]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hv/vmbus_drv.c
Merge tag 'xfs-4.14-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-bionic-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51 struct list_head node;
52 struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63 {
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs);
69 return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74 {
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs);
79 return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112 return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117 return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(struct vmbus_channel *channel,
121 struct hv_monitor_page *monitor_page)
122 {
123 u8 monitor_group = channel_monitor_group(channel);
124 return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(struct vmbus_channel *channel,
128 struct hv_monitor_page *monitor_page)
129 {
130 u8 monitor_group = channel_monitor_group(channel);
131 u8 monitor_offset = channel_monitor_offset(channel);
132 return monitor_page->latency[monitor_group][monitor_offset];
133 }
134
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 struct hv_monitor_page *monitor_page)
137 {
138 u8 monitor_group = channel_monitor_group(channel);
139 u8 monitor_offset = channel_monitor_offset(channel);
140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 char *buf)
145 {
146 struct hv_device *hv_dev = device_to_hv_device(dev);
147
148 if (!hv_dev->channel)
149 return -ENODEV;
150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 char *buf)
156 {
157 struct hv_device *hv_dev = device_to_hv_device(dev);
158
159 if (!hv_dev->channel)
160 return -ENODEV;
161 return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164
165 static ssize_t monitor_id_show(struct device *dev,
166 struct device_attribute *dev_attr, char *buf)
167 {
168 struct hv_device *hv_dev = device_to_hv_device(dev);
169
170 if (!hv_dev->channel)
171 return -ENODEV;
172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175
176 static ssize_t class_id_show(struct device *dev,
177 struct device_attribute *dev_attr, char *buf)
178 {
179 struct hv_device *hv_dev = device_to_hv_device(dev);
180
181 if (!hv_dev->channel)
182 return -ENODEV;
183 return sprintf(buf, "{%pUl}\n",
184 hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187
188 static ssize_t device_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
190 {
191 struct hv_device *hv_dev = device_to_hv_device(dev);
192
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "{%pUl}\n",
196 hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199
200 static ssize_t modalias_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202 {
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204 char alias_name[VMBUS_ALIAS_LEN + 1];
205
206 print_alias_name(hv_dev, alias_name);
207 return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 struct device_attribute *dev_attr,
213 char *buf)
214 {
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "%d\n",
220 channel_pending(hv_dev->channel,
221 vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 struct device_attribute *dev_attr,
227 char *buf)
228 {
229 struct hv_device *hv_dev = device_to_hv_device(dev);
230
231 if (!hv_dev->channel)
232 return -ENODEV;
233 return sprintf(buf, "%d\n",
234 channel_pending(hv_dev->channel,
235 vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 struct device_attribute *dev_attr,
241 char *buf)
242 {
243 struct hv_device *hv_dev = device_to_hv_device(dev);
244
245 if (!hv_dev->channel)
246 return -ENODEV;
247 return sprintf(buf, "%d\n",
248 channel_latency(hv_dev->channel,
249 vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 struct device_attribute *dev_attr,
255 char *buf)
256 {
257 struct hv_device *hv_dev = device_to_hv_device(dev);
258
259 if (!hv_dev->channel)
260 return -ENODEV;
261 return sprintf(buf, "%d\n",
262 channel_latency(hv_dev->channel,
263 vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 struct device_attribute *dev_attr,
269 char *buf)
270 {
271 struct hv_device *hv_dev = device_to_hv_device(dev);
272
273 if (!hv_dev->channel)
274 return -ENODEV;
275 return sprintf(buf, "%d\n",
276 channel_conn_id(hv_dev->channel,
277 vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 struct device_attribute *dev_attr,
283 char *buf)
284 {
285 struct hv_device *hv_dev = device_to_hv_device(dev);
286
287 if (!hv_dev->channel)
288 return -ENODEV;
289 return sprintf(buf, "%d\n",
290 channel_conn_id(hv_dev->channel,
291 vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295 static ssize_t out_intr_mask_show(struct device *dev,
296 struct device_attribute *dev_attr, char *buf)
297 {
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299 struct hv_ring_buffer_debug_info outbound;
300
301 if (!hv_dev->channel)
302 return -ENODEV;
303 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307
308 static ssize_t out_read_index_show(struct device *dev,
309 struct device_attribute *dev_attr, char *buf)
310 {
311 struct hv_device *hv_dev = device_to_hv_device(dev);
312 struct hv_ring_buffer_debug_info outbound;
313
314 if (!hv_dev->channel)
315 return -ENODEV;
316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320
321 static ssize_t out_write_index_show(struct device *dev,
322 struct device_attribute *dev_attr,
323 char *buf)
