]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hv/vmbus_drv.c
Drivers: hv: restore hypervcall page cleanup before kexec
[mirror_ubuntu-zesty-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49 struct list_head node;
50 struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57 static int hyperv_cpuhp_online;
58
59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
60 void *args)
61 {
62 struct pt_regs *regs;
63
64 regs = current_pt_regs();
65
66 hyperv_report_panic(regs);
67 return NOTIFY_DONE;
68 }
69
70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
71 void *args)
72 {
73 struct die_args *die = (struct die_args *)args;
74 struct pt_regs *regs = die->regs;
75
76 hyperv_report_panic(regs);
77 return NOTIFY_DONE;
78 }
79
80 static struct notifier_block hyperv_die_block = {
81 .notifier_call = hyperv_die_event,
82 };
83 static struct notifier_block hyperv_panic_block = {
84 .notifier_call = hyperv_panic_event,
85 };
86
87 static const char *fb_mmio_name = "fb_range";
88 static struct resource *fb_mmio;
89 static struct resource *hyperv_mmio;
90 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91
92 static int vmbus_exists(void)
93 {
94 if (hv_acpi_dev == NULL)
95 return -ENODEV;
96
97 return 0;
98 }
99
100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
102 {
103 int i;
104 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
105 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
106 }
107
108 static u8 channel_monitor_group(struct vmbus_channel *channel)
109 {
110 return (u8)channel->offermsg.monitorid / 32;
111 }
112
113 static u8 channel_monitor_offset(struct vmbus_channel *channel)
114 {
115 return (u8)channel->offermsg.monitorid % 32;
116 }
117
118 static u32 channel_pending(struct vmbus_channel *channel,
119 struct hv_monitor_page *monitor_page)
120 {
121 u8 monitor_group = channel_monitor_group(channel);
122 return monitor_page->trigger_group[monitor_group].pending;
123 }
124
125 static u32 channel_latency(struct vmbus_channel *channel,
126 struct hv_monitor_page *monitor_page)
127 {
128 u8 monitor_group = channel_monitor_group(channel);
129 u8 monitor_offset = channel_monitor_offset(channel);
130 return monitor_page->latency[monitor_group][monitor_offset];
131 }
132
133 static u32 channel_conn_id(struct vmbus_channel *channel,
134 struct hv_monitor_page *monitor_page)
135 {
136 u8 monitor_group = channel_monitor_group(channel);
137 u8 monitor_offset = channel_monitor_offset(channel);
138 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
139 }
140
141 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
142 char *buf)
143 {
144 struct hv_device *hv_dev = device_to_hv_device(dev);
145
146 if (!hv_dev->channel)
147 return -ENODEV;
148 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
149 }
150 static DEVICE_ATTR_RO(id);
151
152 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
153 char *buf)
154 {
155 struct hv_device *hv_dev = device_to_hv_device(dev);
156
157 if (!hv_dev->channel)
158 return -ENODEV;
159 return sprintf(buf, "%d\n", hv_dev->channel->state);
160 }
161 static DEVICE_ATTR_RO(state);
162
163 static ssize_t monitor_id_show(struct device *dev,
164 struct device_attribute *dev_attr, char *buf)
165 {
166 struct hv_device *hv_dev = device_to_hv_device(dev);
167
168 if (!hv_dev->channel)
169 return -ENODEV;
170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
171 }
172 static DEVICE_ATTR_RO(monitor_id);
173
174 static ssize_t class_id_show(struct device *dev,
175 struct device_attribute *dev_attr, char *buf)
176 {
177 struct hv_device *hv_dev = device_to_hv_device(dev);
178
179 if (!hv_dev->channel)
180 return -ENODEV;
181 return sprintf(buf, "{%pUl}\n",
182 hv_dev->channel->offermsg.offer.if_type.b);
183 }
184 static DEVICE_ATTR_RO(class_id);
185
186 static ssize_t device_id_show(struct device *dev,
187 struct device_attribute *dev_attr, char *buf)
188 {
189 struct hv_device *hv_dev = device_to_hv_device(dev);
190
191 if (!hv_dev->channel)
192 return -ENODEV;
193 return sprintf(buf, "{%pUl}\n",
194 hv_dev->channel->offermsg.offer.if_instance.b);
195 }
196 static DEVICE_ATTR_RO(device_id);
197
198 static ssize_t modalias_show(struct device *dev,
199 struct device_attribute *dev_attr, char *buf)
200 {
201 struct hv_device *hv_dev = device_to_hv_device(dev);
202 char alias_name[VMBUS_ALIAS_LEN + 1];
203
204 print_alias_name(hv_dev, alias_name);
205 return sprintf(buf, "vmbus:%s\n", alias_name);
206 }
207 static DEVICE_ATTR_RO(modalias);
208
209 static ssize_t server_monitor_pending_show(struct device *dev,
210 struct device_attribute *dev_attr,
211 char *buf)
212 {
213 struct hv_device *hv_dev = device_to_hv_device(dev);
214
215 if (!hv_dev->channel)
216 return -ENODEV;
217 return sprintf(buf, "%d\n",
218 channel_pending(hv_dev->channel,
219 vmbus_connection.monitor_pages[1]));
220 }
221 static DEVICE_ATTR_RO(server_monitor_pending);
222
223 static ssize_t client_monitor_pending_show(struct device *dev,
224 struct device_attribute *dev_attr,
225 char *buf)
