]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hv/vmbus_drv.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-bionic-kernel.git] / drivers / hv / vmbus_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51 struct list_head node;
52 struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63 {
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs, val);
69 return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74 {
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs, val);
79 return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 const struct hv_monitor_page *monitor_page)
122 {
123 u8 monitor_group = channel_monitor_group(channel);
124
125 return monitor_page->trigger_group[monitor_group].pending;
126 }
127
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 const struct hv_monitor_page *monitor_page)
130 {
131 u8 monitor_group = channel_monitor_group(channel);
132 u8 monitor_offset = channel_monitor_offset(channel);
133
134 return monitor_page->latency[monitor_group][monitor_offset];
135 }
136
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 struct hv_monitor_page *monitor_page)
139 {
140 u8 monitor_group = channel_monitor_group(channel);
141 u8 monitor_offset = channel_monitor_offset(channel);
142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 char *buf)
147 {
148 struct hv_device *hv_dev = device_to_hv_device(dev);
149
150 if (!hv_dev->channel)
151 return -ENODEV;
152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 char *buf)
158 {
159 struct hv_device *hv_dev = device_to_hv_device(dev);
160
161 if (!hv_dev->channel)
162 return -ENODEV;
163 return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166
167 static ssize_t monitor_id_show(struct device *dev,
168 struct device_attribute *dev_attr, char *buf)
169 {
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177
178 static ssize_t class_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
180 {
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "{%pUl}\n",
186 hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189
190 static ssize_t device_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
192 {
193 struct hv_device *hv_dev = device_to_hv_device(dev);
194
195 if (!hv_dev->channel)
196 return -ENODEV;
197 return sprintf(buf, "{%pUl}\n",
198 hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201
202 static ssize_t modalias_show(struct device *dev,
203 struct device_attribute *dev_attr, char *buf)
204 {
205 struct hv_device *hv_dev = device_to_hv_device(dev);
206 char alias_name[VMBUS_ALIAS_LEN + 1];
207
208 print_alias_name(hv_dev, alias_name);
209 return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212
213 static ssize_t server_monitor_pending_show(struct device *dev,
214 struct device_attribute *dev_attr,
215 char *buf)
216 {
217 struct hv_device *hv_dev = device_to_hv_device(dev);
218
219 if (!hv_dev->channel)
220 return -ENODEV;
221 return sprintf(buf, "%d\n",
222 channel_pending(hv_dev->channel,
223 vmbus_connection.monitor_pages[1]));
224 }
225 static DEVICE_ATTR_RO(server_monitor_pending);
226
227 static ssize_t client_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
230 {
231 struct hv_device *hv_dev = device_to_hv_device(dev);
232
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(client_monitor_pending);
240
241 static ssize_t server_monitor_latency_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
244 {
245 struct hv_device *hv_dev = device_to_hv_device(dev);
246
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_latency(hv_dev->channel,
251 vmbus_connection.monitor_pages[0]));
252 }
253 static DEVICE_ATTR_RO(server_monitor_latency);
254
255 static ssize_t client_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
258 {
259 struct hv_device *hv_dev = device_to_hv_device(dev);
260
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[1]));
266 }
267 static DEVICE_ATTR_RO(client_monitor_latency);
268
269 static ssize_t server_monitor_conn_id_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
272 {
273 struct hv_device *hv_dev = device_to_hv_device(dev);
274
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_conn_id(hv_dev->channel,
279 vmbus_connection.monitor_pages[0]));
280 }
281 static DEVICE_ATTR_RO(server_monitor_conn_id);
282
283 static ssize_t client_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
286 {
287 struct hv_device *hv_dev = device_to_hv_device(dev);
288
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[1]));
294 }
295 static DEVICE_ATTR_RO(client_monitor_conn_id);
296
297 static ssize_t out_intr_mask_show(struct device *dev,
298 struct device_attribute *dev_attr, char *buf)
299 {
300 struct hv_device *hv_dev = device_to_hv_device(dev);
301 struct hv_ring_buffer_debug_info outbound;
302
303 if (!hv_dev->channel)
304 return -ENODEV;
305 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
306 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
307 }
308 static DEVICE_ATTR_RO(out_intr_mask);
309
310 static ssize_t out_read_index_show(struct device *dev,
311 struct device_attribute *dev_attr, char *buf)
312 {
313 struct hv_device *hv_dev = device_to_hv_device(dev);
314 struct hv_ring_buffer_debug_info outbound;
315
316 if (!hv_dev->channel)
317 return -ENODEV;
318 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
319 return sprintf(buf, "%d\n", outbound.current_read_index);
320 }
321 static DEVICE_ATTR_RO(out_read_index);
322
323 static ssize_t out_write_index_show(struct device *dev,
324 struct device_attribute *dev_attr,
325 char *buf)
326 {
327 struct hv_device *hv_dev = device_to_hv_device(dev);
328 struct hv_ring_buffer_debug_info outbound;
329
330 if (!hv_dev->channel)
331 return -ENODEV;
332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 return sprintf(buf, "%d\n", outbound.current_write_index);
334 }
335 static DEVICE_ATTR_RO(out_write_index);
336
337 static ssize_t out_read_bytes_avail_show(struct device *dev,
338 struct device_attribute *dev_attr,
339 char *buf)
340 {
341 struct hv_device *hv_dev = device_to_hv_device(dev);
342 struct hv_ring_buffer_debug_info outbound;
343
344 if (!hv_dev->channel)