324 {
325 struct hv_device *hv_dev = device_to_hv_device(dev);
326 struct hv_ring_buffer_debug_info outbound;
327
328 if (!hv_dev->channel)
329 return -ENODEV;
330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 struct device_attribute *dev_attr,
337 char *buf)
338 {
339 struct hv_device *hv_dev = device_to_hv_device(dev);
340 struct hv_ring_buffer_debug_info outbound;
341
342 if (!hv_dev->channel)
343 return -ENODEV;
344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 struct device_attribute *dev_attr,
351 char *buf)
352 {
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
355
356 if (!hv_dev->channel)
357 return -ENODEV;
358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362
363 static ssize_t in_intr_mask_show(struct device *dev,
364 struct device_attribute *dev_attr, char *buf)
365 {
366 struct hv_device *hv_dev = device_to_hv_device(dev);
367 struct hv_ring_buffer_debug_info inbound;
368
369 if (!hv_dev->channel)
370 return -ENODEV;
371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375
376 static ssize_t in_read_index_show(struct device *dev,
377 struct device_attribute *dev_attr, char *buf)
378 {
379 struct hv_device *hv_dev = device_to_hv_device(dev);
380 struct hv_ring_buffer_debug_info inbound;
381
382 if (!hv_dev->channel)
383 return -ENODEV;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388
389 static ssize_t in_write_index_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 struct device_attribute *dev_attr,
404 char *buf)
405 {
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info inbound;
408
409 if (!hv_dev->channel)
410 return -ENODEV;
411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 struct device_attribute *dev_attr,
418 char *buf)
419 {
420 struct hv_device *hv_dev = device_to_hv_device(dev);
421 struct hv_ring_buffer_debug_info inbound;
422
423 if (!hv_dev->channel)
424 return -ENODEV;
425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 struct device_attribute *dev_attr,
432 char *buf)
433 {
434 struct hv_device *hv_dev = device_to_hv_device(dev);
435 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 unsigned long flags;
437 int buf_size = PAGE_SIZE, n_written, tot_written;
438 struct list_head *cur;
439
440 if (!channel)
441 return -ENODEV;
442
443 tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 channel->offermsg.child_relid, channel->target_cpu);
445
446 spin_lock_irqsave(&channel->lock, flags);
447
448 list_for_each(cur, &channel->sc_list) {
449 if (tot_written >= buf_size - 1)
450 break;
451
452 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 n_written = scnprintf(buf + tot_written,
454 buf_size - tot_written,
455 "%u:%u\n",
456 cur_sc->offermsg.child_relid,
457 cur_sc->target_cpu);
458 tot_written += n_written;
459 }
460
461 spin_unlock_irqrestore(&channel->lock, flags);
462
463 return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466
467 static ssize_t vendor_show(struct device *dev,
468 struct device_attribute *dev_attr,
469 char *buf)
470 {
471 struct hv_device *hv_dev = device_to_hv_device(dev);
472 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475
476 static ssize_t device_show(struct device *dev,
477 struct device_attribute *dev_attr,
478 char *buf)
479 {
480 struct hv_device *hv_dev = device_to_hv_device(dev);
481 return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 &dev_attr_id.attr,
488 &dev_attr_state.attr,
489 &dev_attr_monitor_id.attr,
490 &dev_attr_class_id.attr,
491 &dev_attr_device_id.attr,
492 &dev_attr_modalias.attr,
493 &dev_attr_server_monitor_pending.attr,
494 &dev_attr_client_monitor_pending.attr,
495 &dev_attr_server_monitor_latency.attr,
496 &dev_attr_client_monitor_latency.attr,
497 &dev_attr_server_monitor_conn_id.attr,
498 &dev_attr_client_monitor_conn_id.attr,
499 &dev_attr_out_intr_mask.attr,
500 &dev_attr_out_read_index.attr,
501 &dev_attr_out_write_index.attr,
502 &dev_attr_out_read_bytes_avail.attr,
503 &dev_attr_out_write_bytes_avail.attr,
504 &dev_attr_in_intr_mask.attr,
505 &dev_attr_in_read_index.attr,
506 &dev_attr_in_write_index.attr,
507 &dev_attr_in_read_bytes_avail.attr,
508 &dev_attr_in_write_bytes_avail.attr,
509 &dev_attr_channel_vp_mapping.attr,
510 &dev_attr_vendor.attr,
511 &dev_attr_device.attr,
512 NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515
516 /*
517 * vmbus_uevent - add uevent for our device
518 *
519 * This routine is invoked when a device is added or removed on the vmbus to
520 * generate a uevent to udev in the userspace. The udev will then look at its
521 * rule and the uevent generated here to load the appropriate driver
522 *
523 * The alias string will be of the form vmbus:guid where guid is the string
524 * representation of the device guid (each byte of the guid will be
525 * represented with two hex characters.
526 */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529 struct hv_device *dev = device_to_hv_device(device);
530 int ret;
531 char alias_name[VMBUS_ALIAS_LEN + 1];
532
533 print_alias_name(dev, alias_name);
534 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 return ret;
536 }
537
538 static const uuid_le null_guid;
539
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542 if (uuid_le_cmp(*guid, null_guid))
543 return false;
544 return true;
545 }
546
547 /*
548 * Return a matching hv_vmbus_device_id pointer.
549 * If there is no match, return NULL.
