]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hwmon/emc1403.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / hwmon / emc1403.c
1 /*
2 * emc1403.c - SMSC Thermal Driver
3 *
4 * Copyright (C) 2008 Intel Corp
5 *
6 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/hwmon.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/err.h>
30 #include <linux/sysfs.h>
31 #include <linux/mutex.h>
32 #include <linux/regmap.h>
33
34 #define THERMAL_PID_REG 0xfd
35 #define THERMAL_SMSC_ID_REG 0xfe
36 #define THERMAL_REVISION_REG 0xff
37
38 enum emc1403_chip { emc1402, emc1403, emc1404 };
39
40 struct thermal_data {
41 struct regmap *regmap;
42 struct mutex mutex;
43 const struct attribute_group *groups[4];
44 };
45
46 static ssize_t show_temp(struct device *dev,
47 struct device_attribute *attr, char *buf)
48 {
49 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
50 struct thermal_data *data = dev_get_drvdata(dev);
51 unsigned int val;
52 int retval;
53
54 retval = regmap_read(data->regmap, sda->index, &val);
55 if (retval < 0)
56 return retval;
57 return sprintf(buf, "%d000\n", val);
58 }
59
60 static ssize_t show_bit(struct device *dev,
61 struct device_attribute *attr, char *buf)
62 {
63 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
64 struct thermal_data *data = dev_get_drvdata(dev);
65 unsigned int val;
66 int retval;
67
68 retval = regmap_read(data->regmap, sda->nr, &val);
69 if (retval < 0)
70 return retval;
71 return sprintf(buf, "%d\n", !!(val & sda->index));
72 }
73
74 static ssize_t store_temp(struct device *dev,
75 struct device_attribute *attr, const char *buf, size_t count)
76 {
77 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
78 struct thermal_data *data = dev_get_drvdata(dev);
79 unsigned long val;
80 int retval;
81
82 if (kstrtoul(buf, 10, &val))
83 return -EINVAL;
84 retval = regmap_write(data->regmap, sda->index,
85 DIV_ROUND_CLOSEST(val, 1000));
86 if (retval < 0)
87 return retval;
88 return count;
89 }
90
91 static ssize_t store_bit(struct device *dev,
92 struct device_attribute *attr, const char *buf, size_t count)
93 {
94 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
95 struct thermal_data *data = dev_get_drvdata(dev);
96 unsigned long val;
97 int retval;
98
99 if (kstrtoul(buf, 10, &val))
100 return -EINVAL;
101
102 retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
103 val ? sda->index : 0);
104 if (retval < 0)
105 return retval;
106 return count;
107 }
108
109 static ssize_t show_hyst_common(struct device *dev,
110 struct device_attribute *attr, char *buf,
111 bool is_min)
112 {
113 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
114 struct thermal_data *data = dev_get_drvdata(dev);
115 struct regmap *regmap = data->regmap;
116 unsigned int limit;
117 unsigned int hyst;
118 int retval;
119
120 retval = regmap_read(regmap, sda->index, &limit);
121 if (retval < 0)
122 return retval;
123
124 retval = regmap_read(regmap, 0x21, &hyst);
125 if (retval < 0)
126 return retval;
127
128 return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
129 }
130
131 static ssize_t show_hyst(struct device *dev,
132 struct device_attribute *attr, char *buf)
133 {
134 return show_hyst_common(dev, attr, buf, false);
135 }
136
137 static ssize_t show_min_hyst(struct device *dev,
138 struct device_attribute *attr, char *buf)
139 {
140 return show_hyst_common(dev, attr, buf, true);
141 }
142
143 static ssize_t store_hyst(struct device *dev,
144 struct device_attribute *attr, const char *buf, size_t count)
145 {
146 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
147 struct thermal_data *data = dev_get_drvdata(dev);
148 struct regmap *regmap = data->regmap;
149 unsigned int limit;
150 int retval;
151 int hyst;
152 unsigned long val;
153
154 if (kstrtoul(buf, 10, &val))
155 return -EINVAL;
156
157 mutex_lock(&data->mutex);
158 retval = regmap_read(regmap, sda->index, &limit);
159 if (retval < 0)
160 goto fail;
161
162 hyst = limit * 1000 - val;
163 hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
164 retval = regmap_write(regmap, 0x21, hyst);
165 if (retval == 0)
166 retval = count;
167 fail:
168 mutex_unlock(&data->mutex);
169 return retval;
170 }
171
172 /*
173 * Sensors. We pass the actual i2c register to the methods.