345 return -ENODEV;
346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
348 }
349 static DEVICE_ATTR_RO(out_read_bytes_avail);
350
351 static ssize_t out_write_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
353 char *buf)
354 {
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
357
358 if (!hv_dev->channel)
359 return -ENODEV;
360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
362 }
363 static DEVICE_ATTR_RO(out_write_bytes_avail);
364
365 static ssize_t in_intr_mask_show(struct device *dev,
366 struct device_attribute *dev_attr, char *buf)
367 {
368 struct hv_device *hv_dev = device_to_hv_device(dev);
369 struct hv_ring_buffer_debug_info inbound;
370
371 if (!hv_dev->channel)
372 return -ENODEV;
373 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
374 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
375 }
376 static DEVICE_ATTR_RO(in_intr_mask);
377
378 static ssize_t in_read_index_show(struct device *dev,
379 struct device_attribute *dev_attr, char *buf)
380 {
381 struct hv_device *hv_dev = device_to_hv_device(dev);
382 struct hv_ring_buffer_debug_info inbound;
383
384 if (!hv_dev->channel)
385 return -ENODEV;
386 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
387 return sprintf(buf, "%d\n", inbound.current_read_index);
388 }
389 static DEVICE_ATTR_RO(in_read_index);
390
391 static ssize_t in_write_index_show(struct device *dev,
392 struct device_attribute *dev_attr, char *buf)
393 {
394 struct hv_device *hv_dev = device_to_hv_device(dev);
395 struct hv_ring_buffer_debug_info inbound;
396
397 if (!hv_dev->channel)
398 return -ENODEV;
399 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
400 return sprintf(buf, "%d\n", inbound.current_write_index);
401 }
402 static DEVICE_ATTR_RO(in_write_index);
403
404 static ssize_t in_read_bytes_avail_show(struct device *dev,
405 struct device_attribute *dev_attr,
406 char *buf)
407 {
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
410
411 if (!hv_dev->channel)
412 return -ENODEV;
413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
415 }
416 static DEVICE_ATTR_RO(in_read_bytes_avail);
417
418 static ssize_t in_write_bytes_avail_show(struct device *dev,
419 struct device_attribute *dev_attr,
420 char *buf)
421 {
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
424
425 if (!hv_dev->channel)
426 return -ENODEV;
427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
429 }
430 static DEVICE_ATTR_RO(in_write_bytes_avail);
431
432 static ssize_t channel_vp_mapping_show(struct device *dev,
433 struct device_attribute *dev_attr,
434 char *buf)
435 {
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
438 unsigned long flags;
439 int buf_size = PAGE_SIZE, n_written, tot_written;
440 struct list_head *cur;
441
442 if (!channel)
443 return -ENODEV;
444
445 tot_written = snprintf(buf, buf_size, "%u:%u\n",
446 channel->offermsg.child_relid, channel->target_cpu);
447
448 spin_lock_irqsave(&channel->lock, flags);
449
450 list_for_each(cur, &channel->sc_list) {
451 if (tot_written >= buf_size - 1)
452 break;
453
454 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
455 n_written = scnprintf(buf + tot_written,
456 buf_size - tot_written,
457 "%u:%u\n",
458 cur_sc->offermsg.child_relid,
459 cur_sc->target_cpu);
460 tot_written += n_written;
461 }
462
463 spin_unlock_irqrestore(&channel->lock, flags);
464
465 return tot_written;
466 }
467 static DEVICE_ATTR_RO(channel_vp_mapping);
468
469 static ssize_t vendor_show(struct device *dev,
470 struct device_attribute *dev_attr,
471 char *buf)
472 {
473 struct hv_device *hv_dev = device_to_hv_device(dev);
474 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
475 }
476 static DEVICE_ATTR_RO(vendor);
477
478 static ssize_t device_show(struct device *dev,
479 struct device_attribute *dev_attr,
480 char *buf)
481 {
482 struct hv_device *hv_dev = device_to_hv_device(dev);
483 return sprintf(buf, "0x%x\n", hv_dev->device_id);
484 }
485 static DEVICE_ATTR_RO(device);
486
487 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
488 static struct attribute *vmbus_dev_attrs[] = {
489 &dev_attr_id.attr,
490 &dev_attr_state.attr,
491 &dev_attr_monitor_id.attr,
492 &dev_attr_class_id.attr,
493 &dev_attr_device_id.attr,
494 &dev_attr_modalias.attr,
495 &dev_attr_server_monitor_pending.attr,
496 &dev_attr_client_monitor_pending.attr,
497 &dev_attr_server_monitor_latency.attr,
498 &dev_attr_client_monitor_latency.attr,
499 &dev_attr_server_monitor_conn_id.attr,
500 &dev_attr_client_monitor_conn_id.attr,
501 &dev_attr_out_intr_mask.attr,
502 &dev_attr_out_read_index.attr,
503 &dev_attr_out_write_index.attr,
504 &dev_attr_out_read_bytes_avail.attr,
505 &dev_attr_out_write_bytes_avail.attr,
506 &dev_attr_in_intr_mask.attr,
507 &dev_attr_in_read_index.attr,
508 &dev_attr_in_write_index.attr,
509 &dev_attr_in_read_bytes_avail.attr,
510 &dev_attr_in_write_bytes_avail.attr,
511 &dev_attr_channel_vp_mapping.attr,
512 &dev_attr_vendor.attr,
513 &dev_attr_device.attr,
514 NULL,
515 };
516 ATTRIBUTE_GROUPS(vmbus_dev);
517
518 /*
519 * vmbus_uevent - add uevent for our device
520 *
521 * This routine is invoked when a device is added or removed on the vmbus to
522 * generate a uevent to udev in the userspace. The udev will then look at its
523 * rule and the uevent generated here to load the appropriate driver
524 *
525 * The alias string will be of the form vmbus:guid where guid is the string
526 * representation of the device guid (each byte of the guid will be
527 * represented with two hex characters.
528 */
529 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
530 {
531 struct hv_device *dev = device_to_hv_device(device);
532 int ret;
533 char alias_name[VMBUS_ALIAS_LEN + 1];
534
535 print_alias_name(dev, alias_name);
536 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
537 return ret;
538 }
539
540 static const uuid_le null_guid;
541
542 static inline bool is_null_guid(const uuid_le *guid)
543 {
544 if (uuid_le_cmp(*guid, null_guid))
545 return false;
546 return true;
547 }
548
549 /*
550 * Return a matching hv_vmbus_device_id pointer.
551 * If there is no match, return NULL.
