]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/hv/vmbus_drv.c
Drivers: hv: vmbus: don't loose HVMSG_TIMER_EXPIRED messages
[mirror_ubuntu-artful-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45
46 static struct acpi_device *hv_acpi_dev;
47
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50
51
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54 static bool panic_reported;
55
56 /*
57 * We prefer to report panic on 'die' chain as we have proper
58 * registers to report, but if we miss it (e.g. on BUG()) we need
59 * to report it on 'panic'.
60 */
61 if (panic_reported)
62 return;
63 panic_reported = true;
64
65 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70
71 /*
72 * Let Hyper-V know there is crash data available
73 */
74 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78 void *args)
79 {
80 struct pt_regs *regs;
81
82 regs = current_pt_regs();
83
84 hyperv_report_panic(regs);
85 return NOTIFY_DONE;
86 }
87
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89 void *args)
90 {
91 struct die_args *die = (struct die_args *)args;
92 struct pt_regs *regs = die->regs;
93
94 hyperv_report_panic(regs);
95 return NOTIFY_DONE;
96 }
97
98 static struct notifier_block hyperv_die_block = {
99 .notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102 .notifier_call = hyperv_panic_event,
103 };
104
105 struct resource *hyperv_mmio;
106
107 static int vmbus_exists(void)
108 {
109 if (hv_acpi_dev == NULL)
110 return -ENODEV;
111
112 return 0;
113 }
114
115 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
116 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
117 {
118 int i;
119 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
120 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
121 }
122
123 static u8 channel_monitor_group(struct vmbus_channel *channel)
124 {
125 return (u8)channel->offermsg.monitorid / 32;
126 }
127
128 static u8 channel_monitor_offset(struct vmbus_channel *channel)
129 {
130 return (u8)channel->offermsg.monitorid % 32;
131 }
132
133 static u32 channel_pending(struct vmbus_channel *channel,
134 struct hv_monitor_page *monitor_page)
135 {
136 u8 monitor_group = channel_monitor_group(channel);
137 return monitor_page->trigger_group[monitor_group].pending;
138 }
139
140 static u32 channel_latency(struct vmbus_channel *channel,
141 struct hv_monitor_page *monitor_page)
142 {
143 u8 monitor_group = channel_monitor_group(channel);
144 u8 monitor_offset = channel_monitor_offset(channel);
145 return monitor_page->latency[monitor_group][monitor_offset];
146 }
147
148 static u32 channel_conn_id(struct vmbus_channel *channel,
149 struct hv_monitor_page *monitor_page)
150 {
151 u8 monitor_group = channel_monitor_group(channel);
152 u8 monitor_offset = channel_monitor_offset(channel);
153 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
154 }
155
156 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
157 char *buf)
158 {
159 struct hv_device *hv_dev = device_to_hv_device(dev);
160
161 if (!hv_dev->channel)
162 return -ENODEV;
163 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
164 }
165 static DEVICE_ATTR_RO(id);
166
167 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
168 char *buf)
169 {
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->state);
175 }
176 static DEVICE_ATTR_RO(state);
177
178 static ssize_t monitor_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
180 {
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
186 }
187 static DEVICE_ATTR_RO(monitor_id);
188
189 static ssize_t class_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
191 {
192 struct hv_device *hv_dev = device_to_hv_device(dev);
193
194 if (!hv_dev->channel)
195 return -ENODEV;
196 return sprintf(buf, "{%pUl}\n",
197 hv_dev->channel->offermsg.offer.if_type.b);
198 }
199 static DEVICE_ATTR_RO(class_id);
200
201 static ssize_t device_id_show(struct device *dev,
202 struct device_attribute *dev_attr, char *buf)
203 {
204 struct hv_device *hv_dev = device_to_hv_device(dev);
205
206 if (!hv_dev->channel)
207 return -ENODEV;
208 return sprintf(buf, "{%pUl}\n",
209 hv_dev->channel->offermsg.offer.if_instance.b);
210 }
211 static DEVICE_ATTR_RO(device_id);
212
213 static ssize_t modalias_show(struct device *dev,
214 struct device_attribute *dev_attr, char *buf)
215 {
216 struct hv_device *hv_dev = device_to_hv_device(dev);
217 char alias_name[VMBUS_ALIAS_LEN + 1];
218
219 print_alias_name(hv_dev, alias_name);
220 return sprintf(buf, "vmbus:%s\n", alias_name);
221 }
222 static DEVICE_ATTR_RO(modalias);
223
224 static ssize_t server_monitor_pending_show(struct device *dev,
225 struct device_attribute *dev_attr,
226 char *buf)
227 {
228 struct hv_device *hv_dev = device_to_hv_device(dev);