226 {
227 struct hv_device *hv_dev = device_to_hv_device(dev);
228
229 if (!hv_dev->channel)
230 return -ENODEV;
231 return sprintf(buf, "%d\n",
232 channel_pending(hv_dev->channel,
233 vmbus_connection.monitor_pages[1]));
234 }
235 static DEVICE_ATTR_RO(client_monitor_pending);
236
237 static ssize_t server_monitor_latency_show(struct device *dev,
238 struct device_attribute *dev_attr,
239 char *buf)
240 {
241 struct hv_device *hv_dev = device_to_hv_device(dev);
242
243 if (!hv_dev->channel)
244 return -ENODEV;
245 return sprintf(buf, "%d\n",
246 channel_latency(hv_dev->channel,
247 vmbus_connection.monitor_pages[0]));
248 }
249 static DEVICE_ATTR_RO(server_monitor_latency);
250
251 static ssize_t client_monitor_latency_show(struct device *dev,
252 struct device_attribute *dev_attr,
253 char *buf)
254 {
255 struct hv_device *hv_dev = device_to_hv_device(dev);
256
257 if (!hv_dev->channel)
258 return -ENODEV;
259 return sprintf(buf, "%d\n",
260 channel_latency(hv_dev->channel,
261 vmbus_connection.monitor_pages[1]));
262 }
263 static DEVICE_ATTR_RO(client_monitor_latency);
264
265 static ssize_t server_monitor_conn_id_show(struct device *dev,
266 struct device_attribute *dev_attr,
267 char *buf)
268 {
269 struct hv_device *hv_dev = device_to_hv_device(dev);
270
271 if (!hv_dev->channel)
272 return -ENODEV;
273 return sprintf(buf, "%d\n",
274 channel_conn_id(hv_dev->channel,
275 vmbus_connection.monitor_pages[0]));
276 }
277 static DEVICE_ATTR_RO(server_monitor_conn_id);
278
279 static ssize_t client_monitor_conn_id_show(struct device *dev,
280 struct device_attribute *dev_attr,
281 char *buf)
282 {
283 struct hv_device *hv_dev = device_to_hv_device(dev);
284
285 if (!hv_dev->channel)
286 return -ENODEV;
287 return sprintf(buf, "%d\n",
288 channel_conn_id(hv_dev->channel,
289 vmbus_connection.monitor_pages[1]));
290 }
291 static DEVICE_ATTR_RO(client_monitor_conn_id);
292
293 static ssize_t out_intr_mask_show(struct device *dev,
294 struct device_attribute *dev_attr, char *buf)
295 {
296 struct hv_device *hv_dev = device_to_hv_device(dev);
297 struct hv_ring_buffer_debug_info outbound;
298
299 if (!hv_dev->channel)
300 return -ENODEV;
301 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
302 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
303 }
304 static DEVICE_ATTR_RO(out_intr_mask);
305
306 static ssize_t out_read_index_show(struct device *dev,
307 struct device_attribute *dev_attr, char *buf)
308 {
309 struct hv_device *hv_dev = device_to_hv_device(dev);
310 struct hv_ring_buffer_debug_info outbound;
311
312 if (!hv_dev->channel)
313 return -ENODEV;
314 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
315 return sprintf(buf, "%d\n", outbound.current_read_index);
316 }
317 static DEVICE_ATTR_RO(out_read_index);
318
319 static ssize_t out_write_index_show(struct device *dev,
320 struct device_attribute *dev_attr,
321 char *buf)
322 {
323 struct hv_device *hv_dev = device_to_hv_device(dev);
324 struct hv_ring_buffer_debug_info outbound;
325
326 if (!hv_dev->channel)
327 return -ENODEV;
328 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
329 return sprintf(buf, "%d\n", outbound.current_write_index);
330 }
331 static DEVICE_ATTR_RO(out_write_index);
332
333 static ssize_t out_read_bytes_avail_show(struct device *dev,
334 struct device_attribute *dev_attr,
335 char *buf)
336 {
337 struct hv_device *hv_dev = device_to_hv_device(dev);
338 struct hv_ring_buffer_debug_info outbound;
339
340 if (!hv_dev->channel)
341 return -ENODEV;
342 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
343 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
344 }
345 static DEVICE_ATTR_RO(out_read_bytes_avail);
346
347 static ssize_t out_write_bytes_avail_show(struct device *dev,
348 struct device_attribute *dev_attr,
349 char *buf)
350 {
351 struct hv_device *hv_dev = device_to_hv_device(dev);
352 struct hv_ring_buffer_debug_info outbound;
353
354 if (!hv_dev->channel)
355 return -ENODEV;
356 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
357 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
358 }
359 static DEVICE_ATTR_RO(out_write_bytes_avail);
360
361 static ssize_t in_intr_mask_show(struct device *dev,
362 struct device_attribute *dev_attr, char *buf)
363 {
364 struct hv_device *hv_dev = device_to_hv_device(dev);
365 struct hv_ring_buffer_debug_info inbound;
366
367 if (!hv_dev->channel)
368 return -ENODEV;
369 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
370 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
371 }
372 static DEVICE_ATTR_RO(in_intr_mask);
373
374 static ssize_t in_read_index_show(struct device *dev,
375 struct device_attribute *dev_attr, char *buf)
376 {
377 struct hv_device *hv_dev = device_to_hv_device(dev);
378 struct hv_ring_buffer_debug_info inbound;
379
380 if (!hv_dev->channel)
381 return -ENODEV;
382 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
383 return sprintf(buf, "%d\n", inbound.current_read_index);
384 }
385 static DEVICE_ATTR_RO(in_read_index);