550 */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 const uuid_le *guid)
553 {
554 const struct hv_vmbus_device_id *id = NULL;
555 struct vmbus_dynid *dynid;
556
557 /* Look at the dynamic ids first, before the static ones */
558 spin_lock(&drv->dynids.lock);
559 list_for_each_entry(dynid, &drv->dynids.list, node) {
560 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 id = &dynid->id;
562 break;
563 }
564 }
565 spin_unlock(&drv->dynids.lock);
566
567 if (id)
568 return id;
569
570 id = drv->id_table;
571 if (id == NULL)
572 return NULL; /* empty device table */
573
574 for (; !is_null_guid(&id->guid); id++)
575 if (!uuid_le_cmp(id->guid, *guid))
576 return id;
577
578 return NULL;
579 }
580
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584 struct vmbus_dynid *dynid;
585
586 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 if (!dynid)
588 return -ENOMEM;
589
590 dynid->id.guid = *guid;
591
592 spin_lock(&drv->dynids.lock);
593 list_add_tail(&dynid->node, &drv->dynids.list);
594 spin_unlock(&drv->dynids.lock);
595
596 return driver_attach(&drv->driver);
597 }
598
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601 struct vmbus_dynid *dynid, *n;
602
603 spin_lock(&drv->dynids.lock);
604 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 list_del(&dynid->node);
606 kfree(dynid);
607 }
608 spin_unlock(&drv->dynids.lock);
609 }
610
611 /*
612 * store_new_id - sysfs frontend to vmbus_add_dynid()
613 *
614 * Allow GUIDs to be added to an existing driver via sysfs.
615 */
616 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
617 size_t count)
618 {
619 struct hv_driver *drv = drv_to_hv_drv(driver);
620 uuid_le guid;
621 ssize_t retval;
622
623 retval = uuid_le_to_bin(buf, &guid);
624 if (retval)
625 return retval;
626
627 if (hv_vmbus_get_id(drv, &guid))
628 return -EEXIST;
629
630 retval = vmbus_add_dynid(drv, &guid);
631 if (retval)
632 return retval;
633 return count;
634 }
635 static DRIVER_ATTR_WO(new_id);
636
637 /*
638 * store_remove_id - remove a PCI device ID from this driver
639 *
640 * Removes a dynamic pci device ID to this driver.
641 */
642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
643 size_t count)
644 {
645 struct hv_driver *drv = drv_to_hv_drv(driver);
646 struct vmbus_dynid *dynid, *n;
647 uuid_le guid;
648 ssize_t retval;
649
650 retval = uuid_le_to_bin(buf, &guid);
651 if (retval)
652 return retval;
653
654 retval = -ENODEV;
655 spin_lock(&drv->dynids.lock);
656 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
657 struct hv_vmbus_device_id *id = &dynid->id;
658
659 if (!uuid_le_cmp(id->guid, guid)) {
660 list_del(&dynid->node);
661 kfree(dynid);
662 retval = count;
663 break;
664 }
665 }
666 spin_unlock(&drv->dynids.lock);
667
668 return retval;
669 }
670 static DRIVER_ATTR_WO(remove_id);
671
672 static struct attribute *vmbus_drv_attrs[] = {
673 &driver_attr_new_id.attr,
674 &driver_attr_remove_id.attr,
675 NULL,
676 };
677 ATTRIBUTE_GROUPS(vmbus_drv);
678
679
680 /*
681 * vmbus_match - Attempt to match the specified device to the specified driver
682 */
683 static int vmbus_match(struct device *device, struct device_driver *driver)
684 {
685 struct hv_driver *drv = drv_to_hv_drv(driver);
686 struct hv_device *hv_dev = device_to_hv_device(device);
687
688 /* The hv_sock driver handles all hv_sock offers. */
689 if (is_hvsock_channel(hv_dev->channel))
690 return drv->hvsock;
691
692 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693 return 1;
694
695 return 0;
696 }
697
698 /*
699 * vmbus_probe - Add the new vmbus's child device
700 */
701 static int vmbus_probe(struct device *child_device)
702 {
703 int ret = 0;
704 struct hv_driver *drv =
705 drv_to_hv_drv(child_device->driver);
706 struct hv_device *dev = device_to_hv_device(child_device);
707 const struct hv_vmbus_device_id *dev_id;
708
709 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710 if (drv->probe) {
711 ret = drv->probe(dev, dev_id);
712 if (ret != 0)
713 pr_err("probe failed for device %s (%d)\n",
714 dev_name(child_device), ret);
715
716 } else {
717 pr_err("probe not set for driver %s\n",
718 dev_name(child_device));
719 ret = -ENODEV;
720 }
721 return ret;
722 }
723
724 /*
725 * vmbus_remove - Remove a vmbus device
726 */
727 static int vmbus_remove(struct device *child_device)
728 {
729 struct hv_driver *drv;
730 struct hv_device *dev = device_to_hv_device(child_device);
731
732 if (child_device->driver) {
733 drv = drv_to_hv_drv(child_device->driver);
734 if (drv->remove)
735 drv->remove(dev);
736 }
737
738 return 0;
739 }
740
741
742 /*
743 * vmbus_shutdown - Shutdown a vmbus device
744 */
