]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/hwmon/adm1031.c
Merge branch 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / hwmon / adm1031.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Based on lm75.c and lm85.c
6 * Supports adm1030 / adm1031
7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8 * Reworked by Jean Delvare <jdelvare@suse.de>
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/mutex.h>
20
21 /* Following macros takes channel parameter starting from 0 to 2 */
22 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
23 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
24 #define ADM1031_REG_PWM (0x22)
25 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
26 #define ADM1031_REG_FAN_FILTER (0x23)
27
28 #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
29 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
30 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
31 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
32
33 #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
34 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
35
36 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
37
38 #define ADM1031_REG_CONF1 0x00
39 #define ADM1031_REG_CONF2 0x01
40 #define ADM1031_REG_EXT_TEMP 0x06
41
42 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
43 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
44 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
45
46 #define ADM1031_CONF2_PWM1_ENABLE 0x01
47 #define ADM1031_CONF2_PWM2_ENABLE 0x02
48 #define ADM1031_CONF2_TACH1_ENABLE 0x04
49 #define ADM1031_CONF2_TACH2_ENABLE 0x08
50 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
51
52 #define ADM1031_UPDATE_RATE_MASK 0x1c
53 #define ADM1031_UPDATE_RATE_SHIFT 2
54
55 /* Addresses to scan */
56 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57
58 enum chips { adm1030, adm1031 };
59
60 typedef u8 auto_chan_table_t[8][2];
61
62 /* Each client has this additional data */
63 struct adm1031_data {
64 struct i2c_client *client;
65 const struct attribute_group *groups[3];
66 struct mutex update_lock;
67 int chip_type;
68 char valid; /* !=0 if following fields are valid */
69 unsigned long last_updated; /* In jiffies */
70 unsigned int update_interval; /* In milliseconds */
71 /*
72 * The chan_select_table contains the possible configurations for
73 * auto fan control.
74 */
75 const auto_chan_table_t *chan_select_table;
76 u16 alarm;
77 u8 conf1;
78 u8 conf2;
79 u8 fan[2];
80 u8 fan_div[2];
81 u8 fan_min[2];
82 u8 pwm[2];
83 u8 old_pwm[2];
84 s8 temp[3];
85 u8 ext_temp[3];
86 u8 auto_temp[3];
87 u8 auto_temp_min[3];
88 u8 auto_temp_off[3];
89 u8 auto_temp_max[3];
90 s8 temp_offset[3];
91 s8 temp_min[3];
92 s8 temp_max[3];
93 s8 temp_crit[3];
94 };
95
96 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97 {
98 return i2c_smbus_read_byte_data(client, reg);
99 }
100
101 static inline int
102 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103 {
104 return i2c_smbus_write_byte_data(client, reg, value);
105 }
106
107 static struct adm1031_data *adm1031_update_device(struct device *dev)
108 {
109 struct adm1031_data *data = dev_get_drvdata(dev);
110 struct i2c_client *client = data->client;
111 unsigned long next_update;
112 int chan;
113
114 mutex_lock(&data->update_lock);
115
116 next_update = data->last_updated
117 + msecs_to_jiffies(data->update_interval);
118 if (time_after(jiffies, next_update) || !data->valid) {
119
120 dev_dbg(&client->dev, "Starting adm1031 update\n");
121 for (chan = 0;
122 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123 u8 oldh, newh;
124
125 oldh =
126 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127 data->ext_temp[chan] =
128 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129 newh =
130 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131 if (newh != oldh) {
132 data->ext_temp[chan] =
133 adm1031_read_value(client,
134 ADM1031_REG_EXT_TEMP);
135 #ifdef DEBUG
136 oldh =
137 adm1031_read_value(client,
138 ADM1031_REG_TEMP(chan));
139
140 /* oldh is actually newer */
141 if (newh != oldh)
142 dev_warn(&client->dev,
143 "Remote temperature may be wrong.\n");
144 #endif
145 }
