sizeof(*msg));
881
882 queue_work(vmbus_connection.work_queue, &ctx->work);
883 } else
884 entry->message_handler(hdr);
885
886 msg_handled:
887 vmbus_signal_eom(msg, message_type);
888 }
889
890
891 /*
892 * Direct callback for channels using other deferred processing
893 */
894 static void vmbus_channel_isr(struct vmbus_channel *channel)
895 {
896 void (*callback_fn)(void *);
897
898 callback_fn = READ_ONCE(channel->onchannel_callback);
899 if (likely(callback_fn != NULL))
900 (*callback_fn)(channel->channel_callback_context);
901 }
902
903 /*
904 * Schedule all channels with events pending
905 */
906 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
907 {
908 unsigned long *recv_int_page;
909 u32 maxbits, relid;
910
911 if (vmbus_proto_version < VERSION_WIN8) {
912 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
913 recv_int_page = vmbus_connection.recv_int_page;
914 } else {
915 /*
916 * When the host is win8 and beyond, the event page
917 * can be directly checked to get the id of the channel
918 * that has the interrupt pending.
919 */
920 void *page_addr = hv_cpu->synic_event_page;
921 union hv_synic_event_flags *event
922 = (union hv_synic_event_flags *)page_addr +
923 VMBUS_MESSAGE_SINT;
924
925 maxbits = HV_EVENT_FLAGS_COUNT;
926 recv_int_page = event->flags;
927 }
928
929 if (unlikely(!recv_int_page))
930 return;
931
932 for_each_set_bit(relid, recv_int_page, maxbits) {
933 struct vmbus_channel *channel;
934
935 if (!sync_test_and_clear_bit(relid, recv_int_page))
936 continue;
937
938 /* Special case - vmbus channel protocol msg */
939 if (relid == 0)
940 continue;
941
942 /* Find channel based on relid */
943 list_for_each_entry(channel, &hv_cpu->chan_list, percpu_list) {
944 if (channel->offermsg.child_relid != relid)
945 continue;
946
947 switch (channel->callback_mode) {
948 case HV_CALL_ISR:
949 vmbus_channel_isr(channel);
950 break;
951
952 case HV_CALL_BATCHED:
953 hv_begin_read(&channel->inbound);
954 /* fallthrough */
955 case HV_CALL_DIRECT:
956 tasklet_schedule(&channel->callback_event);
957 }
958 }
959 }
960 }
961
962 static void vmbus_isr(void)
963 {
964 struct hv_per_cpu_context *hv_cpu
965 = this_cpu_ptr(hv_context.cpu_context);
966 void *page_addr = hv_cpu->synic_event_page;
967 struct hv_message *msg;
968 union hv_synic_event_flags *event;
969 bool handled = false;
970
971 if (unlikely(page_addr == NULL))
972 return;
973
974 event = (union hv_synic_event_flags *)page_addr +
975 VMBUS_MESSAGE_SINT;
976 /*
977 * Check for events before checking for messages. This is the order
978 * in which events and messages are checked in Windows guests on
979 * Hyper-V, and the Windows team suggested we do the same.
980 */
981
982 if ((vmbus_proto_version == VERSION_WS2008) ||
983 (vmbus_proto_version == VERSION_WIN7)) {
984
985 /* Since we are a child, we only need to check bit 0 */
986 if (sync_test_and_clear_bit(0, event->flags))
987 handled = true;
988 } else {
989 /*
990 * Our host is win8 or above. The signaling mechanism
991 * has changed and we can directly look at the event page.
992 * If bit n is set then we have an interrup on the channel
993 * whose id is n.
994 */
995 handled = true;
996 }
997
998 if (handled)
999 vmbus_chan_sched(hv_cpu);
1000
1001 page_addr = hv_cpu->synic_message_page;
1002 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1003
1004 /* Check if there are actual msgs to be processed */
1005 if (msg->header.message_type != HVMSG_NONE) {
1006 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1007 hv_process_timer_expiration(msg, hv_cpu);
1008 else
1009 tasklet_schedule(&hv_cpu->msg_dpc);
1010 }
1011
1012 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1013 }
1014
1015
1016 /*
1017 * vmbus_bus_init -Main vmbus driver initialization routine.