229
230 if (!hv_dev->channel)
231 return -ENODEV;
232 return sprintf(buf, "%d\n",
233 channel_pending(hv_dev->channel,
234 vmbus_connection.monitor_pages[1]));
235 }
236 static DEVICE_ATTR_RO(server_monitor_pending);
237
238 static ssize_t client_monitor_pending_show(struct device *dev,
239 struct device_attribute *dev_attr,
240 char *buf)
241 {
242 struct hv_device *hv_dev = device_to_hv_device(dev);
243
244 if (!hv_dev->channel)
245 return -ENODEV;
246 return sprintf(buf, "%d\n",
247 channel_pending(hv_dev->channel,
248 vmbus_connection.monitor_pages[1]));
249 }
250 static DEVICE_ATTR_RO(client_monitor_pending);
251
252 static ssize_t server_monitor_latency_show(struct device *dev,
253 struct device_attribute *dev_attr,
254 char *buf)
255 {
256 struct hv_device *hv_dev = device_to_hv_device(dev);
257
258 if (!hv_dev->channel)
259 return -ENODEV;
260 return sprintf(buf, "%d\n",
261 channel_latency(hv_dev->channel,
262 vmbus_connection.monitor_pages[0]));
263 }
264 static DEVICE_ATTR_RO(server_monitor_latency);
265
266 static ssize_t client_monitor_latency_show(struct device *dev,
267 struct device_attribute *dev_attr,
268 char *buf)
269 {
270 struct hv_device *hv_dev = device_to_hv_device(dev);
271
272 if (!hv_dev->channel)
273 return -ENODEV;
274 return sprintf(buf, "%d\n",
275 channel_latency(hv_dev->channel,
276 vmbus_connection.monitor_pages[1]));
277 }
278 static DEVICE_ATTR_RO(client_monitor_latency);
279
280 static ssize_t server_monitor_conn_id_show(struct device *dev,
281 struct device_attribute *dev_attr,
282 char *buf)
283 {
284 struct hv_device *hv_dev = device_to_hv_device(dev);
285
286 if (!hv_dev->channel)
287 return -ENODEV;
288 return sprintf(buf, "%d\n",
289 channel_conn_id(hv_dev->channel,
290 vmbus_connection.monitor_pages[0]));
291 }
292 static DEVICE_ATTR_RO(server_monitor_conn_id);
293
294 static ssize_t client_monitor_conn_id_show(struct device *dev,
295 struct device_attribute *dev_attr,
296 char *buf)
297 {
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299
300 if (!hv_dev->channel)
301 return -ENODEV;
302 return sprintf(buf, "%d\n",
303 channel_conn_id(hv_dev->channel,
304 vmbus_connection.monitor_pages[1]));
305 }
306 static DEVICE_ATTR_RO(client_monitor_conn_id);
307
308 static ssize_t out_intr_mask_show(struct device *dev,
309 struct device_attribute *dev_attr, char *buf)
310 {
311 struct hv_device *hv_dev = device_to_hv_device(dev);
312 struct hv_ring_buffer_debug_info outbound;
313
314 if (!hv_dev->channel)
315 return -ENODEV;
316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
318 }
319 static DEVICE_ATTR_RO(out_intr_mask);
320
321 static ssize_t out_read_index_show(struct device *dev,
322 struct device_attribute *dev_attr, char *buf)
323 {
324 struct hv_device *hv_dev = device_to_hv_device(dev);
325 struct hv_ring_buffer_debug_info outbound;
326
327 if (!hv_dev->channel)
328 return -ENODEV;
329 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
330 return sprintf(buf, "%d\n", outbound.current_read_index);
331 }
332 static DEVICE_ATTR_RO(out_read_index);
333
334 static ssize_t out_write_index_show(struct device *dev,
335 struct device_attribute *dev_attr,
336 char *buf)
337 {
338 struct hv_device *hv_dev = device_to_hv_device(dev);
339 struct hv_ring_buffer_debug_info outbound;
340
341 if (!hv_dev->channel)
342 return -ENODEV;
343 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
344 return sprintf(buf, "%d\n", outbound.current_write_index);
345 }
346 static DEVICE_ATTR_RO(out_write_index);
347
348 static ssize_t out_read_bytes_avail_show(struct device *dev,
349 struct device_attribute *dev_attr,
350 char *buf)
351 {
352 struct hv_device *hv_dev = device_to_hv_device(dev);
353 struct hv_ring_buffer_debug_info outbound;
354
355 if (!hv_dev->channel)
356 return -ENODEV;
357 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
358 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
359 }
360 static DEVICE_ATTR_RO(out_read_bytes_avail);
361
362 static ssize_t out_write_bytes_avail_show(struct device *dev,
363 struct device_attribute *dev_attr,
364 char *buf)
365 {
366 struct hv_device *hv_dev = device_to_hv_device(dev);
367 struct hv_ring_buffer_debug_info outbound;
368
369 if (!hv_dev->channel)
370 return -ENODEV;
371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
372 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
373 }
374 static DEVICE_ATTR_RO(out_write_bytes_avail);
375
376 static ssize_t in_intr_mask_show(struct device *dev,
377 struct device_attribute *dev_attr, char *buf)
378 {
379 struct hv_device *hv_dev = device_to_hv_device(dev);
380 struct hv_ring_buffer_debug_info inbound;
381
382 if (!hv_dev->channel)