552 */
553 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
554 const uuid_le *guid)
555 {
556 const struct hv_vmbus_device_id *id = NULL;
557 struct vmbus_dynid *dynid;
558
559 /* Look at the dynamic ids first, before the static ones */
560 spin_lock(&drv->dynids.lock);
561 list_for_each_entry(dynid, &drv->dynids.list, node) {
562 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
563 id = &dynid->id;
564 break;
565 }
566 }
567 spin_unlock(&drv->dynids.lock);
568
569 if (id)
570 return id;
571
572 id = drv->id_table;
573 if (id == NULL)
574 return NULL; /* empty device table */
575
576 for (; !is_null_guid(&id->guid); id++)
577 if (!uuid_le_cmp(id->guid, *guid))
578 return id;
579
580 return NULL;
581 }
582
583 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
584 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
585 {
586 struct vmbus_dynid *dynid;
587
588 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
589 if (!dynid)
590 return -ENOMEM;
591
592 dynid->id.guid = *guid;
593
594 spin_lock(&drv->dynids.lock);
595 list_add_tail(&dynid->node, &drv->dynids.list);
596 spin_unlock(&drv->dynids.lock);
597
598 return driver_attach(&drv->driver);
599 }
600
601 static void vmbus_free_dynids(struct hv_driver *drv)
602 {
603 struct vmbus_dynid *dynid, *n;
604
605 spin_lock(&drv->dynids.lock);
606 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
607 list_del(&dynid->node);
608 kfree(dynid);
609 }
610 spin_unlock(&drv->dynids.lock);
611 }
612
613 /*
614 * store_new_id - sysfs frontend to vmbus_add_dynid()
615 *
616 * Allow GUIDs to be added to an existing driver via sysfs.
617 */
618 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
619 size_t count)
620 {
621 struct hv_driver *drv = drv_to_hv_drv(driver);
622 uuid_le guid;
623 ssize_t retval;
624
625 retval = uuid_le_to_bin(buf, &guid);
626 if (retval)
627 return retval;
628
629 if (hv_vmbus_get_id(drv, &guid))
630 return -EEXIST;
631
632 retval = vmbus_add_dynid(drv, &guid);
633 if (retval)
634 return retval;
635 return count;
636 }
637 static DRIVER_ATTR_WO(new_id);
638
639 /*
640 * store_remove_id - remove a PCI device ID from this driver
641 *
642 * Removes a dynamic pci device ID to this driver.
643 */
644 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
645 size_t count)
646 {
647 struct hv_driver *drv = drv_to_hv_drv(driver);
648 struct vmbus_dynid *dynid, *n;
649 uuid_le guid;
650 ssize_t retval;
651
652 retval = uuid_le_to_bin(buf, &guid);
653 if (retval)
654 return retval;
655
656 retval = -ENODEV;
657 spin_lock(&drv->dynids.lock);
658 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
659 struct hv_vmbus_device_id *id = &dynid->id;
660
661 if (!uuid_le_cmp(id->guid, guid)) {
662 list_del(&dynid->node);
663 kfree(dynid);
664 retval = count;
665 break;
666 }
667 }
668 spin_unlock(&drv->dynids.lock);
669
670 return retval;
671 }
672 static DRIVER_ATTR_WO(remove_id);
673
674 static struct attribute *vmbus_drv_attrs[] = {
675 &driver_attr_new_id.attr,
676 &driver_attr_remove_id.attr,
677 NULL,
678 };
679 ATTRIBUTE_GROUPS(vmbus_drv);
680
681
682 /*
683 * vmbus_match - Attempt to match the specified device to the specified driver
684 */
685 static int vmbus_match(struct device *device, struct device_driver *driver)
686 {
687 struct hv_driver *drv = drv_to_hv_drv(driver);
688 struct hv_device *hv_dev = device_to_hv_device(device);
689
690 /* The hv_sock driver handles all hv_sock offers. */
691 if (is_hvsock_channel(hv_dev->channel))
692 return drv->hvsock;
693
694 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
695 return 1;
696
697 return 0;
698 }
699
700 /*
701 * vmbus_probe - Add the new vmbus's child device
702 */
703 static int vmbus_probe(struct device *child_device)
704 {
705 int ret = 0;
706 struct hv_driver *drv =
707 drv_to_hv_drv(child_device->driver);
708 struct hv_device *dev = device_to_hv_device(child_device);
709 const struct hv_vmbus_device_id *dev_id;
710
711 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
712 if (drv->probe) {
713 ret = drv->probe(dev, dev_id);
714 if (ret != 0)
715 pr_err("probe failed for device %s (%d)\n",
716 dev_name(child_device), ret);
717
718 } else {
719 pr_err("probe not set for driver %s\n",
720 dev_name(child_device));
721 ret = -ENODEV;
722 }
723 return ret;
724 }
725
726 /*
727 * vmbus_remove - Remove a vmbus device
728 */
729 static int vmbus_remove(struct device *child_device)
730 {
731 struct hv_driver *drv;
732 struct hv_device *dev = device_to_hv_device(child_device);
733
734 if (child_device->driver) {
735 drv = drv_to_hv_drv(child_device->driver);
736 if (drv->remove)
737 drv->remove(dev);
738 }
739
740 return 0;
741 }
742
743
744 /*
745 * vmbus_shutdown - Shutdown a vmbus device
746 */
747 static void vmbus_shutdown(struct device *child_device)
748 {
749 struct hv_driver *drv;
750 struct hv_device *dev = device_to_hv_device(child_device);
751
752
753 /* The device may not be attached yet */
754 if (!child_device->driver)
755 return;
756
757 drv = drv_to_hv_drv(child_device->driver);
758
759 if (drv->shutdown)
760 drv->shutdown(dev);
761 }
762
763
764 /*
765 * vmbus_device_release - Final callback release of the vmbus child device
766 */
767 static void vmbus_device_release(struct device *device)
768 {
769 struct hv_device *hv_dev = device_to_hv_device(device);
770 struct vmbus_channel *channel = hv_dev->channel;
771
772 mutex_lock(&vmbus_connection.channel_mutex);
773 hv_process_channel_removal(channel->offermsg.child_relid);
774 mutex_unlock(&vmbus_connection.channel_mutex);
775 kfree(hv_dev);
776
777 }
778
779 /* The one and only one */