1018 *
1019 * Here, we
1020 * - initialize the vmbus driver context
1021 * - invoke the vmbus hv main init routine
1022 * - retrieve the channel offers
1023 */
1024 static int vmbus_bus_init(void)
1025 {
1026 int ret;
1027
1028 /* Hypervisor initialization...setup hypercall page..etc */
1029 ret = hv_init();
1030 if (ret != 0) {
1031 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1032 return ret;
1033 }
1034
1035 ret = bus_register(&hv_bus);
1036 if (ret)
1037 return ret;
1038
1039 hv_setup_vmbus_irq(vmbus_isr);
1040
1041 ret = hv_synic_alloc();
1042 if (ret)
1043 goto err_alloc;
1044 /*
1045 * Initialize the per-cpu interrupt state and
1046 * connect to the host.
1047 */
1048 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1049 hv_synic_init, hv_synic_cleanup);
1050 if (ret < 0)
1051 goto err_alloc;
1052 hyperv_cpuhp_online = ret;
1053
1054 ret = vmbus_connect();
1055 if (ret)
1056 goto err_connect;
1057
1058 /*
1059 * Only register if the crash MSRs are available
1060 */
1061 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1062 register_die_notifier(&hyperv_die_block);
1063 atomic_notifier_chain_register(&panic_notifier_list,
1064 &hyperv_panic_block);
1065 }
1066
1067 vmbus_request_offers();
1068
1069 return 0;
1070
1071 err_connect:
1072 cpuhp_remove_state(hyperv_cpuhp_online);
1073 err_alloc:
1074 hv_synic_free();
1075 hv_remove_vmbus_irq();
1076
1077 bus_unregister(&hv_bus);
1078
1079 return ret;
1080 }
1081
1082 /**
1083 * __vmbus_child_driver_register() - Register a vmbus's driver
1084 * @hv_driver: Pointer to driver structure you want to register
1085 * @owner: owner module of the drv
1086 * @mod_name: module name string
1087 *
1088 * Registers the given driver with Linux through the 'driver_register()' call
1089 * and sets up the hyper-v vmbus handling for this driver.
1090 * It will return the state of the 'driver_register()' call.
1091 *
1092 */
1093 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1094 {
1095 int ret;
1096
1097 pr_info("registering driver %s\n", hv_driver->name);
1098
1099 ret = vmbus_exists();
1100 if (ret < 0)
1101 return ret;
1102
1103 hv_driver->driver.name = hv_driver->name;
1104 hv_driver->driver.owner = owner;
1105 hv_driver->driver.mod_name = mod_name;
1106 hv_driver->driver.bus = &hv_bus;
1107
1108 spin_lock_init(&hv_driver->dynids.lock);
1109 INIT_LIST_HEAD(&hv_driver->dynids.list);
1110
1111 ret = driver_register(&hv_driver->driver);
1112
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1116
1117 /**
1118 * vmbus_driver_unregister() - Unregister a vmbus's driver
1119 * @hv_driver: Pointer to driver structure you want to
1120 * un-register
1121 *
1122 * Un-register the given driver that was previous registered with a call to
1123 * vmbus_driver_register()
1124 */
1125 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1126 {
1127 pr_info("unregistering driver %s\n", hv_driver->name);
1128
1129 if (!vmbus_exists()) {
1130 driver_unregister(&hv_driver->driver);
1131 vmbus_free_dynids(hv_driver);
1132 }
1133 }
1134 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1135
1136 /*
1137 * vmbus_device_create - Creates and registers a new child device
1138 * on the vmbus.
1139 */
1140 struct hv_device *vmbus_device_create(const uuid_le *type,
1141 const uuid_le *instance,
1142 struct vmbus_channel *channel)
1143 {
1144 struct hv_device *child_device_obj;
1145
1146 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1147 if (!child_device_obj) {
1148 pr_err("Unable to allocate device object for child device\n");
1149 return NULL;
1150 }
1151
1152 child_device_obj->channel = channel;
1153 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1154 memcpy(&child_device_obj->dev_instance, instance,
1155 sizeof(uuid_le));
1156 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1157
1158
1159 return child_device_obj;
1160 }
1161
1162 /*
1163 * vmbus_device_register - Register the child device
1164 */
1165 int vmbus_device_register(struct hv_device *child_device_obj)
1166 {
1167 int ret = 0;
1168
1169 dev_set_name(&child_device_obj->device, "%pUl",
1170 child_device_obj->channel->offermsg.offer.if_instance.b);
1171
1172 child_device_obj->device.bus = &hv_bus;
1173 child_device_obj->device.parent = &hv_acpi_dev->dev;
1174 child_device_obj->device.release = vmbus_device_release;
1175
1176 /*
1177 * Register with the LDM. This will kick off the driver/device
1178 * binding...which will eventually call vmbus_match() and vmbus_probe()
1179 */
1180 ret = device_register(&child_device_obj->device);
1181
1182 if (ret)
1183 pr_err("Unable to register child device\n");
1184 else
1185 pr_debug("child device %s registered\n",
1186 dev_name(&child_device_obj->device));
1187
1188 return ret;
1189 }
1190
1191 /*
1192 * vmbus_device_unregister - Remove the specified child device
1193 * from the vmbus.