745 static void vmbus_shutdown(struct device *child_device)
746 {
747 struct hv_driver *drv;
748 struct hv_device *dev = device_to_hv_device(child_device);
749
750
751 /* The device may not be attached yet */
752 if (!child_device->driver)
753 return;
754
755 drv = drv_to_hv_drv(child_device->driver);
756
757 if (drv->shutdown)
758 drv->shutdown(dev);
759 }
760
761
762 /*
763 * vmbus_device_release - Final callback release of the vmbus child device
764 */
765 static void vmbus_device_release(struct device *device)
766 {
767 struct hv_device *hv_dev = device_to_hv_device(device);
768 struct vmbus_channel *channel = hv_dev->channel;
769
770 mutex_lock(&vmbus_connection.channel_mutex);
771 hv_process_channel_removal(channel,
772 channel->offermsg.child_relid);
773 mutex_unlock(&vmbus_connection.channel_mutex);
774 kfree(hv_dev);
775
776 }
777
778 /* The one and only one */
779 static struct bus_type hv_bus = {
780 .name = "vmbus",
781 .match = vmbus_match,
782 .shutdown = vmbus_shutdown,
783 .remove = vmbus_remove,
784 .probe = vmbus_probe,
785 .uevent = vmbus_uevent,
786 .dev_groups = vmbus_dev_groups,
787 .drv_groups = vmbus_drv_groups,
788 };
789
790 struct onmessage_work_context {
791 struct work_struct work;
792 struct hv_message msg;
793 };
794
795 static void vmbus_onmessage_work(struct work_struct *work)
796 {
797 struct onmessage_work_context *ctx;
798
799 /* Do not process messages if we're in DISCONNECTED state */
800 if (vmbus_connection.conn_state == DISCONNECTED)
801 return;
802
803 ctx = container_of(work, struct onmessage_work_context,
804 work);
805 vmbus_onmessage(&ctx->msg);
806 kfree(ctx);
807 }
808
809 static void hv_process_timer_expiration(struct hv_message *msg,
810 struct hv_per_cpu_context *hv_cpu)
811 {
812 struct clock_event_device *dev = hv_cpu->clk_evt;
813
814 if (dev->event_handler)
815 dev->event_handler(dev);
816
817 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
818 }
819
820 void vmbus_on_msg_dpc(unsigned long data)
821 {
822 struct hv_per_cpu_context *hv_cpu = (void *)data;
823 void *page_addr = hv_cpu->synic_message_page;
824 struct hv_message *msg = (struct hv_message *)page_addr +
825 VMBUS_MESSAGE_SINT;
826 struct vmbus_channel_message_header *hdr;
827 const struct vmbus_channel_message_table_entry *entry;
828 struct onmessage_work_context *ctx;
829 u32 message_type = msg->header.message_type;
830
831 if (message_type == HVMSG_NONE)
832 /* no msg */
833 return;
834
835 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836
837 if (hdr->msgtype >= CHANNELMSG_COUNT) {
838 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
839 goto msg_handled;
840 }
841
842 entry = &channel_message_table[hdr->msgtype];
843 if (entry->handler_type == VMHT_BLOCKING) {
844 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
845 if (ctx == NULL)
846 return;
847
848 INIT_WORK(&ctx->work, vmbus_onmessage_work);
849 memcpy(&ctx->msg, msg, sizeof(*msg));
850
851 /*
852 * The host can generate a rescind message while we
853 * may still be handling the original offer. We deal with
854 * this condition by ensuring the processing is done on the
855 * same CPU.
856 */
857 switch (hdr->msgtype) {
858 case CHANNELMSG_RESCIND_CHANNELOFFER:
859 /*
860 * If we are handling the rescind message;
861 * schedule the work on the global work queue.
862 */
863 schedule_work_on(vmbus_connection.connect_cpu,
864 &ctx->work);
865 break;
866
867 case CHANNELMSG_OFFERCHANNEL:
868 atomic_inc(&vmbus_connection.offer_in_progress);
869 queue_work_on(vmbus_connection.connect_cpu,
870 vmbus_connection.work_queue,
871 &ctx->work);
872 break;
873
874 default:
875 queue_work(vmbus_connection.work_queue, &ctx->work);
876 }
877 } else
878 entry->message_handler(hdr);
879
880 msg_handled:
881 vmbus_signal_eom(msg, message_type);
882 }
883
884
885 /*
886 * Direct callback for channels using other deferred processing
887 */
888 static void vmbus_channel_isr(struct vmbus_channel *channel)
889 {
890 void (*callback_fn)(void *);
891
892 callback_fn = READ_ONCE(channel->onchannel_callback);
893 if (likely(callback_fn != NULL))
894 (*callback_fn)(channel->channel_callback_context);
895 }
896
897 /*
898 * Schedule all channels with events pending
899 */
900 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
901 {
902 unsigned long *recv_int_page;
903 u32 maxbits, relid;
904
905 if (vmbus_proto_version < VERSION_WIN8) {
906 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
907 recv_int_page = vmbus_connection.recv_int_page;
908 } else {
909 /*
910 * When the host is win8 and beyond, the event page
911 * can be directly checked to get the id of the channel
912 * that has the interrupt pending.