780 static struct bus_type hv_bus = {
781 .name = "vmbus",
782 .match = vmbus_match,
783 .shutdown = vmbus_shutdown,
784 .remove = vmbus_remove,
785 .probe = vmbus_probe,
786 .uevent = vmbus_uevent,
787 .dev_groups = vmbus_dev_groups,
788 .drv_groups = vmbus_drv_groups,
789 };
790
791 struct onmessage_work_context {
792 struct work_struct work;
793 struct hv_message msg;
794 };
795
796 static void vmbus_onmessage_work(struct work_struct *work)
797 {
798 struct onmessage_work_context *ctx;
799
800 /* Do not process messages if we're in DISCONNECTED state */
801 if (vmbus_connection.conn_state == DISCONNECTED)
802 return;
803
804 ctx = container_of(work, struct onmessage_work_context,
805 work);
806 vmbus_onmessage(&ctx->msg);
807 kfree(ctx);
808 }
809
810 static void hv_process_timer_expiration(struct hv_message *msg,
811 struct hv_per_cpu_context *hv_cpu)
812 {
813 struct clock_event_device *dev = hv_cpu->clk_evt;
814
815 if (dev->event_handler)
816 dev->event_handler(dev);
817
818 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
819 }
820
821 void vmbus_on_msg_dpc(unsigned long data)
822 {
823 struct hv_per_cpu_context *hv_cpu = (void *)data;
824 void *page_addr = hv_cpu->synic_message_page;
825 struct hv_message *msg = (struct hv_message *)page_addr +
826 VMBUS_MESSAGE_SINT;
827 struct vmbus_channel_message_header *hdr;
828 const struct vmbus_channel_message_table_entry *entry;
829 struct onmessage_work_context *ctx;
830 u32 message_type = msg->header.message_type;
831
832 if (message_type == HVMSG_NONE)
833 /* no msg */
834 return;
835
836 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
837
838 trace_vmbus_on_msg_dpc(hdr);
839
840 if (hdr->msgtype >= CHANNELMSG_COUNT) {
841 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
842 goto msg_handled;
843 }
844
845 entry = &channel_message_table[hdr->msgtype];
846 if (entry->handler_type == VMHT_BLOCKING) {
847 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
848 if (ctx == NULL)
849 return;
850
851 INIT_WORK(&ctx->work, vmbus_onmessage_work);
852 memcpy(&ctx->msg, msg, sizeof(*msg));
853
854 /*
855 * The host can generate a rescind message while we
856 * may still be handling the original offer. We deal with
857 * this condition by ensuring the processing is done on the
858 * same CPU.
859 */
860 switch (hdr->msgtype) {
861 case CHANNELMSG_RESCIND_CHANNELOFFER:
862 /*
863 * If we are handling the rescind message;
864 * schedule the work on the global work queue.
865 */
866 schedule_work_on(vmbus_connection.connect_cpu,
867 &ctx->work);
868 break;
869
870 case CHANNELMSG_OFFERCHANNEL:
871 atomic_inc(&vmbus_connection.offer_in_progress);
872 queue_work_on(vmbus_connection.connect_cpu,
873 vmbus_connection.work_queue,
874 &ctx->work);
875 break;
876
877 default:
878 queue_work(vmbus_connection.work_queue, &ctx->work);
879 }
880 } else
881 entry->message_handler(hdr);
882
883 msg_handled:
884 vmbus_signal_eom(msg, message_type);
885 }
886
887
888 /*
889 * Direct callback for channels using other deferred processing
890 */
891 static void vmbus_channel_isr(struct vmbus_channel *channel)
892 {
893 void (*callback_fn)(void *);
894
895 callback_fn = READ_ONCE(channel->onchannel_callback);
896 if (likely(callback_fn != NULL))
897 (*callback_fn)(channel->channel_callback_context);
898 }
899
900 /*
901 * Schedule all channels with events pending
902 */
903 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
904 {
905 unsigned long *recv_int_page;
906 u32 maxbits, relid;
907
908 if (vmbus_proto_version < VERSION_WIN8) {
909 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
910 recv_int_page = vmbus_connection.recv_int_page;
911 } else {
912 /*
913 * When the host is win8 and beyond, the event page
914 * can be directly checked to get the id of the channel
915 * that has the interrupt pending.
916 */
917 void *page_addr = hv_cpu->synic_event_page;
918 union hv_synic_event_flags *event
919 = (union hv_synic_event_flags *)page_addr +
920 VMBUS_MESSAGE_SINT;
921
922 maxbits = HV_EVENT_FLAGS_COUNT;
923 recv_int_page = event->flags;
924 }
925
926 if (unlikely(!recv_int_page))
927 return;
928
929 for_each_set_bit(relid, recv_int_page, maxbits) {
930 struct vmbus_channel *channel;
931
932 if (!sync_test_and_clear_bit(relid, recv_int_page))
933 continue;
934
935 /* Special case - vmbus channel protocol msg */
936 if (relid == 0)
937 continue;
938
939 rcu_read_lock();
940
941 /* Find channel based on relid */
942 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
943 if (channel->offermsg.child_relid != relid)
944 continue;
945
946 if (channel->rescind)
947 continue;
948
949 trace_vmbus_chan_sched(channel);
950
951 ++channel->interrupts;
952
953 switch (channel->callback_mode) {
954 case HV_CALL_ISR:
955 vmbus_channel_isr(channel);
956 break;
957
958 case HV_CALL_BATCHED:
959 hv_begin_read(&channel->inbound);
960 /* fallthrough */
961 case HV_CALL_DIRECT:
962 tasklet_schedule(&channel->callback_event);
963 }
964 }
965
966 rcu_read_unlock();
967 }
968 }
969
970 static void vmbus_isr(void)
971 {
972 struct hv_per_cpu_context *hv_cpu
973 = this_cpu_ptr(hv_context.cpu_context);
974 void *page_addr = hv_cpu->synic_event_page;
975 struct hv_message *msg;
976 union hv_synic_event_flags *event;
977 bool handled = false;
978
979 if (unlikely(page_addr == NULL))
980 return;
981
982 event = (union hv_synic_event_flags *)page_addr +
983 VMBUS_MESSAGE_SINT;
984 /*
985 * Check for events before checking for messages. This is the order
986 * in which events and messages are checked in Windows guests on
987 * Hyper-V, and the Windows team suggested we do the same.