383 return -ENODEV;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
386 }
387 static DEVICE_ATTR_RO(in_intr_mask);
388
389 static ssize_t in_read_index_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 return sprintf(buf, "%d\n", inbound.current_read_index);
399 }
400 static DEVICE_ATTR_RO(in_read_index);
401
402 static ssize_t in_write_index_show(struct device *dev,
403 struct device_attribute *dev_attr, char *buf)
404 {
405 struct hv_device *hv_dev = device_to_hv_device(dev);
406 struct hv_ring_buffer_debug_info inbound;
407
408 if (!hv_dev->channel)
409 return -ENODEV;
410 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
411 return sprintf(buf, "%d\n", inbound.current_write_index);
412 }
413 static DEVICE_ATTR_RO(in_write_index);
414
415 static ssize_t in_read_bytes_avail_show(struct device *dev,
416 struct device_attribute *dev_attr,
417 char *buf)
418 {
419 struct hv_device *hv_dev = device_to_hv_device(dev);
420 struct hv_ring_buffer_debug_info inbound;
421
422 if (!hv_dev->channel)
423 return -ENODEV;
424 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
425 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
426 }
427 static DEVICE_ATTR_RO(in_read_bytes_avail);
428
429 static ssize_t in_write_bytes_avail_show(struct device *dev,
430 struct device_attribute *dev_attr,
431 char *buf)
432 {
433 struct hv_device *hv_dev = device_to_hv_device(dev);
434 struct hv_ring_buffer_debug_info inbound;
435
436 if (!hv_dev->channel)
437 return -ENODEV;
438 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
440 }
441 static DEVICE_ATTR_RO(in_write_bytes_avail);
442
443 static ssize_t channel_vp_mapping_show(struct device *dev,
444 struct device_attribute *dev_attr,
445 char *buf)
446 {
447 struct hv_device *hv_dev = device_to_hv_device(dev);
448 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
449 unsigned long flags;
450 int buf_size = PAGE_SIZE, n_written, tot_written;
451 struct list_head *cur;
452
453 if (!channel)
454 return -ENODEV;
455
456 tot_written = snprintf(buf, buf_size, "%u:%u\n",
457 channel->offermsg.child_relid, channel->target_cpu);
458
459 spin_lock_irqsave(&channel->lock, flags);
460
461 list_for_each(cur, &channel->sc_list) {
462 if (tot_written >= buf_size - 1)
463 break;
464
465 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
466 n_written = scnprintf(buf + tot_written,
467 buf_size - tot_written,
468 "%u:%u\n",
469 cur_sc->offermsg.child_relid,
470 cur_sc->target_cpu);
471 tot_written += n_written;
472 }
473
474 spin_unlock_irqrestore(&channel->lock, flags);
475
476 return tot_written;
477 }
478 static DEVICE_ATTR_RO(channel_vp_mapping);
479
480 static ssize_t vendor_show(struct device *dev,
481 struct device_attribute *dev_attr,
482 char *buf)
483 {
484 struct hv_device *hv_dev = device_to_hv_device(dev);
485 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
486 }
487 static DEVICE_ATTR_RO(vendor);
488
489 static ssize_t device_show(struct device *dev,
490 struct device_attribute *dev_attr,
491 char *buf)
492 {
493 struct hv_device *hv_dev = device_to_hv_device(dev);
494 return sprintf(buf, "0x%x\n", hv_dev->device_id);
495 }
496 static DEVICE_ATTR_RO(device);
497
498 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
499 static struct attribute *vmbus_attrs[] = {
500 &dev_attr_id.attr,
501 &dev_attr_state.attr,
502 &dev_attr_monitor_id.attr,
503 &dev_attr_class_id.attr,
504 &dev_attr_device_id.attr,
505 &dev_attr_modalias.attr,
506 &dev_attr_server_monitor_pending.attr,
507 &dev_attr_client_monitor_pending.attr,
508 &dev_attr_server_monitor_latency.attr,
509 &dev_attr_client_monitor_latency.attr,
510 &dev_attr_server_monitor_conn_id.attr,
511 &dev_attr_client_monitor_conn_id.attr,
512 &dev_attr_out_intr_mask.attr,
513 &dev_attr_out_read_index.attr,
514 &dev_attr_out_write_index.attr,
515 &dev_attr_out_read_bytes_avail.attr,
516 &dev_attr_out_write_bytes_avail.attr,
517 &dev_attr_in_intr_mask.attr,
518 &dev_attr_in_read_index.attr,
519 &dev_attr_in_write_index.attr,
520 &dev_attr_in_read_bytes_avail.attr,
521 &dev_attr_in_write_bytes_avail.attr,
522 &dev_attr_channel_vp_mapping.attr,
523 &dev_attr_vendor.attr,
524 &dev_attr_device.attr,
525 NULL,
526 };
527 ATTRIBUTE_GROUPS(vmbus);
528
529 /*
530 * vmbus_uevent - add uevent for our device
531 *
532 * This routine is invoked when a device is added or removed on the vmbus to
533 * generate a uevent to udev in the userspace. The udev will then look at its
534 * rule and the uevent generated here to load the appropriate driver
535 *
536 * The alias string will be of the form vmbus:guid where guid is the string
537 * representation of the device guid (each byte of the guid will be
538 * represented with two hex characters.