146 data->temp[chan] = newh;
147
148 data->temp_offset[chan] =
149 adm1031_read_value(client,
150 ADM1031_REG_TEMP_OFFSET(chan));
151 data->temp_min[chan] =
152 adm1031_read_value(client,
153 ADM1031_REG_TEMP_MIN(chan));
154 data->temp_max[chan] =
155 adm1031_read_value(client,
156 ADM1031_REG_TEMP_MAX(chan));
157 data->temp_crit[chan] =
158 adm1031_read_value(client,
159 ADM1031_REG_TEMP_CRIT(chan));
160 data->auto_temp[chan] =
161 adm1031_read_value(client,
162 ADM1031_REG_AUTO_TEMP(chan));
163
164 }
165
166 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168
169 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171 if (data->chip_type == adm1030)
172 data->alarm &= 0xc0ff;
173
174 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175 chan++) {
176 data->fan_div[chan] =
177 adm1031_read_value(client,
178 ADM1031_REG_FAN_DIV(chan));
179 data->fan_min[chan] =
180 adm1031_read_value(client,
181 ADM1031_REG_FAN_MIN(chan));
182 data->fan[chan] =
183 adm1031_read_value(client,
184 ADM1031_REG_FAN_SPEED(chan));
185 data->pwm[chan] =
186 (adm1031_read_value(client,
187 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188 }
189 data->last_updated = jiffies;
190 data->valid = 1;
191 }
192
193 mutex_unlock(&data->update_lock);
194
195 return data;
196 }
197
198 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
199 ((val + 500) / 1000)))
200
201 #define TEMP_FROM_REG(val) ((val) * 1000)
202
203 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
204
205 #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
206 #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
207 (val) | 0x70 : (val))
208
209 #define FAN_FROM_REG(reg, div) ((reg) ? \
210 (11250 * 60) / ((reg) * (div)) : 0)
211
212 static int FAN_TO_REG(int reg, int div)
213 {
214 int tmp;
215 tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216 return tmp > 255 ? 255 : tmp;
217 }
218
219 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
220
221 #define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
222 #define PWM_FROM_REG(val) ((val) << 4)
223
224 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
225 #define FAN_CHAN_TO_REG(val, reg) \
226 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
227
228 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
229 ((((val) / 500) & 0xf8) | ((reg) & 0x7))
230 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
231 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
232
233 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
234
235 #define AUTO_TEMP_OFF_FROM_REG(reg) \
236 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237
238 #define AUTO_TEMP_MAX_FROM_REG(reg) \
239 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
240 AUTO_TEMP_MIN_FROM_REG(reg))
241
242 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243 {
244 int ret;
245 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
246
247 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
248 ret = ((reg & 0xf8) |
249 (range < 10000 ? 0 :
250 range < 20000 ? 1 :
251 range < 40000 ? 2 : range < 80000 ? 3 : 4));
252 return ret;
253 }
254
255 /* FAN auto control */
256 #define GET_FAN_AUTO_BITFIELD(data, idx) \
257 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
258
259 /*
260 * The tables below contains the possible values for the auto fan
261 * control bitfields. the index in the table is the register value.
262 * MSb is the auto fan control enable bit, so the four first entries
263 * in the table disables auto fan control when both bitfields are zero.
264 */
265 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
266 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
267 { 2 /* 0b010 */ , 4 /* 0b100 */ },
268 { 2 /* 0b010 */ , 2 /* 0b010 */ },
269 { 4 /* 0b100 */ , 4 /* 0b100 */ },
270 { 7 /* 0b111 */ , 7 /* 0b111 */ },
271 };
272
273 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
274 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
275 { 2 /* 0b10 */ , 0 },
276 { 0xff /* invalid */ , 0 },
277 { 0xff /* invalid */ , 0 },
278 { 3 /* 0b11 */ , 0 },
279 };
280
281 /*
282 * That function checks if a bitfield is valid and returns the other bitfield
283 * nearest match if no exact match where found.