386
387 static ssize_t in_write_index_show(struct device *dev,
388 struct device_attribute *dev_attr, char *buf)
389 {
390 struct hv_device *hv_dev = device_to_hv_device(dev);
391 struct hv_ring_buffer_debug_info inbound;
392
393 if (!hv_dev->channel)
394 return -ENODEV;
395 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
396 return sprintf(buf, "%d\n", inbound.current_write_index);
397 }
398 static DEVICE_ATTR_RO(in_write_index);
399
400 static ssize_t in_read_bytes_avail_show(struct device *dev,
401 struct device_attribute *dev_attr,
402 char *buf)
403 {
404 struct hv_device *hv_dev = device_to_hv_device(dev);
405 struct hv_ring_buffer_debug_info inbound;
406
407 if (!hv_dev->channel)
408 return -ENODEV;
409 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
410 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
411 }
412 static DEVICE_ATTR_RO(in_read_bytes_avail);
413
414 static ssize_t in_write_bytes_avail_show(struct device *dev,
415 struct device_attribute *dev_attr,
416 char *buf)
417 {
418 struct hv_device *hv_dev = device_to_hv_device(dev);
419 struct hv_ring_buffer_debug_info inbound;
420
421 if (!hv_dev->channel)
422 return -ENODEV;
423 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
425 }
426 static DEVICE_ATTR_RO(in_write_bytes_avail);
427
428 static ssize_t channel_vp_mapping_show(struct device *dev,
429 struct device_attribute *dev_attr,
430 char *buf)
431 {
432 struct hv_device *hv_dev = device_to_hv_device(dev);
433 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
434 unsigned long flags;
435 int buf_size = PAGE_SIZE, n_written, tot_written;
436 struct list_head *cur;
437
438 if (!channel)
439 return -ENODEV;
440
441 tot_written = snprintf(buf, buf_size, "%u:%u\n",
442 channel->offermsg.child_relid, channel->target_cpu);
443
444 spin_lock_irqsave(&channel->lock, flags);
445
446 list_for_each(cur, &channel->sc_list) {
447 if (tot_written >= buf_size - 1)
448 break;
449
450 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
451 n_written = scnprintf(buf + tot_written,
452 buf_size - tot_written,
453 "%u:%u\n",
454 cur_sc->offermsg.child_relid,
455 cur_sc->target_cpu);
456 tot_written += n_written;
457 }
458
459 spin_unlock_irqrestore(&channel->lock, flags);
460
461 return tot_written;
462 }
463 static DEVICE_ATTR_RO(channel_vp_mapping);
464
465 static ssize_t vendor_show(struct device *dev,
466 struct device_attribute *dev_attr,
467 char *buf)
468 {
469 struct hv_device *hv_dev = device_to_hv_device(dev);
470 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
471 }
472 static DEVICE_ATTR_RO(vendor);
473
474 static ssize_t device_show(struct device *dev,
475 struct device_attribute *dev_attr,
476 char *buf)
477 {
478 struct hv_device *hv_dev = device_to_hv_device(dev);
479 return sprintf(buf, "0x%x\n", hv_dev->device_id);
480 }
481 static DEVICE_ATTR_RO(device);
482
483 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
484 static struct attribute *vmbus_dev_attrs[] = {
485 &dev_attr_id.attr,
486 &dev_attr_state.attr,
487 &dev_attr_monitor_id.attr,
488 &dev_attr_class_id.attr,
489 &dev_attr_device_id.attr,
490 &dev_attr_modalias.attr,
491 &dev_attr_server_monitor_pending.attr,
492 &dev_attr_client_monitor_pending.attr,
493 &dev_attr_server_monitor_latency.attr,
494 &dev_attr_client_monitor_latency.attr,
495 &dev_attr_server_monitor_conn_id.attr,
496 &dev_attr_client_monitor_conn_id.attr,
497 &dev_attr_out_intr_mask.attr,
498 &dev_attr_out_read_index.attr,
499 &dev_attr_out_write_index.attr,
500 &dev_attr_out_read_bytes_avail.attr,
501 &dev_attr_out_write_bytes_avail.attr,
502 &dev_attr_in_intr_mask.attr,
503 &dev_attr_in_read_index.attr,
504 &dev_attr_in_write_index.attr,
505 &dev_attr_in_read_bytes_avail.attr,
506 &dev_attr_in_write_bytes_avail.attr,
507 &dev_attr_channel_vp_mapping.attr,
508 &dev_attr_vendor.attr,
509 &dev_attr_device.attr,
510 NULL,
511 };
512 ATTRIBUTE_GROUPS(vmbus_dev);
513
514 /*
515 * vmbus_uevent - add uevent for our device
516 *
517 * This routine is invoked when a device is added or removed on the vmbus to
518 * generate a uevent to udev in the userspace. The udev will then look at its
519 * rule and the uevent generated here to load the appropriate driver
520 *
521 * The alias string will be of the form vmbus:guid where guid is the string
522 * representation of the device guid (each byte of the guid will be
523 * represented with two hex characters.
524 */
525 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
526 {
527 struct hv_device *dev = device_to_hv_device(device);
528 int ret;
529 char alias_name[VMBUS_ALIAS_LEN + 1];
530
531 print_alias_name(dev, alias_name);
532 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
533 return ret;
534 }
535
536 static const uuid_le null_guid;
537
538 static inline bool is_null_guid(const uuid_le *guid)
539 {
540 if (uuid_le_cmp(*guid, null_guid))
541 return false;
542 return true;
543 }
544
545 /*
546 * Return a matching hv_vmbus_device_id pointer.
547 * If there is no match, return NULL.