988 */
989
990 if ((vmbus_proto_version == VERSION_WS2008) ||
991 (vmbus_proto_version == VERSION_WIN7)) {
992
993 /* Since we are a child, we only need to check bit 0 */
994 if (sync_test_and_clear_bit(0, event->flags))
995 handled = true;
996 } else {
997 /*
998 * Our host is win8 or above. The signaling mechanism
999 * has changed and we can directly look at the event page.
1000 * If bit n is set then we have an interrup on the channel
1001 * whose id is n.
1002 */
1003 handled = true;
1004 }
1005
1006 if (handled)
1007 vmbus_chan_sched(hv_cpu);
1008
1009 page_addr = hv_cpu->synic_message_page;
1010 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1011
1012 /* Check if there are actual msgs to be processed */
1013 if (msg->header.message_type != HVMSG_NONE) {
1014 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1015 hv_process_timer_expiration(msg, hv_cpu);
1016 else
1017 tasklet_schedule(&hv_cpu->msg_dpc);
1018 }
1019
1020 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1021 }
1022
1023
1024 /*
1025 * vmbus_bus_init -Main vmbus driver initialization routine.
1026 *
1027 * Here, we
1028 * - initialize the vmbus driver context
1029 * - invoke the vmbus hv main init routine
1030 * - retrieve the channel offers
1031 */
1032 static int vmbus_bus_init(void)
1033 {
1034 int ret;
1035
1036 /* Hypervisor initialization...setup hypercall page..etc */
1037 ret = hv_init();
1038 if (ret != 0) {
1039 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1040 return ret;
1041 }
1042
1043 ret = bus_register(&hv_bus);
1044 if (ret)
1045 return ret;
1046
1047 hv_setup_vmbus_irq(vmbus_isr);
1048
1049 ret = hv_synic_alloc();
1050 if (ret)
1051 goto err_alloc;
1052 /*
1053 * Initialize the per-cpu interrupt state and
1054 * connect to the host.
1055 */
1056 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1057 hv_synic_init, hv_synic_cleanup);
1058 if (ret < 0)
1059 goto err_alloc;
1060 hyperv_cpuhp_online = ret;
1061
1062 ret = vmbus_connect();
1063 if (ret)
1064 goto err_connect;
1065
1066 /*
1067 * Only register if the crash MSRs are available
1068 */
1069 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1070 register_die_notifier(&hyperv_die_block);
1071 atomic_notifier_chain_register(&panic_notifier_list,
1072 &hyperv_panic_block);
1073 }
1074
1075 vmbus_request_offers();
1076
1077 return 0;
1078
1079 err_connect:
1080 cpuhp_remove_state(hyperv_cpuhp_online);
1081 err_alloc:
1082 hv_synic_free();
1083 hv_remove_vmbus_irq();
1084
1085 bus_unregister(&hv_bus);
1086
1087 return ret;
1088 }
1089
1090 /**
1091 * __vmbus_child_driver_register() - Register a vmbus's driver
1092 * @hv_driver: Pointer to driver structure you want to register
1093 * @owner: owner module of the drv
1094 * @mod_name: module name string
1095 *
1096 * Registers the given driver with Linux through the 'driver_register()' call
1097 * and sets up the hyper-v vmbus handling for this driver.
1098 * It will return the state of the 'driver_register()' call.
1099 *
1100 */
1101 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1102 {
1103 int ret;
1104
1105 pr_info("registering driver %s\n", hv_driver->name);
1106
1107 ret = vmbus_exists();
1108 if (ret < 0)
1109 return ret;
1110
1111 hv_driver->driver.name = hv_driver->name;
1112 hv_driver->driver.owner = owner;
1113 hv_driver->driver.mod_name = mod_name;
1114 hv_driver->driver.bus = &hv_bus;
1115
1116 spin_lock_init(&hv_driver->dynids.lock);
1117 INIT_LIST_HEAD(&hv_driver->dynids.list);
1118
1119 ret = driver_register(&hv_driver->driver);
1120
1121 return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1124
1125 /**
1126 * vmbus_driver_unregister() - Unregister a vmbus's driver
1127 * @hv_driver: Pointer to driver structure you want to
1128 * un-register
1129 *
1130 * Un-register the given driver that was previous registered with a call to
1131 * vmbus_driver_register()
1132 */
1133 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1134 {
1135 pr_info("unregistering driver %s\n", hv_driver->name);
1136
1137 if (!vmbus_exists()) {
1138 driver_unregister(&hv_driver->driver);
1139 vmbus_free_dynids(hv_driver);
1140 }
1141 }
1142 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1143
1144
1145 /*
1146 * Called when last reference to channel is gone.