284 */
285 static int
286 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
287 {
288 int i;
289 int first_match = -1, exact_match = -1;
290 u8 other_reg_val =
291 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
292
293 if (val == 0)
294 return 0;
295
296 for (i = 0; i < 8; i++) {
297 if ((val == (*data->chan_select_table)[i][chan]) &&
298 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
299 other_reg_val)) {
300 /* We found an exact match */
301 exact_match = i;
302 break;
303 } else if (val == (*data->chan_select_table)[i][chan] &&
304 first_match == -1) {
305 /*
306 * Save the first match in case of an exact match has
307 * not been found
308 */
309 first_match = i;
310 }
311 }
312
313 if (exact_match >= 0)
314 return exact_match;
315 else if (first_match >= 0)
316 return first_match;
317
318 return -EINVAL;
319 }
320
321 static ssize_t fan_auto_channel_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323 {
324 int nr = to_sensor_dev_attr(attr)->index;
325 struct adm1031_data *data = adm1031_update_device(dev);
326 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
327 }
328
329 static ssize_t
330 fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
331 const char *buf, size_t count)
332 {
333 struct adm1031_data *data = dev_get_drvdata(dev);
334 struct i2c_client *client = data->client;
335 int nr = to_sensor_dev_attr(attr)->index;
336 long val;
337 u8 reg;
338 int ret;
339 u8 old_fan_mode;
340
341 ret = kstrtol(buf, 10, &val);
342 if (ret)
343 return ret;
344
345 old_fan_mode = data->conf1;
346
347 mutex_lock(&data->update_lock);
348
349 ret = get_fan_auto_nearest(data, nr, val, data->conf1);
350 if (ret < 0) {
351 mutex_unlock(&data->update_lock);
352 return ret;
353 }
354 reg = ret;
355 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
356 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
357 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
358 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
359 /*
360 * Switch to Auto Fan Mode
361 * Save PWM registers
362 * Set PWM registers to 33% Both
363 */
364 data->old_pwm[0] = data->pwm[0];
365 data->old_pwm[1] = data->pwm[1];
366 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
367 } else {
368 /* Switch to Manual Mode */
369 data->pwm[0] = data->old_pwm[0];
370 data->pwm[1] = data->old_pwm[1];
371 /* Restore PWM registers */
372 adm1031_write_value(client, ADM1031_REG_PWM,
373 data->pwm[0] | (data->pwm[1] << 4));
374 }
375 }
376 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
377 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
378 mutex_unlock(&data->update_lock);
379 return count;
380 }
381
382 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
383 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
384
385 /* Auto Temps */
386 static ssize_t auto_temp_off_show(struct device *dev,
387 struct device_attribute *attr, char *buf)
388 {
389 int nr = to_sensor_dev_attr(attr)->index;
390 struct adm1031_data *data = adm1031_update_device(dev);
391 return sprintf(buf, "%d\n",
392 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
393 }
394 static ssize_t auto_temp_min_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
396 {
397 int nr = to_sensor_dev_attr(attr)->index;
398 struct adm1031_data *data = adm1031_update_device(dev);
399 return sprintf(buf, "%d\n",
400 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
401 }
402 static ssize_t
403 auto_temp_min_store(struct device *dev, struct device_attribute *attr,
404 const char *buf, size_t count)
405 {
406 struct adm1031_data *data = dev_get_drvdata(dev);
407 struct i2c_client *client = data->client;
408 int nr = to_sensor_dev_attr(attr)->index;
409 long val;
410 int ret;
411
412 ret = kstrtol(buf, 10, &val);
413 if (ret)
414 return ret;
415
416 val = clamp_val(val, 0, 127000);
417 mutex_lock(&data->update_lock);
418 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
419 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