539 */
540 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
541 {
542 struct hv_device *dev = device_to_hv_device(device);
543 int ret;
544 char alias_name[VMBUS_ALIAS_LEN + 1];
545
546 print_alias_name(dev, alias_name);
547 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
548 return ret;
549 }
550
551 static const uuid_le null_guid;
552
553 static inline bool is_null_guid(const uuid_le *guid)
554 {
555 if (uuid_le_cmp(*guid, null_guid))
556 return false;
557 return true;
558 }
559
560 /*
561 * Return a matching hv_vmbus_device_id pointer.
562 * If there is no match, return NULL.
563 */
564 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
565 const struct hv_vmbus_device_id *id,
566 const uuid_le *guid)
567 {
568 for (; !is_null_guid(&id->guid); id++)
569 if (!uuid_le_cmp(id->guid, *guid))
570 return id;
571
572 return NULL;
573 }
574
575
576
577 /*
578 * vmbus_match - Attempt to match the specified device to the specified driver
579 */
580 static int vmbus_match(struct device *device, struct device_driver *driver)
581 {
582 struct hv_driver *drv = drv_to_hv_drv(driver);
583 struct hv_device *hv_dev = device_to_hv_device(device);
584
585 /* The hv_sock driver handles all hv_sock offers. */
586 if (is_hvsock_channel(hv_dev->channel))
587 return drv->hvsock;
588
589 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
590 return 1;
591
592 return 0;
593 }
594
595 /*
596 * vmbus_probe - Add the new vmbus's child device
597 */
598 static int vmbus_probe(struct device *child_device)
599 {
600 int ret = 0;
601 struct hv_driver *drv =
602 drv_to_hv_drv(child_device->driver);
603 struct hv_device *dev = device_to_hv_device(child_device);
604 const struct hv_vmbus_device_id *dev_id;
605
606 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
607 if (drv->probe) {
608 ret = drv->probe(dev, dev_id);
609 if (ret != 0)
610 pr_err("probe failed for device %s (%d)\n",
611 dev_name(child_device), ret);
612
613 } else {
614 pr_err("probe not set for driver %s\n",
615 dev_name(child_device));
616 ret = -ENODEV;
617 }
618 return ret;
619 }
620
621 /*
622 * vmbus_remove - Remove a vmbus device
623 */
624 static int vmbus_remove(struct device *child_device)
625 {
626 struct hv_driver *drv;
627 struct hv_device *dev = device_to_hv_device(child_device);
628
629 if (child_device->driver) {
630 drv = drv_to_hv_drv(child_device->driver);
631 if (drv->remove)
632 drv->remove(dev);
633 }
634
635 return 0;
636 }
637
638
639 /*
640 * vmbus_shutdown - Shutdown a vmbus device
641 */
642 static void vmbus_shutdown(struct device *child_device)
643 {
644 struct hv_driver *drv;
645 struct hv_device *dev = device_to_hv_device(child_device);
646
647
648 /* The device may not be attached yet */
649 if (!child_device->driver)
650 return;
651
652 drv = drv_to_hv_drv(child_device->driver);
653
654 if (drv->shutdown)
655 drv->shutdown(dev);
656
657 return;
658 }
659
660
661 /*
662 * vmbus_device_release - Final callback release of the vmbus child device
663 */
664 static void vmbus_device_release(struct device *device)
665 {
666 struct hv_device *hv_dev = device_to_hv_device(device);
667 struct vmbus_channel *channel = hv_dev->channel;
668
669 hv_process_channel_removal(channel,
670 channel->offermsg.child_relid);
671 kfree(hv_dev);
672
673 }
674
675 /* The one and only one */
676 static struct bus_type hv_bus = {
677 .name = "vmbus",
678 .match = vmbus_match,
679 .shutdown = vmbus_shutdown,
680 .remove = vmbus_remove,
681 .probe = vmbus_probe,
682 .uevent = vmbus_uevent,
683 .dev_groups = vmbus_groups,
684 };
685
686 struct onmessage_work_context {
687 struct work_struct work;
688 struct hv_message msg;
689 };
690
691 static void vmbus_onmessage_work(struct work_struct *work)
692 {
693 struct onmessage_work_context *ctx;
694
695 /* Do not process messages if we're in DISCONNECTED state */
696 if (vmbus_connection.conn_state == DISCONNECTED)
697 return;
698
699 ctx = container_of(work, struct onmessage_work_context,
700 work);
701 vmbus_onmessage(&ctx->msg);
702 kfree(ctx);
703 }
704
705 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
706 {
707 struct clock_event_device *dev = hv_context.clk_evt[cpu];
708
709 if (dev->event_handler)
710 dev->event_handler(dev);
711
712 msg->header.message_type = HVMSG_NONE;
713
714 /*
715 * Make sure the write to MessageType (ie set to