548 */
549 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
550 const uuid_le *guid)
551 {
552 const struct hv_vmbus_device_id *id = NULL;
553 struct vmbus_dynid *dynid;
554
555 /* Look at the dynamic ids first, before the static ones */
556 spin_lock(&drv->dynids.lock);
557 list_for_each_entry(dynid, &drv->dynids.list, node) {
558 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
559 id = &dynid->id;
560 break;
561 }
562 }
563 spin_unlock(&drv->dynids.lock);
564
565 if (id)
566 return id;
567
568 id = drv->id_table;
569 if (id == NULL)
570 return NULL; /* empty device table */
571
572 for (; !is_null_guid(&id->guid); id++)
573 if (!uuid_le_cmp(id->guid, *guid))
574 return id;
575
576 return NULL;
577 }
578
579 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
580 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
581 {
582 struct vmbus_dynid *dynid;
583
584 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
585 if (!dynid)
586 return -ENOMEM;
587
588 dynid->id.guid = *guid;
589
590 spin_lock(&drv->dynids.lock);
591 list_add_tail(&dynid->node, &drv->dynids.list);
592 spin_unlock(&drv->dynids.lock);
593
594 return driver_attach(&drv->driver);
595 }
596
597 static void vmbus_free_dynids(struct hv_driver *drv)
598 {
599 struct vmbus_dynid *dynid, *n;
600
601 spin_lock(&drv->dynids.lock);
602 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
603 list_del(&dynid->node);
604 kfree(dynid);
605 }
606 spin_unlock(&drv->dynids.lock);
607 }
608
609 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
610 static int get_uuid_le(const char *str, uuid_le *uu)
611 {
612 unsigned int b[16];
613 int i;
614
615 if (strlen(str) < 37)
616 return -1;
617
618 for (i = 0; i < 36; i++) {
619 switch (i) {
620 case 8: case 13: case 18: case 23:
621 if (str[i] != '-')
622 return -1;
623 break;
624 default:
625 if (!isxdigit(str[i]))
626 return -1;
627 }
628 }
629
630 /* unparse little endian output byte order */
631 if (sscanf(str,
632 "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
633 &b[3], &b[2], &b[1], &b[0],
634 &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
635 &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
636 return -1;
637
638 for (i = 0; i < 16; i++)
639 uu->b[i] = b[i];
640 return 0;
641 }
642
643 /*
644 * store_new_id - sysfs frontend to vmbus_add_dynid()
645 *
646 * Allow GUIDs to be added to an existing driver via sysfs.
647 */
648 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
649 size_t count)
650 {
651 struct hv_driver *drv = drv_to_hv_drv(driver);
652 uuid_le guid = NULL_UUID_LE;
653 ssize_t retval;
654
655 if (get_uuid_le(buf, &guid) != 0)
656 return -EINVAL;
657
658 if (hv_vmbus_get_id(drv, &guid))
659 return -EEXIST;
660
661 retval = vmbus_add_dynid(drv, &guid);
662 if (retval)
663 return retval;
664 return count;
665 }
666 static DRIVER_ATTR_WO(new_id);
667
668 /*
669 * store_remove_id - remove a PCI device ID from this driver
670 *
671 * Removes a dynamic pci device ID to this driver.
672 */
673 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
674 size_t count)
675 {
676 struct hv_driver *drv = drv_to_hv_drv(driver);
677 struct vmbus_dynid *dynid, *n;
678 uuid_le guid = NULL_UUID_LE;
679 size_t retval = -ENODEV;
680
681 if (get_uuid_le(buf, &guid))
682 return -EINVAL;
683
684 spin_lock(&drv->dynids.lock);
685 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
686 struct hv_vmbus_device_id *id = &dynid->id;
687
688 if (!uuid_le_cmp(id->guid, guid)) {
689 list_del(&dynid->node);
690 kfree(dynid);
691 retval = count;
692 break;
693 }
694 }
695 spin_unlock(&drv->dynids.lock);
696
697 return retval;
698 }
699 static DRIVER_ATTR_WO(remove_id);
700
701 static struct attribute *vmbus_drv_attrs[] = {
702 &driver_attr_new_id.attr,
703 &driver_attr_remove_id.attr,
704 NULL,
705 };
706 ATTRIBUTE_GROUPS(vmbus_drv);
707
708
709 /*
710 * vmbus_match - Attempt to match the specified device to the specified driver
711 */
712 static int vmbus_match(struct device *device, struct device_driver *driver)
713 {
714 struct hv_driver *drv = drv_to_hv_drv(driver);
715 struct hv_device *hv_dev = device_to_hv_device(device);
716
717 /* The hv_sock driver handles all hv_sock offers. */
718 if (is_hvsock_channel(hv_dev->channel))
719 return drv->hvsock;
720
721 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
722 return 1;
723
724 return 0;
725 }
726
727 /*
728 * vmbus_probe - Add the new vmbus's child device
729 */
730 static int vmbus_probe(struct device *child_device)
731 {
732 int ret = 0;
733 struct hv_driver *drv =
734 drv_to_hv_drv(child_device->driver);
735 struct hv_device *dev = device_to_hv_device(child_device);
736 const struct hv_vmbus_device_id *dev_id;
737
738 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
739 if (drv->probe) {
740 ret = drv->probe(dev, dev_id);
741 if (ret != 0)
742 pr_err("probe failed for device %s (%d)\n",
743 dev_name(child_device), ret);
744
745 } else {
746 pr_err("probe not set for driver %s\n",
747 dev_name(child_device));
748 ret = -ENODEV;
749 }
750 return ret;
751 }
752
753 /*
754 * vmbus_remove - Remove a vmbus device
755 */
756 static int vmbus_remove(struct device *child_device)
757 {
758 struct hv_driver *drv;
759 struct hv_device *dev = device_to_hv_device(child_device);
760
761 if (child_device->driver) {
762 drv = drv_to_hv_drv(child_device->driver);
763 if (drv->remove)
764 drv->remove(dev);
765 }
766
767 return 0;