1194 */
1195 void vmbus_device_unregister(struct hv_device *device_obj)
1196 {
1197 pr_debug("child device %s unregistered\n",
1198 dev_name(&device_obj->device));
1199
1200 /*
1201 * Kick off the process of unregistering the device.
1202 * This will call vmbus_remove() and eventually vmbus_device_release()
1203 */
1204 device_unregister(&device_obj->device);
1205 }
1206
1207
1208 /*
1209 * VMBUS is an acpi enumerated device. Get the information we
1210 * need from DSDT.
1211 */
1212 #define VTPM_BASE_ADDRESS 0xfed40000
1213 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1214 {
1215 resource_size_t start = 0;
1216 resource_size_t end = 0;
1217 struct resource *new_res;
1218 struct resource **old_res = &hyperv_mmio;
1219 struct resource **prev_res = NULL;
1220
1221 switch (res->type) {
1222
1223 /*
1224 * "Address" descriptors are for bus windows. Ignore
1225 * "memory" descriptors, which are for registers on
1226 * devices.
1227 */
1228 case ACPI_RESOURCE_TYPE_ADDRESS32:
1229 start = res->data.address32.address.minimum;
1230 end = res->data.address32.address.maximum;
1231 break;
1232
1233 case ACPI_RESOURCE_TYPE_ADDRESS64:
1234 start = res->data.address64.address.minimum;
1235 end = res->data.address64.address.maximum;
1236 break;
1237
1238 default:
1239 /* Unused resource type */
1240 return AE_OK;
1241
1242 }
1243 /*
1244 * Ignore ranges that are below 1MB, as they're not
1245 * necessary or useful here.
1246 */
1247 if (end < 0x100000)
1248 return AE_OK;
1249
1250 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1251 if (!new_res)
1252 return AE_NO_MEMORY;
1253
1254 /* If this range overlaps the virtual TPM, truncate it. */
1255 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1256 end = VTPM_BASE_ADDRESS;
1257
1258 new_res->name = "hyperv mmio";
1259 new_res->flags = IORESOURCE_MEM;
1260 new_res->start = start;
1261 new_res->end = end;
1262
1263 /*
1264 * If two ranges are adjacent, merge them.
1265 */
1266 do {
1267 if (!*old_res) {
1268 *old_res = new_res;
1269 break;
1270 }
1271
1272 if (((*old_res)->end + 1) == new_res->start) {
1273 (*old_res)->end = new_res->end;
1274 kfree(new_res);
1275 break;
1276 }
1277
1278 if ((*old_res)->start == new_res->end + 1) {
1279 (*old_res)->start = new_res->start;
1280 kfree(new_res);
1281 break;
1282 }
1283
1284 if ((*old_res)->start > new_res->end) {
1285 new_res->sibling = *old_res;
1286 if (prev_res)
1287 (*prev_res)->sibling = new_res;
1288 *old_res = new_res;
1289 break;
1290 }
1291
1292 prev_res = old_res;
1293 old_res = &(*old_res)->sibling;
1294
1295 } while (1);
1296
1297 return AE_OK;
1298 }
1299
1300 static int vmbus_acpi_remove(struct acpi_device *device)
1301 {
1302 struct resource *cur_res;
1303 struct resource *next_res;
1304
1305 if (hyperv_mmio) {
1306 if (fb_mmio) {
1307 __release_region(hyperv_mmio, fb_mmio->start,
1308 resource_size(fb_mmio));
1309 fb_mmio = NULL;
1310 }
1311
1312 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1313 next_res = cur_res->sibling;
1314 kfree(cur_res);
1315 }
1316 }
1317
1318 return 0;
1319 }
1320
1321 static void vmbus_reserve_fb(void)
1322 {
1323 int size;
1324 /*
1325 * Make a claim for the frame buffer in the resource tree under the
1326 * first node, which will be the one below 4GB. The length seems to
1327 * be underreported, particularly in a Generation 1 VM. So start out
1328 * reserving a larger area and make it smaller until it succeeds.