420 data->auto_temp[nr]);
421 mutex_unlock(&data->update_lock);
422 return count;
423 }
424 static ssize_t auto_temp_max_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 int nr = to_sensor_dev_attr(attr)->index;
428 struct adm1031_data *data = adm1031_update_device(dev);
429 return sprintf(buf, "%d\n",
430 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
431 }
432 static ssize_t
433 auto_temp_max_store(struct device *dev, struct device_attribute *attr,
434 const char *buf, size_t count)
435 {
436 struct adm1031_data *data = dev_get_drvdata(dev);
437 struct i2c_client *client = data->client;
438 int nr = to_sensor_dev_attr(attr)->index;
439 long val;
440 int ret;
441
442 ret = kstrtol(buf, 10, &val);
443 if (ret)
444 return ret;
445
446 val = clamp_val(val, 0, 127000);
447 mutex_lock(&data->update_lock);
448 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
449 data->pwm[nr]);
450 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
451 data->temp_max[nr]);
452 mutex_unlock(&data->update_lock);
453 return count;
454 }
455
456 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
457 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
458 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
459 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
460 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
461 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
462 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
463 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
464 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
465
466 /* pwm */
467 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
468 char *buf)
469 {
470 int nr = to_sensor_dev_attr(attr)->index;
471 struct adm1031_data *data = adm1031_update_device(dev);
472 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
473 }
474 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
475 const char *buf, size_t count)
476 {
477 struct adm1031_data *data = dev_get_drvdata(dev);
478 struct i2c_client *client = data->client;
479 int nr = to_sensor_dev_attr(attr)->index;
480 long val;
481 int ret, reg;
482
483 ret = kstrtol(buf, 10, &val);
484 if (ret)
485 return ret;
486
487 mutex_lock(&data->update_lock);
488 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
489 (((val>>4) & 0xf) != 5)) {
490 /* In automatic mode, the only PWM accepted is 33% */
491 mutex_unlock(&data->update_lock);
492 return -EINVAL;
493 }
494 data->pwm[nr] = PWM_TO_REG(val);
495 reg = adm1031_read_value(client, ADM1031_REG_PWM);
496 adm1031_write_value(client, ADM1031_REG_PWM,
497 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
498 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
499 mutex_unlock(&data->update_lock);
500 return count;
501 }
502
503 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
504 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
505 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
506 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
507
508 /* Fans */
509
510 /*
511 * That function checks the cases where the fan reading is not
512 * relevant. It is used to provide 0 as fan reading when the fan is
513 * not supposed to run
514 */
515 static int trust_fan_readings(struct adm1031_data *data, int chan)
516 {
517 int res = 0;
518
519 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
520 switch (data->conf1 & 0x60) {
521 case 0x00:
522 /*
523 * remote temp1 controls fan1,
524 * remote temp2 controls fan2
525 */
526 res = data->temp[chan+1] >=
527 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
528 break;
529 case 0x20: /* remote temp1 controls both fans */
530 res =
531 data->temp[1] >=
532 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
533 break;
534 case 0x40: /* remote temp2 controls both fans */
535 res =
536 data->temp[2] >=
537 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
538 break;
539 case 0x60: /* max controls both fans */
540 res =