716 * HVMSG_NONE) happens before we read the
717 * MessagePending and EOMing. Otherwise, the EOMing
718 * will not deliver any more messages since there is
719 * no empty slot
720 */
721 mb();
722
723 if (msg->header.message_flags.msg_pending) {
724 /*
725 * This will cause message queue rescan to
726 * possibly deliver another msg from the
727 * hypervisor
728 */
729 wrmsrl(HV_X64_MSR_EOM, 0);
730 }
731 }
732
733 static void vmbus_on_msg_dpc(unsigned long data)
734 {
735 int cpu = smp_processor_id();
736 void *page_addr = hv_context.synic_message_page[cpu];
737 struct hv_message *msg = (struct hv_message *)page_addr +
738 VMBUS_MESSAGE_SINT;
739 struct vmbus_channel_message_header *hdr;
740 struct vmbus_channel_message_table_entry *entry;
741 struct onmessage_work_context *ctx;
742
743 if (msg->header.message_type == HVMSG_NONE)
744 /* no msg */
745 return;
746
747 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
748
749 if (hdr->msgtype >= CHANNELMSG_COUNT) {
750 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
751 goto msg_handled;
752 }
753
754 entry = &channel_message_table[hdr->msgtype];
755 if (entry->handler_type == VMHT_BLOCKING) {
756 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
757 if (ctx == NULL)
758 return;
759
760 INIT_WORK(&ctx->work, vmbus_onmessage_work);
761 memcpy(&ctx->msg, msg, sizeof(*msg));
762
763 queue_work(vmbus_connection.work_queue, &ctx->work);
764 } else
765 entry->message_handler(hdr);
766
767 msg_handled:
768 msg->header.message_type = HVMSG_NONE;
769
770 /*
771 * Make sure the write to MessageType (ie set to
772 * HVMSG_NONE) happens before we read the
773 * MessagePending and EOMing. Otherwise, the EOMing
774 * will not deliver any more messages since there is
775 * no empty slot
776 */
777 mb();
778
779 if (msg->header.message_flags.msg_pending) {
780 /*
781 * This will cause message queue rescan to
782 * possibly deliver another msg from the
783 * hypervisor
784 */
785 wrmsrl(HV_X64_MSR_EOM, 0);
786 }
787 }
788
789 static void vmbus_isr(void)
790 {
791 int cpu = smp_processor_id();
792 void *page_addr;
793 struct hv_message *msg;
794 union hv_synic_event_flags *event;
795 bool handled = false;
796
797 page_addr = hv_context.synic_event_page[cpu];
798 if (page_addr == NULL)
799 return;
800
801 event = (union hv_synic_event_flags *)page_addr +
802 VMBUS_MESSAGE_SINT;
803 /*
804 * Check for events before checking for messages. This is the order
805 * in which events and messages are checked in Windows guests on
806 * Hyper-V, and the Windows team suggested we do the same.
807 */
808
809 if ((vmbus_proto_version == VERSION_WS2008) ||
810 (vmbus_proto_version == VERSION_WIN7)) {
811
812 /* Since we are a child, we only need to check bit 0 */
813 if (sync_test_and_clear_bit(0,
814 (unsigned long *) &event->flags32[0])) {
815 handled = true;
816 }
817 } else {
818 /*
819 * Our host is win8 or above. The signaling mechanism
820 * has changed and we can directly look at the event page.
821 * If bit n is set then we have an interrup on the channel
822 * whose id is n.
823 */
824 handled = true;
825 }
826
827 if (handled)
828 tasklet_schedule(hv_context.event_dpc[cpu]);
829
830
831 page_addr = hv_context.synic_message_page[cpu];
832 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
833
834 /* Check if there are actual msgs to be processed */
835 if (msg->header.message_type != HVMSG_NONE) {
836 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
837 hv_process_timer_expiration(msg, cpu);
838 else
839 tasklet_schedule(&msg_dpc);
840 }
841 }
842
843
844 /*
845 * vmbus_bus_init -Main vmbus driver initialization routine.
846 *
847 * Here, we
848 * - initialize the vmbus driver context
849 * - invoke the vmbus hv main init routine
850 * - retrieve the channel offers
851 */
852 static int vmbus_bus_init(void)
853 {
854 int ret;
855
856 /* Hypervisor initialization...setup hypercall page..etc */
857 ret = hv_init();
858 if (ret != 0) {
859 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
860 return ret;
861 }
862
863 tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
864
865 ret = bus_register(&hv_bus);
866 if (ret)
867 goto err_cleanup;
868
869 hv_setup_vmbus_irq(vmbus_isr);
870
871 ret = hv_synic_alloc();
872 if (ret)
873 goto err_alloc;
874 /*
875 * Initialize the per-cpu interrupt state and
876 * connect to the host.