1329 */
1330
1331 if (screen_info.lfb_base) {
1332 if (efi_enabled(EFI_BOOT))
1333 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1334 else
1335 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1336
1337 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1338 fb_mmio = __request_region(hyperv_mmio,
1339 screen_info.lfb_base, size,
1340 fb_mmio_name, 0);
1341 }
1342 }
1343 }
1344
1345 /**
1346 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1347 * @new: If successful, supplied a pointer to the
1348 * allocated MMIO space.
1349 * @device_obj: Identifies the caller
1350 * @min: Minimum guest physical address of the
1351 * allocation
1352 * @max: Maximum guest physical address
1353 * @size: Size of the range to be allocated
1354 * @align: Alignment of the range to be allocated
1355 * @fb_overlap_ok: Whether this allocation can be allowed
1356 * to overlap the video frame buffer.
1357 *
1358 * This function walks the resources granted to VMBus by the
1359 * _CRS object in the ACPI namespace underneath the parent
1360 * "bridge" whether that's a root PCI bus in the Generation 1
1361 * case or a Module Device in the Generation 2 case. It then
1362 * attempts to allocate from the global MMIO pool in a way that
1363 * matches the constraints supplied in these parameters and by
1364 * that _CRS.
1365 *
1366 * Return: 0 on success, -errno on failure
1367 */
1368 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1369 resource_size_t min, resource_size_t max,
1370 resource_size_t size, resource_size_t align,
1371 bool fb_overlap_ok)
1372 {
1373 struct resource *iter, *shadow;
1374 resource_size_t range_min, range_max, start;
1375 const char *dev_n = dev_name(&device_obj->device);
1376 int retval;
1377
1378 retval = -ENXIO;
1379 down(&hyperv_mmio_lock);
1380
1381 /*
1382 * If overlaps with frame buffers are allowed, then first attempt to
1383 * make the allocation from within the reserved region. Because it
1384 * is already reserved, no shadow allocation is necessary.
1385 */
1386 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1387 !(max < fb_mmio->start)) {
1388
1389 range_min = fb_mmio->start;
1390 range_max = fb_mmio->end;
1391 start = (range_min + align - 1) & ~(align - 1);
1392 for (; start + size - 1 <= range_max; start += align) {
1393 *new = request_mem_region_exclusive(start, size, dev_n);
1394 if (*new) {
1395 retval = 0;
1396 goto exit;
1397 }
1398 }
1399 }
1400
1401 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1402 if ((iter->start >= max) || (iter->end <= min))
1403 continue;
1404
1405 range_min = iter->start;
1406 range_max = iter->end;
1407 start = (range_min + align - 1) & ~(align - 1);
1408 for (; start + size - 1 <= range_max; start += align) {
1409 shadow = __request_region(iter, start, size, NULL,
1410 IORESOURCE_BUSY);
1411 if (!shadow)
1412 continue;
1413
1414 *new = request_mem_region_exclusive(start, size, dev_n);
1415 if (*new) {
1416 shadow->name = (char *)*new;
1417 retval = 0;
1418 goto exit;
1419 }
1420
1421 __release_region(iter, start, size);
1422 }
1423 }
1424
1425 exit:
1426 up(&hyperv_mmio_lock);
1427 return retval;
1428 }
1429 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1430
1431 /**
1432 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1433 * @start: Base address of region to release.
1434 * @size: Size of the range to be allocated
1435 *
1436 * This function releases anything requested by
1437 * vmbus_mmio_allocate().
1438 */
1439 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1440 {
1441 struct resource *iter;
1442
1443 down(&hyperv_mmio_lock);
1444 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1445 if ((iter->start >= start + size) || (iter->end <= start))
1446 continue;
1447
1448 __release_region(iter, start, size);
1449 }
1450 release_mem_region(start, size);
1451 up(&hyperv_mmio_lock);
1452
1453 }
1454 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1455
1456 /**
1457 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1458 * @cpu_number: CPU number in Linux terms
1459 *
1460 * This function returns the mapping between the Linux processor
1461 * number and the hypervisor's virtual processor number, useful
1462 * in making hypercalls and such that talk about specific
1463 * processors.