913 */
914 void *page_addr = hv_cpu->synic_event_page;
915 union hv_synic_event_flags *event
916 = (union hv_synic_event_flags *)page_addr +
917 VMBUS_MESSAGE_SINT;
918
919 maxbits = HV_EVENT_FLAGS_COUNT;
920 recv_int_page = event->flags;
921 }
922
923 if (unlikely(!recv_int_page))
924 return;
925
926 for_each_set_bit(relid, recv_int_page, maxbits) {
927 struct vmbus_channel *channel;
928
929 if (!sync_test_and_clear_bit(relid, recv_int_page))
930 continue;
931
932 /* Special case - vmbus channel protocol msg */
933 if (relid == 0)
934 continue;
935
936 rcu_read_lock();
937
938 /* Find channel based on relid */
939 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
940 if (channel->offermsg.child_relid != relid)
941 continue;
942
943 if (channel->rescind)
944 continue;
945
946 switch (channel->callback_mode) {
947 case HV_CALL_ISR:
948 vmbus_channel_isr(channel);
949 break;
950
951 case HV_CALL_BATCHED:
952 hv_begin_read(&channel->inbound);
953 /* fallthrough */
954 case HV_CALL_DIRECT:
955 tasklet_schedule(&channel->callback_event);
956 }
957 }
958
959 rcu_read_unlock();
960 }
961 }
962
963 static void vmbus_isr(void)
964 {
965 struct hv_per_cpu_context *hv_cpu
966 = this_cpu_ptr(hv_context.cpu_context);
967 void *page_addr = hv_cpu->synic_event_page;
968 struct hv_message *msg;
969 union hv_synic_event_flags *event;
970 bool handled = false;
971
972 if (unlikely(page_addr == NULL))
973 return;
974
975 event = (union hv_synic_event_flags *)page_addr +
976 VMBUS_MESSAGE_SINT;
977 /*
978 * Check for events before checking for messages. This is the order
979 * in which events and messages are checked in Windows guests on
980 * Hyper-V, and the Windows team suggested we do the same.
981 */
982
983 if ((vmbus_proto_version == VERSION_WS2008) ||
984 (vmbus_proto_version == VERSION_WIN7)) {
985
986 /* Since we are a child, we only need to check bit 0 */
987 if (sync_test_and_clear_bit(0, event->flags))
988 handled = true;
989 } else {
990 /*
991 * Our host is win8 or above. The signaling mechanism
992 * has changed and we can directly look at the event page.
993 * If bit n is set then we have an interrup on the channel
994 * whose id is n.
995 */
996 handled = true;
997 }
998
999 if (handled)
1000 vmbus_chan_sched(hv_cpu);
1001
1002 page_addr = hv_cpu->synic_message_page;
1003 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1004
1005 /* Check if there are actual msgs to be processed */
1006 if (msg->header.message_type != HVMSG_NONE) {
1007 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1008 hv_process_timer_expiration(msg, hv_cpu);
1009 else
1010 tasklet_schedule(&hv_cpu->msg_dpc);
1011 }
1012
1013 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1014 }
1015
1016
1017 /*
1018 * vmbus_bus_init -Main vmbus driver initialization routine.
1019 *
1020 * Here, we
1021 * - initialize the vmbus driver context
1022 * - invoke the vmbus hv main init routine
1023 * - retrieve the channel offers
1024 */
1025 static int vmbus_bus_init(void)
1026 {
1027 int ret;
1028
1029 /* Hypervisor initialization...setup hypercall page..etc */
1030 ret = hv_init();
1031 if (ret != 0) {
1032 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1033 return ret;
1034 }
1035
1036 ret = bus_register(&hv_bus);
1037 if (ret)
1038 return ret;
1039
1040 hv_setup_vmbus_irq(vmbus_isr);
1041
1042 ret = hv_synic_alloc();
1043 if (ret)
1044 goto err_alloc;
1045 /*
1046 * Initialize the per-cpu interrupt state and
1047 * connect to the host.
1048 */
1049 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1050 hv_synic_init, hv_synic_cleanup);
1051 if (ret < 0)
1052 goto err_alloc;
1053 hyperv_cpuhp_online = ret;
1054
1055 ret = vmbus_connect();
1056 if (ret)
1057 goto err_connect;
1058
1059 /*
1060 * Only register if the crash MSRs are available
1061 */
1062 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1063 register_die_notifier(&hyperv_die_block);
1064 atomic_notifier_chain_register(&panic_notifier_list,
1065 &hyperv_panic_block);
1066 }
1067
1068 vmbus_request_offers();
1069
1070 return 0;
1071
1072 err_connect:
1073 cpuhp_remove_state(hyperv_cpuhp_online);
1074 err_alloc:
1075 hv_synic_free();
1076 hv_remove_vmbus_irq();
1077
1078 bus_unregister(&hv_bus);
1079
1080 return ret;
1081 }
1082
1083 /**
1084 * __vmbus_child_driver_register() - Register a vmbus's driver
1085 * @hv_driver: Pointer to driver structure you want to register
1086 * @owner: owner module of the drv
1087 * @mod_name: module name string
1088 *
1089 * Registers the given driver with Linux through the 'driver_register()' call
1090 * and sets up the hyper-v vmbus handling for this driver.
1091 * It will return the state of the 'driver_register()' call.