541 data->temp[0] >=
542 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
543 || data->temp[1] >=
544 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
545 || (data->chip_type == adm1031
546 && data->temp[2] >=
547 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
548 break;
549 }
550 } else {
551 res = data->pwm[chan] > 0;
552 }
553 return res;
554 }
555
556 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
557 char *buf)
558 {
559 int nr = to_sensor_dev_attr(attr)->index;
560 struct adm1031_data *data = adm1031_update_device(dev);
561 int value;
562
563 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
564 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
565 return sprintf(buf, "%d\n", value);
566 }
567
568 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
569 char *buf)
570 {
571 int nr = to_sensor_dev_attr(attr)->index;
572 struct adm1031_data *data = adm1031_update_device(dev);
573 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
574 }
575 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
576 char *buf)
577 {
578 int nr = to_sensor_dev_attr(attr)->index;
579 struct adm1031_data *data = adm1031_update_device(dev);
580 return sprintf(buf, "%d\n",
581 FAN_FROM_REG(data->fan_min[nr],
582 FAN_DIV_FROM_REG(data->fan_div[nr])));
583 }
584 static ssize_t fan_min_store(struct device *dev,
585 struct device_attribute *attr, const char *buf,
586 size_t count)
587 {
588 struct adm1031_data *data = dev_get_drvdata(dev);
589 struct i2c_client *client = data->client;
590 int nr = to_sensor_dev_attr(attr)->index;
591 long val;
592 int ret;
593
594 ret = kstrtol(buf, 10, &val);
595 if (ret)
596 return ret;
597
598 mutex_lock(&data->update_lock);
599 if (val) {
600 data->fan_min[nr] =
601 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
602 } else {
603 data->fan_min[nr] = 0xff;
604 }
605 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
606 mutex_unlock(&data->update_lock);
607 return count;
608 }
609 static ssize_t fan_div_store(struct device *dev,
610 struct device_attribute *attr, const char *buf,
611 size_t count)
612 {
613 struct adm1031_data *data = dev_get_drvdata(dev);
614 struct i2c_client *client = data->client;
615 int nr = to_sensor_dev_attr(attr)->index;
616 long val;
617 u8 tmp;
618 int old_div;
619 int new_min;
620 int ret;
621
622 ret = kstrtol(buf, 10, &val);
623 if (ret)
624 return ret;
625
626 tmp = val == 8 ? 0xc0 :
627 val == 4 ? 0x80 :
628 val == 2 ? 0x40 :
629 val == 1 ? 0x00 :
630 0xff;
631 if (tmp == 0xff)
632 return -EINVAL;
633
634 mutex_lock(&data->update_lock);
635 /* Get fresh readings */
636 data->fan_div[nr] = adm1031_read_value(client,
637 ADM1031_REG_FAN_DIV(nr));
638 data->fan_min[nr] = adm1031_read_value(client,
639 ADM1031_REG_FAN_MIN(nr));
640
641 /* Write the new clock divider and fan min */
642 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
643 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
644 new_min = data->fan_min[nr] * old_div / val;
645 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
646
647 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
648 data->fan_div[nr]);
649 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
650 data->fan_min[nr]);
651
652 /* Invalidate the cache: fan speed is no longer valid */
653 data->valid = 0;
654 mutex_unlock(&data->update_lock);
655 return count;
656 }
657
658 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
659 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
660 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
661 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
662 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
663 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
664
665 /* Temps */
666 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
667 char *buf)
668 {
669 int nr = to_sensor_dev_attr(attr)->index;
670 struct adm1031_data *data = adm1031_update_device(dev);
671 int ext;
672 ext = nr == 0 ?