1464 *
1465 * Return: Virtual processor number in Hyper-V terms
1466 */
1467 int vmbus_cpu_number_to_vp_number(int cpu_number)
1468 {
1469 return hv_context.vp_index[cpu_number];
1470 }
1471 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1472
1473 static int vmbus_acpi_add(struct acpi_device *device)
1474 {
1475 acpi_status result;
1476 int ret_val = -ENODEV;
1477 struct acpi_device *ancestor;
1478
1479 hv_acpi_dev = device;
1480
1481 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1482 vmbus_walk_resources, NULL);
1483
1484 if (ACPI_FAILURE(result))
1485 goto acpi_walk_err;
1486 /*
1487 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1488 * firmware) is the VMOD that has the mmio ranges. Get that.
1489 */
1490 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1491 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1492 vmbus_walk_resources, NULL);
1493
1494 if (ACPI_FAILURE(result))
1495 continue;
1496 if (hyperv_mmio) {
1497 vmbus_reserve_fb();
1498 break;
1499 }
1500 }
1501 ret_val = 0;
1502
1503 acpi_walk_err:
1504 complete(&probe_event);
1505 if (ret_val)
1506 vmbus_acpi_remove(device);
1507 return ret_val;
1508 }
1509
1510 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1511 {"VMBUS", 0},
1512 {"VMBus", 0},
1513 {"", 0},
1514 };
1515 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1516
1517 static struct acpi_driver vmbus_acpi_driver = {
1518 .name = "vmbus",
1519 .ids = vmbus_acpi_device_ids,
1520 .ops = {
1521 .add = vmbus_acpi_add,
1522 .remove = vmbus_acpi_remove,
1523 },
1524 };
1525
1526 static void hv_kexec_handler(void)
1527 {
1528 hv_synic_clockevents_cleanup();
1529 vmbus_initiate_unload(false);
1530 vmbus_connection.conn_state = DISCONNECTED;
1531 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1532 mb();
1533 cpuhp_remove_state(hyperv_cpuhp_online);
1534 hyperv_cleanup();
1535 };
1536
1537 static void hv_crash_handler(struct pt_regs *regs)
1538 {
1539 vmbus_initiate_unload(true);
1540 /*
1541 * In crash handler we can't schedule synic cleanup for all CPUs,
1542 * doing the cleanup for current CPU only. This should be sufficient
1543 * for kdump.
1544 */
1545 vmbus_connection.conn_state = DISCONNECTED;
1546 hv_synic_cleanup(smp_processor_id());
1547 hyperv_cleanup();
1548 };
1549
1550 static int __init hv_acpi_init(void)
1551 {
1552 int ret, t;
1553
1554 if (x86_hyper != &x86_hyper_ms_hyperv)
1555 return -ENODEV;
1556
1557 init_completion(&probe_event);
1558
1559 /*
1560 * Get ACPI resources first.
1561 */
1562 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1563
1564 if (ret)
1565 return ret;
1566
1567 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1568 if (t == 0) {
1569 ret = -ETIMEDOUT;
1570 goto cleanup;
1571 }
1572
1573 ret = vmbus_bus_init();
1574 if (ret)
1575 goto cleanup;
1576
1577 hv_setup_kexec_handler(hv_kexec_handler);
1578 hv_setup_crash_handler(hv_crash_handler);
1579
1580 return 0;
1581
1582 cleanup:
1583 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1584 hv_acpi_dev = NULL;
1585 return ret;
1586 }
1587
1588 static void __exit vmbus_exit(void)
1589 {
1590 int cpu;
1591
1592 hv_remove_kexec_handler();
1593 hv_remove_crash_handler();
1594 vmbus_connection.conn_state = DISCONNECTED;
1595 hv_synic_clockevents_cleanup();
1596 vmbus_disconnect();
1597 hv_remove_vmbus_irq();
1598 for_each_online_cpu(cpu) {
1599 struct hv_per_cpu_context *hv_cpu
1600 = per_cpu_ptr(hv_context.cpu_context, cpu);
1601
1602 tasklet_kill(&hv_cpu->msg_dpc);
1603 }
1604 vmbus_free_channels();
1605
1606 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1607 unregister_die_notifier(&hyperv_die_block);
1608 atomic_notifier_chain_unregister(&panic_notifier_list,
1609 &hyperv_panic_block);
1610 }
1611 bus_unregister(&hv_bus);
1612
1613 cpuhp_remove_state(hyperv_cpuhp_online);
1614 hv_synic_free();
1615 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1616 }
1617
1618
1619 MODULE_LICENSE("GPL");
1620
1621 subsys_initcall(hv_acpi_init);
1622 module_exit(vmbus_exit);