877 */
878 on_each_cpu(hv_synic_init, NULL, 1);
879 ret = vmbus_connect();
880 if (ret)
881 goto err_connect;
882
883 if (vmbus_proto_version > VERSION_WIN7)
884 cpu_hotplug_disable();
885
886 /*
887 * Only register if the crash MSRs are available
888 */
889 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
890 register_die_notifier(&hyperv_die_block);
891 atomic_notifier_chain_register(&panic_notifier_list,
892 &hyperv_panic_block);
893 }
894
895 vmbus_request_offers();
896
897 return 0;
898
899 err_connect:
900 on_each_cpu(hv_synic_cleanup, NULL, 1);
901 err_alloc:
902 hv_synic_free();
903 hv_remove_vmbus_irq();
904
905 bus_unregister(&hv_bus);
906
907 err_cleanup:
908 hv_cleanup();
909
910 return ret;
911 }
912
913 /**
914 * __vmbus_child_driver_register() - Register a vmbus's driver
915 * @hv_driver: Pointer to driver structure you want to register
916 * @owner: owner module of the drv
917 * @mod_name: module name string
918 *
919 * Registers the given driver with Linux through the 'driver_register()' call
920 * and sets up the hyper-v vmbus handling for this driver.
921 * It will return the state of the 'driver_register()' call.
922 *
923 */
924 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
925 {
926 int ret;
927
928 pr_info("registering driver %s\n", hv_driver->name);
929
930 ret = vmbus_exists();
931 if (ret < 0)
932 return ret;
933
934 hv_driver->driver.name = hv_driver->name;
935 hv_driver->driver.owner = owner;
936 hv_driver->driver.mod_name = mod_name;
937 hv_driver->driver.bus = &hv_bus;
938
939 ret = driver_register(&hv_driver->driver);
940
941 return ret;
942 }
943 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
944
945 /**
946 * vmbus_driver_unregister() - Unregister a vmbus's driver
947 * @hv_driver: Pointer to driver structure you want to
948 * un-register
949 *
950 * Un-register the given driver that was previous registered with a call to
951 * vmbus_driver_register()
952 */
953 void vmbus_driver_unregister(struct hv_driver *hv_driver)
954 {
955 pr_info("unregistering driver %s\n", hv_driver->name);
956
957 if (!vmbus_exists())
958 driver_unregister(&hv_driver->driver);
959 }
960 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
961
962 /*
963 * vmbus_device_create - Creates and registers a new child device
964 * on the vmbus.
965 */
966 struct hv_device *vmbus_device_create(const uuid_le *type,
967 const uuid_le *instance,
968 struct vmbus_channel *channel)
969 {
970 struct hv_device *child_device_obj;
971
972 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
973 if (!child_device_obj) {
974 pr_err("Unable to allocate device object for child device\n");
975 return NULL;
976 }
977
978 child_device_obj->channel = channel;
979 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
980 memcpy(&child_device_obj->dev_instance, instance,
981 sizeof(uuid_le));
982 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
983
984
985 return child_device_obj;
986 }
987
988 /*
989 * vmbus_device_register - Register the child device
990 */
991 int vmbus_device_register(struct hv_device *child_device_obj)
992 {
993 int ret = 0;
994
995 dev_set_name(&child_device_obj->device, "vmbus_%d",
996 child_device_obj->channel->id);
997
998 child_device_obj->device.bus = &hv_bus;
999 child_device_obj->device.parent = &hv_acpi_dev->dev;
1000 child_device_obj->device.release = vmbus_device_release;
1001
1002 /*
1003 * Register with the LDM. This will kick off the driver/device
1004 * binding...which will eventually call vmbus_match() and vmbus_probe()
1005 */
1006 ret = device_register(&child_device_obj->device);
1007
1008 if (ret)
1009 pr_err("Unable to register child device\n");
1010 else
1011 pr_debug("child device %s registered\n",
1012 dev_name(&child_device_obj->device));
1013
1014 return ret;
1015 }
1016
1017 /*
1018 * vmbus_device_unregister - Remove the specified child device
1019 * from the vmbus.
1020 */
1021 void vmbus_device_unregister(struct hv_device *device_obj)
1022 {
1023 pr_debug("child device %s unregistered\n",
1024 dev_name(&device_obj->device));
1025
1026 /*
1027 * Kick off the process of unregistering the device.
1028 * This will call vmbus_remove() and eventually vmbus_device_release()
1029 */
1030 device_unregister(&device_obj->device);
1031 }
1032
1033
1034 /*
1035 * VMBUS is an acpi enumerated device. Get the information we
1036 * need from DSDT.
1037 */
1038 #define VTPM_BASE_ADDRESS 0xfed40000
1039 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1040 {
1041 resource_size_t start = 0;
1042 resource_size_t end = 0;
1043 struct resource *new_res;
1044 struct resource **old_res = &hyperv_mmio;
1045 struct resource **prev_res = NULL;
1046
1047 switch (res->type) {
1048
1049 /*
1050 * "Address" descriptors are for bus windows. Ignore
1051 * "memory" descriptors, which are for registers on
1052 * devices.