673 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
674 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
675 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
676 }
677 static ssize_t temp_offset_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
679 {
680 int nr = to_sensor_dev_attr(attr)->index;
681 struct adm1031_data *data = adm1031_update_device(dev);
682 return sprintf(buf, "%d\n",
683 TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
684 }
685 static ssize_t temp_min_show(struct device *dev,
686 struct device_attribute *attr, char *buf)
687 {
688 int nr = to_sensor_dev_attr(attr)->index;
689 struct adm1031_data *data = adm1031_update_device(dev);
690 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
691 }
692 static ssize_t temp_max_show(struct device *dev,
693 struct device_attribute *attr, char *buf)
694 {
695 int nr = to_sensor_dev_attr(attr)->index;
696 struct adm1031_data *data = adm1031_update_device(dev);
697 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
698 }
699 static ssize_t temp_crit_show(struct device *dev,
700 struct device_attribute *attr, char *buf)
701 {
702 int nr = to_sensor_dev_attr(attr)->index;
703 struct adm1031_data *data = adm1031_update_device(dev);
704 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
705 }
706 static ssize_t temp_offset_store(struct device *dev,
707 struct device_attribute *attr,
708 const char *buf, size_t count)
709 {
710 struct adm1031_data *data = dev_get_drvdata(dev);
711 struct i2c_client *client = data->client;
712 int nr = to_sensor_dev_attr(attr)->index;
713 long val;
714 int ret;
715
716 ret = kstrtol(buf, 10, &val);
717 if (ret)
718 return ret;
719
720 val = clamp_val(val, -15000, 15000);
721 mutex_lock(&data->update_lock);
722 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
723 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
724 data->temp_offset[nr]);
725 mutex_unlock(&data->update_lock);
726 return count;
727 }
728 static ssize_t temp_min_store(struct device *dev,
729 struct device_attribute *attr, const char *buf,
730 size_t count)
731 {
732 struct adm1031_data *data = dev_get_drvdata(dev);
733 struct i2c_client *client = data->client;
734 int nr = to_sensor_dev_attr(attr)->index;
735 long val;
736 int ret;
737
738 ret = kstrtol(buf, 10, &val);
739 if (ret)
740 return ret;
741
742 val = clamp_val(val, -55000, 127000);
743 mutex_lock(&data->update_lock);
744 data->temp_min[nr] = TEMP_TO_REG(val);
745 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
746 data->temp_min[nr]);
747 mutex_unlock(&data->update_lock);
748 return count;
749 }
750 static ssize_t temp_max_store(struct device *dev,
751 struct device_attribute *attr, const char *buf,
752 size_t count)
753 {
754 struct adm1031_data *data = dev_get_drvdata(dev);
755 struct i2c_client *client = data->client;
756 int nr = to_sensor_dev_attr(attr)->index;
757 long val;
758 int ret;
759
760 ret = kstrtol(buf, 10, &val);
761 if (ret)
762 return ret;
763
764 val = clamp_val(val, -55000, 127000);
765 mutex_lock(&data->update_lock);
766 data->temp_max[nr] = TEMP_TO_REG(val);
767 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
768 data->temp_max[nr]);
769 mutex_unlock(&data->update_lock);
770 return count;
771 }
772 static ssize_t temp_crit_store(struct device *dev,
773 struct device_attribute *attr, const char *buf,
774 size_t count)
775 {
776 struct adm1031_data *data = dev_get_drvdata(dev);
777 struct i2c_client *client = data->client;
778 int nr = to_sensor_dev_attr(attr)->index;
779 long val;
780 int ret;
781
782 ret = kstrtol(buf, 10, &val);
783 if (ret)
784 return ret;
785
786 val = clamp_val(val, -55000, 127000);
787 mutex_lock(&data->update_lock);
788 data->temp_crit[nr] = TEMP_TO_REG(val);
789 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
790 data->temp_crit[nr]);
791 mutex_unlock(&data->update_lock);
792 return count;
793 }
794
795 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
796 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
797 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
798 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
799 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
800 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
801 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
802 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
803 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
804 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
805 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
806 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
807 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
808 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
809 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
810
811 /* Alarms */
812 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
813 char *buf)
814 {
815 struct adm1031_data *data = adm1031_update_device(dev);
816 return sprintf(buf, "%d\n", data->alarm);
817 }
818
819 static DEVICE_ATTR_RO(alarms);
820
821 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
822 char *buf)
823 {
824 int bitnr = to_sensor_dev_attr(attr)->index;
825 struct adm1031_data *data = adm1031_update_device(dev);
826 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
827 }
828
829 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
830 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
831 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
832 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
833 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
834 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
835 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
836 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
837 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
838 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
839 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
840 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
841 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
842 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
843 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
844
845 /* Update Interval */
846 static const unsigned int update_intervals[] = {
847 16000, 8000, 4000, 2000, 1000, 500, 250, 125,
848 };
849
850 static ssize_t update_interval_show(struct device *dev,
851 struct device_attribute *attr, char *buf)
852 {
853 struct adm1031_data *data = dev_get_drvdata(dev);
854
855 return sprintf(buf, "%u\n", data->update_interval);
856 }
857
858 static ssize_t update_interval_store(struct device *dev,
859 struct device_attribute *attr,
860 const char *buf, size_t count)
861 {
862 struct adm1031_data *data = dev_get_drvdata(dev);
863 struct i2c_client *client = data->client;
864 unsigned long val;
865 int i, err;
866 u8 reg;
867
868 err = kstrtoul(buf, 10, &val);
869 if (err)
870 return err;
871
872 /*
873 * Find the nearest update interval from the table.