1147 */
1148 static void vmbus_chan_release(struct kobject *kobj)
1149 {
1150 struct vmbus_channel *channel
1151 = container_of(kobj, struct vmbus_channel, kobj);
1152
1153 kfree_rcu(channel, rcu);
1154 }
1155
1156 struct vmbus_chan_attribute {
1157 struct attribute attr;
1158 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1159 ssize_t (*store)(struct vmbus_channel *chan,
1160 const char *buf, size_t count);
1161 };
1162 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1163 struct vmbus_chan_attribute chan_attr_##_name \
1164 = __ATTR(_name, _mode, _show, _store)
1165 #define VMBUS_CHAN_ATTR_RW(_name) \
1166 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1167 #define VMBUS_CHAN_ATTR_RO(_name) \
1168 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1169 #define VMBUS_CHAN_ATTR_WO(_name) \
1170 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1171
1172 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1173 struct attribute *attr, char *buf)
1174 {
1175 const struct vmbus_chan_attribute *attribute
1176 = container_of(attr, struct vmbus_chan_attribute, attr);
1177 const struct vmbus_channel *chan
1178 = container_of(kobj, struct vmbus_channel, kobj);
1179
1180 if (!attribute->show)
1181 return -EIO;
1182
1183 return attribute->show(chan, buf);
1184 }
1185
1186 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1187 .show = vmbus_chan_attr_show,
1188 };
1189
1190 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1191 {
1192 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1193
1194 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1195 }
1196 VMBUS_CHAN_ATTR_RO(out_mask);
1197
1198 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1199 {
1200 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1201
1202 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1203 }
1204 VMBUS_CHAN_ATTR_RO(in_mask);
1205
1206 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1207 {
1208 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1209
1210 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1211 }
1212 VMBUS_CHAN_ATTR_RO(read_avail);
1213
1214 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1215 {
1216 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1217
1218 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1219 }
1220 VMBUS_CHAN_ATTR_RO(write_avail);
1221
1222 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1223 {
1224 return sprintf(buf, "%u\n", channel->target_cpu);
1225 }
1226 VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1227
1228 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1229 char *buf)
1230 {
1231 return sprintf(buf, "%d\n",
1232 channel_pending(channel,
1233 vmbus_connection.monitor_pages[1]));
1234 }
1235 VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1236
1237 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1238 char *buf)
1239 {
1240 return sprintf(buf, "%d\n",
1241 channel_latency(channel,
1242 vmbus_connection.monitor_pages[1]));
1243 }
1244 VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1245
1246 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1247 {
1248 return sprintf(buf, "%llu\n", channel->interrupts);
1249 }
1250 VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1251
1252 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1253 {
1254 return sprintf(buf, "%llu\n", channel->sig_events);
1255 }
1256 VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1257
1258 static struct attribute *vmbus_chan_attrs[] = {
1259 &chan_attr_out_mask.attr,
1260 &chan_attr_in_mask.attr,
1261 &chan_attr_read_avail.attr,
1262 &chan_attr_write_avail.attr,
1263 &chan_attr_cpu.attr,
1264 &chan_attr_pending.attr,
1265 &chan_attr_latency.attr,
1266 &chan_attr_interrupts.attr,
1267 &chan_attr_events.attr,
1268 NULL
1269 };
1270
1271 static struct kobj_type vmbus_chan_ktype = {
1272 .sysfs_ops = &vmbus_chan_sysfs_ops,
1273 .release = vmbus_chan_release,
1274 .default_attrs = vmbus_chan_attrs,
1275 };
1276
1277 /*
1278 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1279 */
1280 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1281 {
1282 struct kobject *kobj = &channel->kobj;
1283 u32 relid = channel->offermsg.child_relid;
1284 int ret;
1285
1286 kobj->kset = dev->channels_kset;
1287 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1288 "%u", relid);
1289 if (ret)
1290 return ret;
1291
1292 kobject_uevent(kobj, KOBJ_ADD);
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * vmbus_device_create - Creates and registers a new child device
1299 * on the vmbus.
1300 */
1301 struct hv_device *vmbus_device_create(const uuid_le *type,
1302 const uuid_le *instance,
1303 struct vmbus_channel *channel)
1304 {
1305 struct hv_device *child_device_obj;
1306
1307 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1308 if (!child_device_obj) {
1309 pr_err("Unable to allocate device object for child device\n");
1310 return NULL;
1311 }
1312
1313 child_device_obj->channel = channel;
1314 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1315 memcpy(&child_device_obj->dev_instance, instance,
1316 sizeof(uuid_le));
1317 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1318
1319
1320 return child_device_obj;
1321 }
1322
1323 /*
1324 * vmbus_device_register - Register the child device
1325 */
1326 int vmbus_device_register(struct hv_device *child_device_obj)
1327 {
1328 struct kobject *kobj = &child_device_obj->device.kobj;
1329 int ret;
1330
1331 dev_set_name(&child_device_obj->device, "%pUl",
1332 child_device_obj->channel->offermsg.offer.if_instance.b);
1333
1334 child_device_obj->device.bus = &hv_bus;
1335 child_device_obj->device.parent = &hv_acpi_dev->dev;
1336 child_device_obj->device.release = vmbus_device_release;
1337
1338 /*
1339 * Register with the LDM. This will kick off the driver/device
1340 * binding...which will eventually call vmbus_match() and vmbus_probe()
1341 */
1342 ret = device_register(&child_device_obj->device);
1343 if (ret) {
1344 pr_err("Unable to register child device\n");
1345 return ret;
1346 }
1347
1348 child_device_obj->channels_kset = kset_create_and_add("channels",
1349 NULL, kobj);
1350 if (!child_device_obj->channels_kset) {
1351 ret = -ENOMEM;
1352 goto err_dev_unregister;
1353 }
1354
1355 ret = vmbus_add_channel_kobj(child_device_obj,
1356 child_device_obj->channel);
1357 if (ret) {
1358 pr_err("Unable to register primary channeln");
1359 goto err_kset_unregister;
1360 }
1361
1362 return 0;
1363
1364 err_kset_unregister:
1365 kset_unregister(child_device_obj->channels_kset);
1366
1367 err_dev_unregister:
1368 device_unregister(&child_device_obj->device);
1369 return ret;
1370 }
1371
1372 /*
1373 * vmbus_device_unregister - Remove the specified child device
1374 * from the vmbus.
1375 */
1376 void vmbus_device_unregister(struct hv_device *device_obj)
1377 {
1378 pr_debug("child device %s unregistered\n",
1379 dev_name(&device_obj->device));
1380
1381 kset_unregister(device_obj->channels_kset);
1382
1383 /*
1384 * Kick off the process of unregistering the device.