768 }
769
770
771 /*
772 * vmbus_shutdown - Shutdown a vmbus device
773 */
774 static void vmbus_shutdown(struct device *child_device)
775 {
776 struct hv_driver *drv;
777 struct hv_device *dev = device_to_hv_device(child_device);
778
779
780 /* The device may not be attached yet */
781 if (!child_device->driver)
782 return;
783
784 drv = drv_to_hv_drv(child_device->driver);
785
786 if (drv->shutdown)
787 drv->shutdown(dev);
788
789 return;
790 }
791
792
793 /*
794 * vmbus_device_release - Final callback release of the vmbus child device
795 */
796 static void vmbus_device_release(struct device *device)
797 {
798 struct hv_device *hv_dev = device_to_hv_device(device);
799 struct vmbus_channel *channel = hv_dev->channel;
800
801 hv_process_channel_removal(channel,
802 channel->offermsg.child_relid);
803 kfree(hv_dev);
804
805 }
806
807 /* The one and only one */
808 static struct bus_type hv_bus = {
809 .name = "vmbus",
810 .match = vmbus_match,
811 .shutdown = vmbus_shutdown,
812 .remove = vmbus_remove,
813 .probe = vmbus_probe,
814 .uevent = vmbus_uevent,
815 .dev_groups = vmbus_dev_groups,
816 .drv_groups = vmbus_drv_groups,
817 };
818
819 struct onmessage_work_context {
820 struct work_struct work;
821 struct hv_message msg;
822 };
823
824 static void vmbus_onmessage_work(struct work_struct *work)
825 {
826 struct onmessage_work_context *ctx;
827
828 /* Do not process messages if we're in DISCONNECTED state */
829 if (vmbus_connection.conn_state == DISCONNECTED)
830 return;
831
832 ctx = container_of(work, struct onmessage_work_context,
833 work);
834 vmbus_onmessage(&ctx->msg);
835 kfree(ctx);
836 }
837
838 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
839 {
840 struct clock_event_device *dev = hv_context.clk_evt[cpu];
841
842 if (dev->event_handler)
843 dev->event_handler(dev);
844
845 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
846 }
847
848 void vmbus_on_msg_dpc(unsigned long data)
849 {
850 int cpu = smp_processor_id();
851 void *page_addr = hv_context.synic_message_page[cpu];
852 struct hv_message *msg = (struct hv_message *)page_addr +
853 VMBUS_MESSAGE_SINT;
854 struct vmbus_channel_message_header *hdr;
855 struct vmbus_channel_message_table_entry *entry;
856 struct onmessage_work_context *ctx;
857 u32 message_type = msg->header.message_type;
858
859 if (message_type == HVMSG_NONE)
860 /* no msg */
861 return;
862
863 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
864
865 if (hdr->msgtype >= CHANNELMSG_COUNT) {
866 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
867 goto msg_handled;
868 }
869
870 entry = &channel_message_table[hdr->msgtype];
871 if (entry->handler_type == VMHT_BLOCKING) {
872 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
873 if (ctx == NULL)
874 return;
875
876 INIT_WORK(&ctx->work, vmbus_onmessage_work);
877 memcpy(&ctx->msg, msg, sizeof(*msg));
878
879 queue_work(vmbus_connection.work_queue, &ctx->work);
880 } else
881 entry->message_handler(hdr);
882
883 msg_handled:
884 vmbus_signal_eom(msg, message_type);
885 }
886
887 static void vmbus_isr(void)
888 {
889 int cpu = smp_processor_id();
890 void *page_addr;
891 struct hv_message *msg;
892 union hv_synic_event_flags *event;
893 bool handled = false;
894
895 page_addr = hv_context.synic_event_page[cpu];
896 if (page_addr == NULL)
897 return;
898
899 event = (union hv_synic_event_flags *)page_addr +
900 VMBUS_MESSAGE_SINT;
901 /*
902 * Check for events before checking for messages. This is the order
903 * in which events and messages are checked in Windows guests on
904 * Hyper-V, and the Windows team suggested we do the same.
905 */
906
907 if ((vmbus_proto_version == VERSION_WS2008) ||
908 (vmbus_proto_version == VERSION_WIN7)) {
909
910 /* Since we are a child, we only need to check bit 0 */
911 if (sync_test_and_clear_bit(0,
912 (unsigned long *) &event->flags32[0])) {
913 handled = true;
914 }
915 } else {
916 /*
917 * Our host is win8 or above. The signaling mechanism
918 * has changed and we can directly look at the event page.
919 * If bit n is set then we have an interrup on the channel
920 * whose id is n.
921 */
922 handled = true;
923 }
924
925 if (handled)
926 tasklet_schedule(hv_context.event_dpc[cpu]);
927
928
929 page_addr = hv_context.synic_message_page[cpu];
930 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
931
932 /* Check if there are actual msgs to be processed */
933 if (msg->header.message_type != HVMSG_NONE) {
934 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
935 hv_process_timer_expiration(msg, cpu);
936 else
937 tasklet_schedule(hv_context.msg_dpc[cpu]);
938 }
939
940 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
941 }
942
943
944 /*
945 * vmbus_bus_init -Main vmbus driver initialization routine.
946 *
947 * Here, we
948 * - initialize the vmbus driver context
949 * - invoke the vmbus hv main init routine
950 * - retrieve the channel offers
951 */
952 static int vmbus_bus_init(void)
953 {
954 int ret;
955
956 /* Hypervisor initialization...setup hypercall page..etc */
957 ret = hv_init();
958 if (ret != 0) {
959 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
960 return ret;
961 }
962
963 ret = bus_register(&hv_bus);
964 if (ret)
965 return ret;
966
967 hv_setup_vmbus_irq(vmbus_isr);
968
969 ret = hv_synic_alloc();
970 if (ret)
971 goto err_alloc;
972 /*
973 * Initialize the per-cpu interrupt state and
974 * connect to the host.