874 * Use it to determine the matching update rate.
875 */
876 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
877 if (val >= update_intervals[i])
878 break;
879 }
880 /* if not found, we point to the last entry (lowest update interval) */
881
882 /* set the new update rate while preserving other settings */
883 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
884 reg &= ~ADM1031_UPDATE_RATE_MASK;
885 reg |= i << ADM1031_UPDATE_RATE_SHIFT;
886 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
887
888 mutex_lock(&data->update_lock);
889 data->update_interval = update_intervals[i];
890 mutex_unlock(&data->update_lock);
891
892 return count;
893 }
894
895 static DEVICE_ATTR_RW(update_interval);
896
897 static struct attribute *adm1031_attributes[] = {
898 &sensor_dev_attr_fan1_input.dev_attr.attr,
899 &sensor_dev_attr_fan1_div.dev_attr.attr,
900 &sensor_dev_attr_fan1_min.dev_attr.attr,
901 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
902 &sensor_dev_attr_fan1_fault.dev_attr.attr,
903 &sensor_dev_attr_pwm1.dev_attr.attr,
904 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
905 &sensor_dev_attr_temp1_input.dev_attr.attr,
906 &sensor_dev_attr_temp1_offset.dev_attr.attr,
907 &sensor_dev_attr_temp1_min.dev_attr.attr,
908 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
909 &sensor_dev_attr_temp1_max.dev_attr.attr,
910 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
911 &sensor_dev_attr_temp1_crit.dev_attr.attr,
912 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
913 &sensor_dev_attr_temp2_input.dev_attr.attr,
914 &sensor_dev_attr_temp2_offset.dev_attr.attr,
915 &sensor_dev_attr_temp2_min.dev_attr.attr,
916 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
917 &sensor_dev_attr_temp2_max.dev_attr.attr,
918 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
919 &sensor_dev_attr_temp2_crit.dev_attr.attr,
920 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
921 &sensor_dev_attr_temp2_fault.dev_attr.attr,
922
923 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
924 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
925 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
926
927 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
928 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
929 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
930
931 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
932
933 &dev_attr_update_interval.attr,
934 &dev_attr_alarms.attr,
935
936 NULL
937 };
938
939 static const struct attribute_group adm1031_group = {
940 .attrs = adm1031_attributes,
941 };
942
943 static struct attribute *adm1031_attributes_opt[] = {
944 &sensor_dev_attr_fan2_input.dev_attr.attr,
945 &sensor_dev_attr_fan2_div.dev_attr.attr,
946 &sensor_dev_attr_fan2_min.dev_attr.attr,
947 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
948 &sensor_dev_attr_fan2_fault.dev_attr.attr,
949 &sensor_dev_attr_pwm2.dev_attr.attr,
950 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
951 &sensor_dev_attr_temp3_input.dev_attr.attr,
952 &sensor_dev_attr_temp3_offset.dev_attr.attr,
953 &sensor_dev_attr_temp3_min.dev_attr.attr,
954 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
955 &sensor_dev_attr_temp3_max.dev_attr.attr,
956 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
957 &sensor_dev_attr_temp3_crit.dev_attr.attr,
958 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
959 &sensor_dev_attr_temp3_fault.dev_attr.attr,
960 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
961 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
962 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