1385 * This will call vmbus_remove() and eventually vmbus_device_release()
1386 */
1387 device_unregister(&device_obj->device);
1388 }
1389
1390
1391 /*
1392 * VMBUS is an acpi enumerated device. Get the information we
1393 * need from DSDT.
1394 */
1395 #define VTPM_BASE_ADDRESS 0xfed40000
1396 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1397 {
1398 resource_size_t start = 0;
1399 resource_size_t end = 0;
1400 struct resource *new_res;
1401 struct resource **old_res = &hyperv_mmio;
1402 struct resource **prev_res = NULL;
1403
1404 switch (res->type) {
1405
1406 /*
1407 * "Address" descriptors are for bus windows. Ignore
1408 * "memory" descriptors, which are for registers on
1409 * devices.
1410 */
1411 case ACPI_RESOURCE_TYPE_ADDRESS32:
1412 start = res->data.address32.address.minimum;
1413 end = res->data.address32.address.maximum;
1414 break;
1415
1416 case ACPI_RESOURCE_TYPE_ADDRESS64:
1417 start = res->data.address64.address.minimum;
1418 end = res->data.address64.address.maximum;
1419 break;
1420
1421 default:
1422 /* Unused resource type */
1423 return AE_OK;
1424
1425 }
1426 /*
1427 * Ignore ranges that are below 1MB, as they're not
1428 * necessary or useful here.
1429 */
1430 if (end < 0x100000)
1431 return AE_OK;
1432
1433 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1434 if (!new_res)
1435 return AE_NO_MEMORY;
1436
1437 /* If this range overlaps the virtual TPM, truncate it. */
1438 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1439 end = VTPM_BASE_ADDRESS;
1440
1441 new_res->name = "hyperv mmio";
1442 new_res->flags = IORESOURCE_MEM;
1443 new_res->start = start;
1444 new_res->end = end;
1445
1446 /*
1447 * If two ranges are adjacent, merge them.
1448 */
1449 do {
1450 if (!*old_res) {
1451 *old_res = new_res;
1452 break;
1453 }
1454
1455 if (((*old_res)->end + 1) == new_res->start) {
1456 (*old_res)->end = new_res->end;
1457 kfree(new_res);
1458 break;
1459 }
1460
1461 if ((*old_res)->start == new_res->end + 1) {
1462 (*old_res)->start = new_res->start;
1463 kfree(new_res);
1464 break;
1465 }
1466
1467 if ((*old_res)->start > new_res->end) {
1468 new_res->sibling = *old_res;
1469 if (prev_res)
1470 (*prev_res)->sibling = new_res;
1471 *old_res = new_res;
1472 break;
1473 }
1474
1475 prev_res = old_res;
1476 old_res = &(*old_res)->sibling;
1477
1478 } while (1);
1479
1480 return AE_OK;
1481 }
1482
1483 static int vmbus_acpi_remove(struct acpi_device *device)
1484 {
1485 struct resource *cur_res;
1486 struct resource *next_res;
1487
1488 if (hyperv_mmio) {
1489 if (fb_mmio) {
1490 __release_region(hyperv_mmio, fb_mmio->start,
1491 resource_size(fb_mmio));
1492 fb_mmio = NULL;
1493 }
1494
1495 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1496 next_res = cur_res->sibling;
1497 kfree(cur_res);
1498 }
1499 }
1500
1501 return 0;
1502 }
1503
1504 static void vmbus_reserve_fb(void)
1505 {
1506 int size;
1507 /*
1508 * Make a claim for the frame buffer in the resource tree under the
1509 * first node, which will be the one below 4GB. The length seems to
1510 * be underreported, particularly in a Generation 1 VM. So start out
1511 * reserving a larger area and make it smaller until it succeeds.
1512 */
1513
1514 if (screen_info.lfb_base) {
1515 if (efi_enabled(EFI_BOOT))
1516 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1517 else
1518 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1519
1520 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1521 fb_mmio = __request_region(hyperv_mmio,
1522 screen_info.lfb_base, size,
1523 fb_mmio_name, 0);
1524 }
1525 }
1526 }
1527
1528 /**
1529 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1530 * @new: If successful, supplied a pointer to the
1531 * allocated MMIO space.
1532 * @device_obj: Identifies the caller
1533 * @min: Minimum guest physical address of the
1534 * allocation
1535 * @max: Maximum guest physical address
1536 * @size: Size of the range to be allocated
1537 * @align: Alignment of the range to be allocated
1538 * @fb_overlap_ok: Whether this allocation can be allowed
1539 * to overlap the video frame buffer.
1540 *
1541 * This function walks the resources granted to VMBus by the
1542 * _CRS object in the ACPI namespace underneath the parent
1543 * "bridge" whether that's a root PCI bus in the Generation 1
1544 * case or a Module Device in the Generation 2 case. It then
1545 * attempts to allocate from the global MMIO pool in a way that
1546 * matches the constraints supplied in these parameters and by
1547 * that _CRS.
1548 *
1549 * Return: 0 on success, -errno on failure
1550 */
1551 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1552 resource_size_t min, resource_size_t max,
1553 resource_size_t size, resource_size_t align,
1554 bool fb_overlap_ok)
1555 {
1556 struct resource *iter, *shadow;
1557 resource_size_t range_min, range_max, start;
1558 const char *dev_n = dev_name(&device_obj->device);
1559 int retval;
1560
1561 retval = -ENXIO;
1562 down(&hyperv_mmio_lock);
1563
1564 /*
1565 * If overlaps with frame buffers are allowed, then first attempt to
1566 * make the allocation from within the reserved region. Because it
1567 * is already reserved, no shadow allocation is necessary.