1053 */
1054 case ACPI_RESOURCE_TYPE_ADDRESS32:
1055 start = res->data.address32.address.minimum;
1056 end = res->data.address32.address.maximum;
1057 break;
1058
1059 case ACPI_RESOURCE_TYPE_ADDRESS64:
1060 start = res->data.address64.address.minimum;
1061 end = res->data.address64.address.maximum;
1062 break;
1063
1064 default:
1065 /* Unused resource type */
1066 return AE_OK;
1067
1068 }
1069 /*
1070 * Ignore ranges that are below 1MB, as they're not
1071 * necessary or useful here.
1072 */
1073 if (end < 0x100000)
1074 return AE_OK;
1075
1076 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1077 if (!new_res)
1078 return AE_NO_MEMORY;
1079
1080 /* If this range overlaps the virtual TPM, truncate it. */
1081 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1082 end = VTPM_BASE_ADDRESS;
1083
1084 new_res->name = "hyperv mmio";
1085 new_res->flags = IORESOURCE_MEM;
1086 new_res->start = start;
1087 new_res->end = end;
1088
1089 /*
1090 * Stick ranges from higher in address space at the front of the list.
1091 * If two ranges are adjacent, merge them.
1092 */
1093 do {
1094 if (!*old_res) {
1095 *old_res = new_res;
1096 break;
1097 }
1098
1099 if (((*old_res)->end + 1) == new_res->start) {
1100 (*old_res)->end = new_res->end;
1101 kfree(new_res);
1102 break;
1103 }
1104
1105 if ((*old_res)->start == new_res->end + 1) {
1106 (*old_res)->start = new_res->start;
1107 kfree(new_res);
1108 break;
1109 }
1110
1111 if ((*old_res)->end < new_res->start) {
1112 new_res->sibling = *old_res;
1113 if (prev_res)
1114 (*prev_res)->sibling = new_res;
1115 *old_res = new_res;
1116 break;
1117 }
1118
1119 prev_res = old_res;
1120 old_res = &(*old_res)->sibling;
1121
1122 } while (1);
1123
1124 return AE_OK;
1125 }
1126
1127 static int vmbus_acpi_remove(struct acpi_device *device)
1128 {
1129 struct resource *cur_res;
1130 struct resource *next_res;
1131
1132 if (hyperv_mmio) {
1133 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1134 next_res = cur_res->sibling;
1135 kfree(cur_res);
1136 }
1137 }
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1144 * @new: If successful, supplied a pointer to the
1145 * allocated MMIO space.
1146 * @device_obj: Identifies the caller
1147 * @min: Minimum guest physical address of the
1148 * allocation
1149 * @max: Maximum guest physical address
1150 * @size: Size of the range to be allocated
1151 * @align: Alignment of the range to be allocated
1152 * @fb_overlap_ok: Whether this allocation can be allowed
1153 * to overlap the video frame buffer.
1154 *
1155 * This function walks the resources granted to VMBus by the
1156 * _CRS object in the ACPI namespace underneath the parent
1157 * "bridge" whether that's a root PCI bus in the Generation 1
1158 * case or a Module Device in the Generation 2 case. It then
1159 * attempts to allocate from the global MMIO pool in a way that
1160 * matches the constraints supplied in these parameters and by
1161 * that _CRS.
1162 *
1163 * Return: 0 on success, -errno on failure
1164 */
1165 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1166 resource_size_t min, resource_size_t max,
1167 resource_size_t size, resource_size_t align,
1168 bool fb_overlap_ok)
1169 {
1170 struct resource *iter;
1171 resource_size_t range_min, range_max, start, local_min, local_max;
1172 const char *dev_n = dev_name(&device_obj->device);
1173 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1174 int i;
1175
1176 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1177 if ((iter->start >= max) || (iter->end <= min))
1178 continue;
1179
1180 range_min = iter->start;
1181 range_max = iter->end;
1182
1183 /* If this range overlaps the frame buffer, split it into
1184 two tries. */
1185 for (i = 0; i < 2; i++) {
1186 local_min = range_min;
1187 local_max = range_max;
1188 if (fb_overlap_ok || (range_min >= fb_end) ||
1189 (range_max <= screen_info.lfb_base)) {
1190 i++;
1191 } else {
1192 if ((range_min <= screen_info.lfb_base) &&
1193 (range_max >= screen_info.lfb_base)) {
1194 /*
1195 * The frame buffer is in this window,
1196 * so trim this into the part that
1197 * preceeds the frame buffer.