1092 *
1093 */
1094 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1095 {
1096 int ret;
1097
1098 pr_info("registering driver %s\n", hv_driver->name);
1099
1100 ret = vmbus_exists();
1101 if (ret < 0)
1102 return ret;
1103
1104 hv_driver->driver.name = hv_driver->name;
1105 hv_driver->driver.owner = owner;
1106 hv_driver->driver.mod_name = mod_name;
1107 hv_driver->driver.bus = &hv_bus;
1108
1109 spin_lock_init(&hv_driver->dynids.lock);
1110 INIT_LIST_HEAD(&hv_driver->dynids.list);
1111
1112 ret = driver_register(&hv_driver->driver);
1113
1114 return ret;
1115 }
1116 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1117
1118 /**
1119 * vmbus_driver_unregister() - Unregister a vmbus's driver
1120 * @hv_driver: Pointer to driver structure you want to
1121 * un-register
1122 *
1123 * Un-register the given driver that was previous registered with a call to
1124 * vmbus_driver_register()
1125 */
1126 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1127 {
1128 pr_info("unregistering driver %s\n", hv_driver->name);
1129
1130 if (!vmbus_exists()) {
1131 driver_unregister(&hv_driver->driver);
1132 vmbus_free_dynids(hv_driver);
1133 }
1134 }
1135 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1136
1137 /*
1138 * vmbus_device_create - Creates and registers a new child device
1139 * on the vmbus.
1140 */
1141 struct hv_device *vmbus_device_create(const uuid_le *type,
1142 const uuid_le *instance,
1143 struct vmbus_channel *channel)
1144 {
1145 struct hv_device *child_device_obj;
1146
1147 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1148 if (!child_device_obj) {
1149 pr_err("Unable to allocate device object for child device\n");
1150 return NULL;
1151 }
1152
1153 child_device_obj->channel = channel;
1154 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1155 memcpy(&child_device_obj->dev_instance, instance,
1156 sizeof(uuid_le));
1157 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1158
1159
1160 return child_device_obj;
1161 }
1162
1163 /*
1164 * vmbus_device_register - Register the child device
1165 */
1166 int vmbus_device_register(struct hv_device *child_device_obj)
1167 {
1168 int ret = 0;
1169
1170 dev_set_name(&child_device_obj->device, "%pUl",
1171 child_device_obj->channel->offermsg.offer.if_instance.b);
1172
1173 child_device_obj->device.bus = &hv_bus;
1174 child_device_obj->device.parent = &hv_acpi_dev->dev;
1175 child_device_obj->device.release = vmbus_device_release;
1176
1177 /*
1178 * Register with the LDM. This will kick off the driver/device
1179 * binding...which will eventually call vmbus_match() and vmbus_probe()
1180 */
1181 ret = device_register(&child_device_obj->device);
1182
1183 if (ret)
1184 pr_err("Unable to register child device\n");
1185 else
1186 pr_debug("child device %s registered\n",
1187 dev_name(&child_device_obj->device));
1188
1189 return ret;
1190 }
1191
1192 /*
1193 * vmbus_device_unregister - Remove the specified child device
1194 * from the vmbus.
1195 */
1196 void vmbus_device_unregister(struct hv_device *device_obj)
1197 {
1198 pr_debug("child device %s unregistered\n",
1199 dev_name(&device_obj->device));
1200
1201 /*
1202 * Kick off the process of unregistering the device.
1203 * This will call vmbus_remove() and eventually vmbus_device_release()
1204 */
1205 device_unregister(&device_obj->device);
1206 }
1207
1208
1209 /*
1210 * VMBUS is an acpi enumerated device. Get the information we
1211 * need from DSDT.
1212 */
1213 #define VTPM_BASE_ADDRESS 0xfed40000
1214 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1215 {
1216 resource_size_t start = 0;
1217 resource_size_t end = 0;
1218 struct resource *new_res;
1219 struct resource **old_res = &hyperv_mmio;
1220 struct resource **prev_res = NULL;
1221
1222 switch (res->type) {
1223
1224 /*
1225 * "Address" descriptors are for bus windows. Ignore
1226 * "memory" descriptors, which are for registers on
1227 * devices.
1228 */
1229 case ACPI_RESOURCE_TYPE_ADDRESS32:
1230 start = res->data.address32.address.minimum;
1231 end = res->data.address32.address.maximum;
1232 break;
1233
1234 case ACPI_RESOURCE_TYPE_ADDRESS64:
1235 start = res->data.address64.address.minimum;
1236 end = res->data.address64.address.maximum;
1237 break;
1238
1239 default:
1240 /* Unused resource type */
1241 return AE_OK;
1242
1243 }
1244 /*
1245 * Ignore ranges that are below 1MB, as they're not
1246 * necessary or useful here.
1247 */
1248 if (end < 0x100000)
1249 return AE_OK;
1250
1251 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1252 if (!new_res)
1253 return AE_NO_MEMORY;
1254
1255 /* If this range overlaps the virtual TPM, truncate it. */
1256 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1257 end = VTPM_BASE_ADDRESS;
1258
1259 new_res->name = "hyperv mmio";
1260 new_res->flags = IORESOURCE_MEM;
1261 new_res->start = start;
1262 new_res->end = end;
1263
1264 /*
1265 * If two ranges are adjacent, merge them.