1568 */
1569 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1570 !(max < fb_mmio->start)) {
1571
1572 range_min = fb_mmio->start;
1573 range_max = fb_mmio->end;
1574 start = (range_min + align - 1) & ~(align - 1);
1575 for (; start + size - 1 <= range_max; start += align) {
1576 *new = request_mem_region_exclusive(start, size, dev_n);
1577 if (*new) {
1578 retval = 0;
1579 goto exit;
1580 }
1581 }
1582 }
1583
1584 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1585 if ((iter->start >= max) || (iter->end <= min))
1586 continue;
1587
1588 range_min = iter->start;
1589 range_max = iter->end;
1590 start = (range_min + align - 1) & ~(align - 1);
1591 for (; start + size - 1 <= range_max; start += align) {
1592 shadow = __request_region(iter, start, size, NULL,
1593 IORESOURCE_BUSY);
1594 if (!shadow)
1595 continue;
1596
1597 *new = request_mem_region_exclusive(start, size, dev_n);
1598 if (*new) {
1599 shadow->name = (char *)*new;
1600 retval = 0;
1601 goto exit;
1602 }
1603
1604 __release_region(iter, start, size);
1605 }
1606 }
1607
1608 exit:
1609 up(&hyperv_mmio_lock);
1610 return retval;
1611 }
1612 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1613
1614 /**
1615 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1616 * @start: Base address of region to release.
1617 * @size: Size of the range to be allocated
1618 *
1619 * This function releases anything requested by
1620 * vmbus_mmio_allocate().
1621 */
1622 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1623 {
1624 struct resource *iter;
1625
1626 down(&hyperv_mmio_lock);
1627 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1628 if ((iter->start >= start + size) || (iter->end <= start))
1629 continue;
1630
1631 __release_region(iter, start, size);
1632 }
1633 release_mem_region(start, size);
1634 up(&hyperv_mmio_lock);
1635
1636 }
1637 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1638
1639 static int vmbus_acpi_add(struct acpi_device *device)
1640 {
1641 acpi_status result;
1642 int ret_val = -ENODEV;
1643 struct acpi_device *ancestor;
1644
1645 hv_acpi_dev = device;
1646
1647 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1648 vmbus_walk_resources, NULL);
1649
1650 if (ACPI_FAILURE(result))
1651 goto acpi_walk_err;
1652 /*
1653 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1654 * firmware) is the VMOD that has the mmio ranges. Get that.
1655 */
1656 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1657 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1658 vmbus_walk_resources, NULL);
1659
1660 if (ACPI_FAILURE(result))
1661 continue;
1662 if (hyperv_mmio) {
1663 vmbus_reserve_fb();
1664 break;
1665 }
1666 }
1667 ret_val = 0;
1668
1669 acpi_walk_err:
1670 complete(&probe_event);
1671 if (ret_val)
1672 vmbus_acpi_remove(device);
1673 return ret_val;
1674 }
1675
1676 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1677 {"VMBUS", 0},
1678 {"VMBus", 0},
1679 {"", 0},
1680 };
1681 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1682
1683 static struct acpi_driver vmbus_acpi_driver = {
1684 .name = "vmbus",
1685 .ids = vmbus_acpi_device_ids,
1686 .ops = {
1687 .add = vmbus_acpi_add,
1688 .remove = vmbus_acpi_remove,
1689 },
1690 };
1691
1692 static void hv_kexec_handler(void)
1693 {
1694 hv_synic_clockevents_cleanup();
1695 vmbus_initiate_unload(false);
1696 vmbus_connection.conn_state = DISCONNECTED;
1697 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1698 mb();
1699 cpuhp_remove_state(hyperv_cpuhp_online);
1700 hyperv_cleanup();
1701 };
1702
1703 static void hv_crash_handler(struct pt_regs *regs)
1704 {
1705 vmbus_initiate_unload(true);
1706 /*
1707 * In crash handler we can't schedule synic cleanup for all CPUs,
1708 * doing the cleanup for current CPU only. This should be sufficient
1709 * for kdump.
1710 */
1711 vmbus_connection.conn_state = DISCONNECTED;
1712 hv_synic_cleanup(smp_processor_id());
1713 hyperv_cleanup();
1714 };
1715
1716 static int __init hv_acpi_init(void)
1717 {
1718 int ret, t;
1719
1720 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
1721 return -ENODEV;
1722
1723 init_completion(&probe_event);
1724
1725 /*
1726 * Get ACPI resources first.
1727 */
1728 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1729
1730 if (ret)
1731 return ret;
1732
1733 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1734 if (t == 0) {
1735 ret = -ETIMEDOUT;
1736 goto cleanup;
1737 }
1738
1739 ret = vmbus_bus_init();
1740 if (ret)
1741 goto cleanup;
1742
1743 hv_setup_kexec_handler(hv_kexec_handler);
1744 hv_setup_crash_handler(hv_crash_handler);
1745
1746 return 0;
1747
1748 cleanup:
1749 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1750 hv_acpi_dev = NULL;
1751 return ret;
1752 }
1753
1754 static void __exit vmbus_exit(void)
1755 {
1756 int cpu;
1757
1758 hv_remove_kexec_handler();
1759 hv_remove_crash_handler();
1760 vmbus_connection.conn_state = DISCONNECTED;
1761 hv_synic_clockevents_cleanup();
1762 vmbus_disconnect();
1763 hv_remove_vmbus_irq();
1764 for_each_online_cpu(cpu) {
1765 struct hv_per_cpu_context *hv_cpu
1766 = per_cpu_ptr(hv_context.cpu_context, cpu);
1767
1768 tasklet_kill(&hv_cpu->msg_dpc);
1769 }
1770 vmbus_free_channels();
1771
1772 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1773 unregister_die_notifier(&hyperv_die_block);
1774 atomic_notifier_chain_unregister(&panic_notifier_list,
1775 &hyperv_panic_block);
1776 }
1777 bus_unregister(&hv_bus);
1778
1779 cpuhp_remove_state(hyperv_cpuhp_online);
1780 hv_synic_free();
1781 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1782 }
1783
1784
1785 MODULE_LICENSE("GPL");
1786
1787 subsys_initcall(hv_acpi_init);
1788 module_exit(vmbus_exit);