1198 */
1199 local_max = screen_info.lfb_base - 1;
1200 range_min = fb_end;
1201 } else {
1202 range_min = fb_end;
1203 continue;
1204 }
1205 }
1206
1207 start = (local_min + align - 1) & ~(align - 1);
1208 for (; start + size - 1 <= local_max; start += align) {
1209 *new = request_mem_region_exclusive(start, size,
1210 dev_n);
1211 if (*new)
1212 return 0;
1213 }
1214 }
1215 }
1216
1217 return -ENXIO;
1218 }
1219 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1220
1221 /**
1222 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1223 * @cpu_number: CPU number in Linux terms
1224 *
1225 * This function returns the mapping between the Linux processor
1226 * number and the hypervisor's virtual processor number, useful
1227 * in making hypercalls and such that talk about specific
1228 * processors.
1229 *
1230 * Return: Virtual processor number in Hyper-V terms
1231 */
1232 int vmbus_cpu_number_to_vp_number(int cpu_number)
1233 {
1234 return hv_context.vp_index[cpu_number];
1235 }
1236 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1237
1238 static int vmbus_acpi_add(struct acpi_device *device)
1239 {
1240 acpi_status result;
1241 int ret_val = -ENODEV;
1242 struct acpi_device *ancestor;
1243
1244 hv_acpi_dev = device;
1245
1246 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1247 vmbus_walk_resources, NULL);
1248
1249 if (ACPI_FAILURE(result))
1250 goto acpi_walk_err;
1251 /*
1252 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1253 * firmware) is the VMOD that has the mmio ranges. Get that.
1254 */
1255 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1256 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1257 vmbus_walk_resources, NULL);
1258
1259 if (ACPI_FAILURE(result))
1260 continue;
1261 if (hyperv_mmio)
1262 break;
1263 }
1264 ret_val = 0;
1265
1266 acpi_walk_err:
1267 complete(&probe_event);
1268 if (ret_val)
1269 vmbus_acpi_remove(device);
1270 return ret_val;
1271 }
1272
1273 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1274 {"VMBUS", 0},
1275 {"VMBus", 0},
1276 {"", 0},
1277 };
1278 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1279
1280 static struct acpi_driver vmbus_acpi_driver = {
1281 .name = "vmbus",
1282 .ids = vmbus_acpi_device_ids,
1283 .ops = {
1284 .add = vmbus_acpi_add,
1285 .remove = vmbus_acpi_remove,
1286 },
1287 };
1288
1289 static void hv_kexec_handler(void)
1290 {
1291 int cpu;
1292
1293 hv_synic_clockevents_cleanup();
1294 vmbus_initiate_unload();
1295 for_each_online_cpu(cpu)
1296 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1297 hv_cleanup();
1298 };
1299
1300 static void hv_crash_handler(struct pt_regs *regs)
1301 {
1302 vmbus_initiate_unload();
1303 /*
1304 * In crash handler we can't schedule synic cleanup for all CPUs,
1305 * doing the cleanup for current CPU only. This should be sufficient
1306 * for kdump.
1307 */
1308 hv_synic_cleanup(NULL);
1309 hv_cleanup();
1310 };
1311
1312 static int __init hv_acpi_init(void)
1313 {
1314 int ret, t;
1315
1316 if (x86_hyper != &x86_hyper_ms_hyperv)
1317 return -ENODEV;
1318
1319 init_completion(&probe_event);
1320
1321 /*
1322 * Get ACPI resources first.
1323 */
1324 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1325
1326 if (ret)
1327 return ret;
1328
1329 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1330 if (t == 0) {
1331 ret = -ETIMEDOUT;
1332 goto cleanup;
1333 }
1334
1335 ret = vmbus_bus_init();
1336 if (ret)
1337 goto cleanup;
1338
1339 hv_setup_kexec_handler(hv_kexec_handler);
1340 hv_setup_crash_handler(hv_crash_handler);
1341
1342 return 0;
1343
1344 cleanup:
1345 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1346 hv_acpi_dev = NULL;
1347 return ret;
1348 }
1349
1350 static void __exit vmbus_exit(void)
1351 {
1352 int cpu;
1353
1354 hv_remove_kexec_handler();
1355 hv_remove_crash_handler();
1356 vmbus_connection.conn_state = DISCONNECTED;
1357 hv_synic_clockevents_cleanup();
1358 vmbus_disconnect();
1359 hv_remove_vmbus_irq();
1360 tasklet_kill(&msg_dpc);
1361 vmbus_free_channels();
1362 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1363 unregister_die_notifier(&hyperv_die_block);
1364 atomic_notifier_chain_unregister(&panic_notifier_list,
1365 &hyperv_panic_block);
1366 }
1367 bus_unregister(&hv_bus);
1368 hv_cleanup();
1369 for_each_online_cpu(cpu) {
1370 tasklet_kill(hv_context.event_dpc[cpu]);
1371 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1372 }
1373 hv_synic_free();
1374 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1375 if (vmbus_proto_version > VERSION_WIN7)
1376 cpu_hotplug_enable();
1377 }
1378
1379
1380 MODULE_LICENSE("GPL");
1381
1382 subsys_initcall(hv_acpi_init);
1383 module_exit(vmbus_exit);