975 */
976 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
977 hv_synic_init, hv_synic_cleanup);
978 if (ret < 0)
979 goto err_alloc;
980 hyperv_cpuhp_online = ret;
981
982 ret = vmbus_connect();
983 if (ret)
984 goto err_connect;
985
986 /*
987 * Only register if the crash MSRs are available
988 */
989 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
990 register_die_notifier(&hyperv_die_block);
991 atomic_notifier_chain_register(&panic_notifier_list,
992 &hyperv_panic_block);
993 }
994
995 vmbus_request_offers();
996
997 return 0;
998
999 err_connect:
1000 cpuhp_remove_state(hyperv_cpuhp_online);
1001 err_alloc:
1002 hv_synic_free();
1003 hv_remove_vmbus_irq();
1004
1005 bus_unregister(&hv_bus);
1006
1007 return ret;
1008 }
1009
1010 /**
1011 * __vmbus_child_driver_register() - Register a vmbus's driver
1012 * @hv_driver: Pointer to driver structure you want to register
1013 * @owner: owner module of the drv
1014 * @mod_name: module name string
1015 *
1016 * Registers the given driver with Linux through the 'driver_register()' call
1017 * and sets up the hyper-v vmbus handling for this driver.
1018 * It will return the state of the 'driver_register()' call.
1019 *
1020 */
1021 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1022 {
1023 int ret;
1024
1025 pr_info("registering driver %s\n", hv_driver->name);
1026
1027 ret = vmbus_exists();
1028 if (ret < 0)
1029 return ret;
1030
1031 hv_driver->driver.name = hv_driver->name;
1032 hv_driver->driver.owner = owner;
1033 hv_driver->driver.mod_name = mod_name;
1034 hv_driver->driver.bus = &hv_bus;
1035
1036 spin_lock_init(&hv_driver->dynids.lock);
1037 INIT_LIST_HEAD(&hv_driver->dynids.list);
1038
1039 ret = driver_register(&hv_driver->driver);
1040
1041 return ret;
1042 }
1043 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1044
1045 /**
1046 * vmbus_driver_unregister() - Unregister a vmbus's driver
1047 * @hv_driver: Pointer to driver structure you want to
1048 * un-register
1049 *
1050 * Un-register the given driver that was previous registered with a call to
1051 * vmbus_driver_register()
1052 */
1053 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1054 {
1055 pr_info("unregistering driver %s\n", hv_driver->name);
1056
1057 if (!vmbus_exists()) {
1058 driver_unregister(&hv_driver->driver);
1059 vmbus_free_dynids(hv_driver);
1060 }
1061 }
1062 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1063
1064 /*
1065 * vmbus_device_create - Creates and registers a new child device
1066 * on the vmbus.
1067 */
1068 struct hv_device *vmbus_device_create(const uuid_le *type,
1069 const uuid_le *instance,
1070 struct vmbus_channel *channel)
1071 {
1072 struct hv_device *child_device_obj;
1073
1074 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1075 if (!child_device_obj) {
1076 pr_err("Unable to allocate device object for child device\n");
1077 return NULL;
1078 }
1079
1080 child_device_obj->channel = channel;
1081 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1082 memcpy(&child_device_obj->dev_instance, instance,
1083 sizeof(uuid_le));
1084 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1085
1086
1087 return child_device_obj;
1088 }
1089
1090 /*
1091 * vmbus_device_register - Register the child device
1092 */
1093 int vmbus_device_register(struct hv_device *child_device_obj)
1094 {
1095 int ret = 0;
1096
1097 dev_set_name(&child_device_obj->device, "%pUl",
1098 child_device_obj->channel->offermsg.offer.if_instance.b);
1099
1100 child_device_obj->device.bus = &hv_bus;
1101 child_device_obj->device.parent = &hv_acpi_dev->dev;
1102 child_device_obj->device.release = vmbus_device_release;
1103
1104 /*
1105 * Register with the LDM. This will kick off the driver/device
1106 * binding...which will eventually call vmbus_match() and vmbus_probe()
1107 */
1108 ret = device_register(&child_device_obj->device);
1109
1110 if (ret)
1111 pr_err("Unable to register child device\n");
1112 else
1113 pr_debug("child device %s registered\n",
1114 dev_name(&child_device_obj->device));
1115
1116 return ret;
1117 }
1118
1119 /*
1120 * vmbus_device_unregister - Remove the specified child device
1121 * from the vmbus.
1122 */
1123 void vmbus_device_unregister(struct hv_device *device_obj)
1124 {
1125 pr_debug("child device %s unregistered\n",
1126 dev_name(&device_obj->device));
1127
1128 /*
1129 * Kick off the process of unregistering the device.
1130 * This will call vmbus_remove() and eventually vmbus_device_release()
1131 */
1132 device_unregister(&device_obj->device);
1133 }
1134
1135
1136 /*
1137 * VMBUS is an acpi enumerated device. Get the information we
1138 * need from DSDT.
1139 */
1140 #define VTPM_BASE_ADDRESS 0xfed40000
1141 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1142 {
1143 resource_size_t start = 0;
1144 resource_size_t end = 0;
1145 struct resource *new_res;
1146 struct resource **old_res = &hyperv_mmio;
1147 struct resource **prev_res = NULL;
1148
1149 switch (res->type) {
1150
1151 /*
1152 * "Address" descriptors are for bus windows. Ignore
1153 * "memory" descriptors, which are for registers on
1154 * devices.