963 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
964 NULL
965 };
966
967 static const struct attribute_group adm1031_group_opt = {
968 .attrs = adm1031_attributes_opt,
969 };
970
971 /* Return 0 if detection is successful, -ENODEV otherwise */
972 static int adm1031_detect(struct i2c_client *client,
973 struct i2c_board_info *info)
974 {
975 struct i2c_adapter *adapter = client->adapter;
976 const char *name;
977 int id, co;
978
979 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
980 return -ENODEV;
981
982 id = i2c_smbus_read_byte_data(client, 0x3d);
983 co = i2c_smbus_read_byte_data(client, 0x3e);
984
985 if (!((id == 0x31 || id == 0x30) && co == 0x41))
986 return -ENODEV;
987 name = (id == 0x30) ? "adm1030" : "adm1031";
988
989 strlcpy(info->type, name, I2C_NAME_SIZE);
990
991 return 0;
992 }
993
994 static void adm1031_init_client(struct i2c_client *client)
995 {
996 unsigned int read_val;
997 unsigned int mask;
998 int i;
999 struct adm1031_data *data = i2c_get_clientdata(client);
1000
1001 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1002 if (data->chip_type == adm1031) {
1003 mask |= (ADM1031_CONF2_PWM2_ENABLE |
1004 ADM1031_CONF2_TACH2_ENABLE);
1005 }
1006 /* Initialize the ADM1031 chip (enables fan speed reading ) */
1007 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1008 if ((read_val | mask) != read_val)
1009 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1010
1011 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1012 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1013 adm1031_write_value(client, ADM1031_REG_CONF1,
1014 read_val | ADM1031_CONF1_MONITOR_ENABLE);
1015 }
1016
1017 /* Read the chip's update rate */
1018 mask = ADM1031_UPDATE_RATE_MASK;
1019 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1020 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1021 /* Save it as update interval */
1022 data->update_interval = update_intervals[i];
1023 }
1024
1025 static const struct i2c_device_id adm1031_id[];
1026
1027 static int adm1031_probe(struct i2c_client *client)
1028 {
1029 struct device *dev = &client->dev;
1030 struct device *hwmon_dev;
1031 struct adm1031_data *data;
1032
1033 data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1034 if (!data)
1035 return -ENOMEM;
1036
1037 i2c_set_clientdata(client, data);
1038 data->client = client;
1039 data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1040 mutex_init(&data->update_lock);
1041
1042 if (data->chip_type == adm1030)
1043 data->chan_select_table = &auto_channel_select_table_adm1030;
1044 else
1045 data->chan_select_table = &auto_channel_select_table_adm1031;
1046
1047 /* Initialize the ADM1031 chip */
1048 adm1031_init_client(client);
1049
1050 /* sysfs hooks */
1051 data->groups[0] = &adm1031_group;
1052 if (data->chip_type == adm1031)
1053 data->groups[1] = &adm1031_group_opt;
1054
1055 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1056 data, data->groups);
1057 return PTR_ERR_OR_ZERO(hwmon_dev);
1058 }
1059
1060 static const struct i2c_device_id adm1031_id[] = {
1061 { "adm1030", adm1030 },
1062 { "adm1031", adm1031 },
1063 { }
1064 };
1065 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1066
1067 static struct i2c_driver adm1031_driver = {
1068 .class = I2C_CLASS_HWMON,
1069 .driver = {
1070 .name = "adm1031",
1071 },
1072 .probe_new = adm1031_probe,
1073 .id_table = adm1031_id,
1074 .detect = adm1031_detect,
1075 .address_list = normal_i2c,
1076 };
1077
1078 module_i2c_driver(adm1031_driver);
1079
1080 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1081 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1082 MODULE_LICENSE("GPL");