1266 */
1267 do {
1268 if (!*old_res) {
1269 *old_res = new_res;
1270 break;
1271 }
1272
1273 if (((*old_res)->end + 1) == new_res->start) {
1274 (*old_res)->end = new_res->end;
1275 kfree(new_res);
1276 break;
1277 }
1278
1279 if ((*old_res)->start == new_res->end + 1) {
1280 (*old_res)->start = new_res->start;
1281 kfree(new_res);
1282 break;
1283 }
1284
1285 if ((*old_res)->start > new_res->end) {
1286 new_res->sibling = *old_res;
1287 if (prev_res)
1288 (*prev_res)->sibling = new_res;
1289 *old_res = new_res;
1290 break;
1291 }
1292
1293 prev_res = old_res;
1294 old_res = &(*old_res)->sibling;
1295
1296 } while (1);
1297
1298 return AE_OK;
1299 }
1300
1301 static int vmbus_acpi_remove(struct acpi_device *device)
1302 {
1303 struct resource *cur_res;
1304 struct resource *next_res;
1305
1306 if (hyperv_mmio) {
1307 if (fb_mmio) {
1308 __release_region(hyperv_mmio, fb_mmio->start,
1309 resource_size(fb_mmio));
1310 fb_mmio = NULL;
1311 }
1312
1313 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1314 next_res = cur_res->sibling;
1315 kfree(cur_res);
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 static void vmbus_reserve_fb(void)
1323 {
1324 int size;
1325 /*
1326 * Make a claim for the frame buffer in the resource tree under the
1327 * first node, which will be the one below 4GB. The length seems to
1328 * be underreported, particularly in a Generation 1 VM. So start out
1329 * reserving a larger area and make it smaller until it succeeds.
1330 */
1331
1332 if (screen_info.lfb_base) {
1333 if (efi_enabled(EFI_BOOT))
1334 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1335 else
1336 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1337
1338 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1339 fb_mmio = __request_region(hyperv_mmio,
1340 screen_info.lfb_base, size,
1341 fb_mmio_name, 0);
1342 }
1343 }
1344 }
1345
1346 /**
1347 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1348 * @new: If successful, supplied a pointer to the
1349 * allocated MMIO space.
1350 * @device_obj: Identifies the caller
1351 * @min: Minimum guest physical address of the
1352 * allocation
1353 * @max: Maximum guest physical address
1354 * @size: Size of the range to be allocated
1355 * @align: Alignment of the range to be allocated
1356 * @fb_overlap_ok: Whether this allocation can be allowed
1357 * to overlap the video frame buffer.
1358 *
1359 * This function walks the resources granted to VMBus by the
1360 * _CRS object in the ACPI namespace underneath the parent
1361 * "bridge" whether that's a root PCI bus in the Generation 1
1362 * case or a Module Device in the Generation 2 case. It then
1363 * attempts to allocate from the global MMIO pool in a way that
1364 * matches the constraints supplied in these parameters and by
1365 * that _CRS.
1366 *
1367 * Return: 0 on success, -errno on failure
1368 */
1369 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1370 resource_size_t min, resource_size_t max,
1371 resource_size_t size, resource_size_t align,
1372 bool fb_overlap_ok)
1373 {
1374 struct resource *iter, *shadow;
1375 resource_size_t range_min, range_max, start;
1376 const char *dev_n = dev_name(&device_obj->device);
1377 int retval;
1378
1379 retval = -ENXIO;
1380 down(&hyperv_mmio_lock);
1381
1382 /*
1383 * If overlaps with frame buffers are allowed, then first attempt to
1384 * make the allocation from within the reserved region. Because it
1385 * is already reserved, no shadow allocation is necessary.
1386 */
1387 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1388 !(max < fb_mmio->start)) {
1389
1390 range_min = fb_mmio->start;
1391 range_max = fb_mmio->end;
1392 start = (range_min + align - 1) & ~(align - 1);
1393 for (; start + size - 1 <= range_max; start += align) {
1394 *new = request_mem_region_exclusive(start, size, dev_n);
1395 if (*new) {
1396 retval = 0;
1397 goto exit;
1398 }
1399 }
1400 }
1401
1402 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1403 if ((iter->start >= max) || (iter->end <= min))
1404 continue;
1405
1406 range_min = iter->start;
1407 range_max = iter->end;
1408 start = (range_min + align - 1) & ~(align - 1);
1409 for (; start + size - 1 <= range_max; start += align) {
1410 shadow = __request_region(iter, start, size, NULL,
1411 IORESOURCE_BUSY);
1412 if (!shadow)
1413 continue;
1414
1415 *new = request_mem_region_exclusive(start, size, dev_n);
1416 if (*new) {
1417 shadow->name = (char *)*new;
1418 retval = 0;
1419 goto exit;
1420 }
1421
1422 __release_region(iter, start, size);
1423 }
1424 }
1425
1426 exit:
1427 up(&hyperv_mmio_lock);
1428 return retval;
1429 }
1430 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1431
1432 /**
1433 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1434 * @start: Base address of region to release.
1435 * @size: Size of the range to be allocated
1436 *
1437 * This function releases anything requested by
1438 * vmbus_mmio_allocate().