1155 */
1156 case ACPI_RESOURCE_TYPE_ADDRESS32:
1157 start = res->data.address32.address.minimum;
1158 end = res->data.address32.address.maximum;
1159 break;
1160
1161 case ACPI_RESOURCE_TYPE_ADDRESS64:
1162 start = res->data.address64.address.minimum;
1163 end = res->data.address64.address.maximum;
1164 break;
1165
1166 default:
1167 /* Unused resource type */
1168 return AE_OK;
1169
1170 }
1171 /*
1172 * Ignore ranges that are below 1MB, as they're not
1173 * necessary or useful here.
1174 */
1175 if (end < 0x100000)
1176 return AE_OK;
1177
1178 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1179 if (!new_res)
1180 return AE_NO_MEMORY;
1181
1182 /* If this range overlaps the virtual TPM, truncate it. */
1183 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1184 end = VTPM_BASE_ADDRESS;
1185
1186 new_res->name = "hyperv mmio";
1187 new_res->flags = IORESOURCE_MEM;
1188 new_res->start = start;
1189 new_res->end = end;
1190
1191 /*
1192 * If two ranges are adjacent, merge them.
1193 */
1194 do {
1195 if (!*old_res) {
1196 *old_res = new_res;
1197 break;
1198 }
1199
1200 if (((*old_res)->end + 1) == new_res->start) {
1201 (*old_res)->end = new_res->end;
1202 kfree(new_res);
1203 break;
1204 }
1205
1206 if ((*old_res)->start == new_res->end + 1) {
1207 (*old_res)->start = new_res->start;
1208 kfree(new_res);
1209 break;
1210 }
1211
1212 if ((*old_res)->start > new_res->end) {
1213 new_res->sibling = *old_res;
1214 if (prev_res)
1215 (*prev_res)->sibling = new_res;
1216 *old_res = new_res;
1217 break;
1218 }
1219
1220 prev_res = old_res;
1221 old_res = &(*old_res)->sibling;
1222
1223 } while (1);
1224
1225 return AE_OK;
1226 }
1227
1228 static int vmbus_acpi_remove(struct acpi_device *device)
1229 {
1230 struct resource *cur_res;
1231 struct resource *next_res;
1232
1233 if (hyperv_mmio) {
1234 if (fb_mmio) {
1235 __release_region(hyperv_mmio, fb_mmio->start,
1236 resource_size(fb_mmio));
1237 fb_mmio = NULL;
1238 }
1239
1240 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1241 next_res = cur_res->sibling;
1242 kfree(cur_res);
1243 }
1244 }
1245
1246 return 0;
1247 }
1248
1249 static void vmbus_reserve_fb(void)
1250 {
1251 int size;
1252 /*
1253 * Make a claim for the frame buffer in the resource tree under the
1254 * first node, which will be the one below 4GB. The length seems to
1255 * be underreported, particularly in a Generation 1 VM. So start out
1256 * reserving a larger area and make it smaller until it succeeds.
1257 */
1258
1259 if (screen_info.lfb_base) {
1260 if (efi_enabled(EFI_BOOT))
1261 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1262 else
1263 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1264
1265 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1266 fb_mmio = __request_region(hyperv_mmio,
1267 screen_info.lfb_base, size,
1268 fb_mmio_name, 0);
1269 }
1270 }
1271 }
1272
1273 /**
1274 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1275 * @new: If successful, supplied a pointer to the
1276 * allocated MMIO space.
1277 * @device_obj: Identifies the caller
1278 * @min: Minimum guest physical address of the
1279 * allocation
1280 * @max: Maximum guest physical address
1281 * @size: Size of the range to be allocated
1282 * @align: Alignment of the range to be allocated
1283 * @fb_overlap_ok: Whether this allocation can be allowed
1284 * to overlap the video frame buffer.
1285 *
1286 * This function walks the resources granted to VMBus by the
1287 * _CRS object in the ACPI namespace underneath the parent
1288 * "bridge" whether that's a root PCI bus in the Generation 1
1289 * case or a Module Device in the Generation 2 case. It then
1290 * attempts to allocate from the global MMIO pool in a way that
1291 * matches the constraints supplied in these parameters and by
1292 * that _CRS.
1293 *
1294 * Return: 0 on success, -errno on failure
1295 */
1296 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1297 resource_size_t min, resource_size_t max,
1298 resource_size_t size, resource_size_t align,
1299 bool fb_overlap_ok)
1300 {
1301 struct resource *iter, *shadow;
1302 resource_size_t range_min, range_max, start;
1303 const char *dev_n = dev_name(&device_obj->device);
1304 int retval;
1305
1306 retval = -ENXIO;
1307 down(&hyperv_mmio_lock);
1308
1309 /*
1310 * If overlaps with frame buffers are allowed, then first attempt to
1311 * make the allocation from within the reserved region. Because it
1312 * is already reserved, no shadow allocation is necessary.
1313 */
1314 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1315 !(max < fb_mmio->start)) {
1316
1317 range_min = fb_mmio->start;
1318 range_max = fb_mmio->end;
1319 start = (range_min + align - 1) & ~(align - 1);
1320 for (; start + size - 1 <= range_max; start += align) {
1321 *new = request_mem_region_exclusive(start, size, dev_n);
1322 if (*new) {
1323 retval = 0;
1324 goto exit;
1325 }
1326 }
1327 }
1328
1329 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1330 if ((iter->start >= max) || (iter->end <= min))
1331 continue;
1332
1333 range_min = iter->start;
1334 range_max = iter->end;
1335 start = (range_min + align - 1) & ~(align - 1);
1336 for (; start + size - 1 <= range_max; start += align) {
1337 shadow = __request_region(iter, start, size, NULL,
1338 IORESOURCE_BUSY);
1339 if (!shadow)
1340 continue;
1341
1342 *new = request_mem_region_exclusive(start, size, dev_n);
1343 if (*new) {
1344 shadow->name = (char *)*new;
1345 retval = 0;
1346 goto exit;
1347 }
1348
1349 __release_region(iter, start, size);
1350 }
1351 }
1352
1353 exit:
1354 up(&hyperv_mmio_lock);
1355 return retval;
1356 }
1357 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1358
1359 /**
1360 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1361 * @start: Base address of region to release.