1439 */
1440 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1441 {
1442 struct resource *iter;
1443
1444 down(&hyperv_mmio_lock);
1445 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1446 if ((iter->start >= start + size) || (iter->end <= start))
1447 continue;
1448
1449 __release_region(iter, start, size);
1450 }
1451 release_mem_region(start, size);
1452 up(&hyperv_mmio_lock);
1453
1454 }
1455 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1456
1457 /**
1458 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1459 * @cpu_number: CPU number in Linux terms
1460 *
1461 * This function returns the mapping between the Linux processor
1462 * number and the hypervisor's virtual processor number, useful
1463 * in making hypercalls and such that talk about specific
1464 * processors.
1465 *
1466 * Return: Virtual processor number in Hyper-V terms
1467 */
1468 int vmbus_cpu_number_to_vp_number(int cpu_number)
1469 {
1470 return hv_context.vp_index[cpu_number];
1471 }
1472 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1473
1474 static int vmbus_acpi_add(struct acpi_device *device)
1475 {
1476 acpi_status result;
1477 int ret_val = -ENODEV;
1478 struct acpi_device *ancestor;
1479
1480 hv_acpi_dev = device;
1481
1482 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1483 vmbus_walk_resources, NULL);
1484
1485 if (ACPI_FAILURE(result))
1486 goto acpi_walk_err;
1487 /*
1488 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1489 * firmware) is the VMOD that has the mmio ranges. Get that.
1490 */
1491 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1492 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1493 vmbus_walk_resources, NULL);
1494
1495 if (ACPI_FAILURE(result))
1496 continue;
1497 if (hyperv_mmio) {
1498 vmbus_reserve_fb();
1499 break;
1500 }
1501 }
1502 ret_val = 0;
1503
1504 acpi_walk_err:
1505 complete(&probe_event);
1506 if (ret_val)
1507 vmbus_acpi_remove(device);
1508 return ret_val;
1509 }
1510
1511 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1512 {"VMBUS", 0},
1513 {"VMBus", 0},
1514 {"", 0},
1515 };
1516 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1517
1518 static struct acpi_driver vmbus_acpi_driver = {
1519 .name = "vmbus",
1520 .ids = vmbus_acpi_device_ids,
1521 .ops = {
1522 .add = vmbus_acpi_add,
1523 .remove = vmbus_acpi_remove,
1524 },
1525 };
1526
1527 static void hv_kexec_handler(void)
1528 {
1529 hv_synic_clockevents_cleanup();
1530 vmbus_initiate_unload(false);
1531 vmbus_connection.conn_state = DISCONNECTED;
1532 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1533 mb();
1534 cpuhp_remove_state(hyperv_cpuhp_online);
1535 hyperv_cleanup();
1536 };
1537
1538 static void hv_crash_handler(struct pt_regs *regs)
1539 {
1540 vmbus_initiate_unload(true);
1541 /*
1542 * In crash handler we can't schedule synic cleanup for all CPUs,
1543 * doing the cleanup for current CPU only. This should be sufficient
1544 * for kdump.
1545 */
1546 vmbus_connection.conn_state = DISCONNECTED;
1547 hv_synic_cleanup(smp_processor_id());
1548 hyperv_cleanup();
1549 };
1550
1551 static int __init hv_acpi_init(void)
1552 {
1553 int ret, t;
1554
1555 if (x86_hyper != &x86_hyper_ms_hyperv)
1556 return -ENODEV;
1557
1558 init_completion(&probe_event);
1559
1560 /*
1561 * Get ACPI resources first.
1562 */
1563 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1564
1565 if (ret)
1566 return ret;
1567
1568 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1569 if (t == 0) {
1570 ret = -ETIMEDOUT;
1571 goto cleanup;
1572 }
1573
1574 ret = vmbus_bus_init();
1575 if (ret)
1576 goto cleanup;
1577
1578 hv_setup_kexec_handler(hv_kexec_handler);
1579 hv_setup_crash_handler(hv_crash_handler);
1580
1581 return 0;
1582
1583 cleanup:
1584 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1585 hv_acpi_dev = NULL;
1586 return ret;
1587 }
1588
1589 static void __exit vmbus_exit(void)
1590 {
1591 int cpu;
1592
1593 hv_remove_kexec_handler();
1594 hv_remove_crash_handler();
1595 vmbus_connection.conn_state = DISCONNECTED;
1596 hv_synic_clockevents_cleanup();
1597 vmbus_disconnect();
1598 hv_remove_vmbus_irq();
1599 for_each_online_cpu(cpu) {
1600 struct hv_per_cpu_context *hv_cpu
1601 = per_cpu_ptr(hv_context.cpu_context, cpu);
1602
1603 tasklet_kill(&hv_cpu->msg_dpc);
1604 }
1605 vmbus_free_channels();
1606
1607 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1608 unregister_die_notifier(&hyperv_die_block);
1609 atomic_notifier_chain_unregister(&panic_notifier_list,
1610 &hyperv_panic_block);
1611 }
1612 bus_unregister(&hv_bus);
1613
1614 cpuhp_remove_state(hyperv_cpuhp_online);
1615 hv_synic_free();
1616 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1617 }
1618
1619
1620 MODULE_LICENSE("GPL");
1621
1622 subsys_initcall(hv_acpi_init);
1623 module_exit(vmbus_exit);