1362 * @size: Size of the range to be allocated
1363 *
1364 * This function releases anything requested by
1365 * vmbus_mmio_allocate().
1366 */
1367 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1368 {
1369 struct resource *iter;
1370
1371 down(&hyperv_mmio_lock);
1372 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1373 if ((iter->start >= start + size) || (iter->end <= start))
1374 continue;
1375
1376 __release_region(iter, start, size);
1377 }
1378 release_mem_region(start, size);
1379 up(&hyperv_mmio_lock);
1380
1381 }
1382 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1383
1384 /**
1385 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1386 * @cpu_number: CPU number in Linux terms
1387 *
1388 * This function returns the mapping between the Linux processor
1389 * number and the hypervisor's virtual processor number, useful
1390 * in making hypercalls and such that talk about specific
1391 * processors.
1392 *
1393 * Return: Virtual processor number in Hyper-V terms
1394 */
1395 int vmbus_cpu_number_to_vp_number(int cpu_number)
1396 {
1397 return hv_context.vp_index[cpu_number];
1398 }
1399 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1400
1401 static int vmbus_acpi_add(struct acpi_device *device)
1402 {
1403 acpi_status result;
1404 int ret_val = -ENODEV;
1405 struct acpi_device *ancestor;
1406
1407 hv_acpi_dev = device;
1408
1409 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1410 vmbus_walk_resources, NULL);
1411
1412 if (ACPI_FAILURE(result))
1413 goto acpi_walk_err;
1414 /*
1415 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1416 * firmware) is the VMOD that has the mmio ranges. Get that.
1417 */
1418 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1419 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1420 vmbus_walk_resources, NULL);
1421
1422 if (ACPI_FAILURE(result))
1423 continue;
1424 if (hyperv_mmio) {
1425 vmbus_reserve_fb();
1426 break;
1427 }
1428 }
1429 ret_val = 0;
1430
1431 acpi_walk_err:
1432 complete(&probe_event);
1433 if (ret_val)
1434 vmbus_acpi_remove(device);
1435 return ret_val;
1436 }
1437
1438 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1439 {"VMBUS", 0},
1440 {"VMBus", 0},
1441 {"", 0},
1442 };
1443 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1444
1445 static struct acpi_driver vmbus_acpi_driver = {
1446 .name = "vmbus",
1447 .ids = vmbus_acpi_device_ids,
1448 .ops = {
1449 .add = vmbus_acpi_add,
1450 .remove = vmbus_acpi_remove,
1451 },
1452 };
1453
1454 static void hv_kexec_handler(void)
1455 {
1456 hv_synic_clockevents_cleanup();
1457 vmbus_initiate_unload(false);
1458 vmbus_connection.conn_state = DISCONNECTED;
1459 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1460 mb();
1461 cpuhp_remove_state(hyperv_cpuhp_online);
1462 hyperv_cleanup();
1463 };
1464
1465 static void hv_crash_handler(struct pt_regs *regs)
1466 {
1467 vmbus_initiate_unload(true);
1468 /*
1469 * In crash handler we can't schedule synic cleanup for all CPUs,
1470 * doing the cleanup for current CPU only. This should be sufficient
1471 * for kdump.
1472 */
1473 vmbus_connection.conn_state = DISCONNECTED;
1474 hv_synic_cleanup(smp_processor_id());
1475 hyperv_cleanup();
1476 };
1477
1478 static int __init hv_acpi_init(void)
1479 {
1480 int ret, t;
1481
1482 if (x86_hyper != &x86_hyper_ms_hyperv)
1483 return -ENODEV;
1484
1485 init_completion(&probe_event);
1486
1487 /*
1488 * Get ACPI resources first.
1489 */
1490 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1491
1492 if (ret)
1493 return ret;
1494
1495 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1496 if (t == 0) {
1497 ret = -ETIMEDOUT;
1498 goto cleanup;
1499 }
1500
1501 ret = vmbus_bus_init();
1502 if (ret)
1503 goto cleanup;
1504
1505 hv_setup_kexec_handler(hv_kexec_handler);
1506 hv_setup_crash_handler(hv_crash_handler);
1507
1508 return 0;
1509
1510 cleanup:
1511 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1512 hv_acpi_dev = NULL;
1513 return ret;
1514 }
1515
1516 static void __exit vmbus_exit(void)
1517 {
1518 int cpu;
1519
1520 hv_remove_kexec_handler();
1521 hv_remove_crash_handler();
1522 vmbus_connection.conn_state = DISCONNECTED;
1523 hv_synic_clockevents_cleanup();
1524 vmbus_disconnect();
1525 hv_remove_vmbus_irq();
1526 for_each_online_cpu(cpu)
1527 tasklet_kill(hv_context.msg_dpc[cpu]);
1528 vmbus_free_channels();
1529 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1530 unregister_die_notifier(&hyperv_die_block);
1531 atomic_notifier_chain_unregister(&panic_notifier_list,
1532 &hyperv_panic_block);
1533 }
1534 bus_unregister(&hv_bus);
1535 for_each_online_cpu(cpu) {
1536 tasklet_kill(hv_context.event_dpc[cpu]);
1537 }
1538 cpuhp_remove_state(hyperv_cpuhp_online);
1539 hv_synic_free();
1540 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1541 }
1542
1543
1544 MODULE_LICENSE("GPL");
1545
1546 subsys_initcall(hv_acpi_init);
1547 module_exit(vmbus_exit);