174 */
175
176 static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR,
177 show_temp, store_temp, 0x06);
178 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR,
179 show_temp, store_temp, 0x05);
180 static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO | S_IWUSR,
181 show_temp, store_temp, 0x20);
182 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0x00);
183 static SENSOR_DEVICE_ATTR_2(temp1_min_alarm, S_IRUGO,
184 show_bit, NULL, 0x36, 0x01);
185 static SENSOR_DEVICE_ATTR_2(temp1_max_alarm, S_IRUGO,
186 show_bit, NULL, 0x35, 0x01);
187 static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO,
188 show_bit, NULL, 0x37, 0x01);
189 static SENSOR_DEVICE_ATTR(temp1_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x06);
190 static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IRUGO, show_hyst, NULL, 0x05);
191 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO | S_IWUSR,
192 show_hyst, store_hyst, 0x20);
193
194 static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR,
195 show_temp, store_temp, 0x08);
196 static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR,
197 show_temp, store_temp, 0x07);
198 static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO | S_IWUSR,
199 show_temp, store_temp, 0x19);
200 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0x01);
201 static SENSOR_DEVICE_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x02);
202 static SENSOR_DEVICE_ATTR_2(temp2_min_alarm, S_IRUGO,
203 show_bit, NULL, 0x36, 0x02);
204 static SENSOR_DEVICE_ATTR_2(temp2_max_alarm, S_IRUGO,
205 show_bit, NULL, 0x35, 0x02);
206 static SENSOR_DEVICE_ATTR_2(temp2_crit_alarm, S_IRUGO,
207 show_bit, NULL, 0x37, 0x02);
208 static SENSOR_DEVICE_ATTR(temp2_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x08);
209 static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IRUGO, show_hyst, NULL, 0x07);
210 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_hyst, NULL, 0x19);
211
212 static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR,
213 show_temp, store_temp, 0x16);
214 static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR,
215 show_temp, store_temp, 0x15);
216 static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO | S_IWUSR,
217 show_temp, store_temp, 0x1A);
218 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 0x23);
219 static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x04);
220 static SENSOR_DEVICE_ATTR_2(temp3_min_alarm, S_IRUGO,
221 show_bit, NULL, 0x36, 0x04);
222 static SENSOR_DEVICE_ATTR_2(temp3_max_alarm, S_IRUGO,
223 show_bit, NULL, 0x35, 0x04);
224 static SENSOR_DEVICE_ATTR_2(temp3_crit_alarm, S_IRUGO,
225 show_bit, NULL, 0x37, 0x04);
226 static SENSOR_DEVICE_ATTR(temp3_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x16);
227 static SENSOR_DEVICE_ATTR(temp3_max_hyst, S_IRUGO, show_hyst, NULL, 0x15);
228 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_hyst, NULL, 0x1A);
229
230 static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR,
231 show_temp, store_temp, 0x2D);
232 static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR,
233 show_temp, store_temp, 0x2C);
234 static SENSOR_DEVICE_ATTR(temp4_crit, S_IRUGO | S_IWUSR,
235 show_temp, store_temp, 0x30);
236 static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 0x2A);
237 static SENSOR_DEVICE_ATTR_2(temp4_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x08);
238 static SENSOR_DEVICE_ATTR_2(temp4_min_alarm, S_IRUGO,
239 show_bit, NULL, 0x36, 0x08);
240 static SENSOR_DEVICE_ATTR_2(temp4_max_alarm, S_IRUGO,
241 show_bit, NULL, 0x35, 0x08);
242 static SENSOR_DEVICE_ATTR_2(temp4_crit_alarm, S_IRUGO,
243 show_bit, NULL, 0x37, 0x08);
244 static SENSOR_DEVICE_ATTR(temp4_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x2D);
245 static SENSOR_DEVICE_ATTR(temp4_max_hyst, S_IRUGO, show_hyst, NULL, 0x2C);
246 static SENSOR_DEVICE_ATTR(temp4_crit_hyst, S_IRUGO, show_hyst, NULL, 0x30);
247
248 static SENSOR_DEVICE_ATTR_2(power_state, S_IRUGO | S_IWUSR,
249 show_bit, store_bit, 0x03, 0x40);
250
251 static struct attribute *emc1402_attrs[] = {
252 &sensor_dev_attr_temp1_min.dev_attr.attr,
253 &sensor_dev_attr_temp1_max.dev_attr.attr,
254 &sensor_dev_attr_temp1_crit.dev_attr.attr,
255 &sensor_dev_attr_temp1_input.dev_attr.attr,
256 &sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
257 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
258 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
259
260 &sensor_dev_attr_temp2_min.dev_attr.attr,
261 &sensor_dev_attr_temp2_max.dev_attr.attr,
262 &sensor_dev_attr_temp2_crit.dev_attr.attr,
263 &sensor_dev_attr_temp2_input.dev_attr.attr,
264 &sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
265 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
266 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
267
268 &sensor_dev_attr_power_state.dev_attr.attr,
269 NULL
270 };
271
272 static const struct attribute_group emc1402_group = {
273 .attrs = emc1402_attrs,
274 };
275
276 static struct attribute *emc1403_attrs[] = {
277 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
278 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
279 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
280
281 &sensor_dev_attr_temp2_fault.dev_attr.attr,
282 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
283 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
284 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
285
286 &sensor_dev_attr_temp3_min.dev_attr.attr,
287 &sensor_dev_attr_temp3_max.dev_attr.attr,
288 &sensor_dev_attr_temp3_crit.dev_attr.attr,
289 &sensor_dev_attr_temp3_input.dev_attr.attr,
290 &sensor_dev_attr_temp3_fault.dev_attr.attr,
291 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
292 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
293 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
294 &sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
295 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
296 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
297 NULL
298 };
299
300 static const struct attribute_group emc1403_group = {
301 .attrs = emc1403_attrs,
302 };
303
304 static struct attribute *emc1404_attrs[] = {
305 &sensor_dev_attr_temp4_min.dev_attr.attr,
306 &sensor_dev_attr_temp4_max.dev_attr.attr,
307 &sensor_dev_attr_temp4_crit.dev_attr.attr,
308 &sensor_dev_attr_temp4_input.dev_attr.attr,
309 &sensor_dev_attr_temp4_fault.dev_attr.attr,
310 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
311 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
312 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
313 &sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
314 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
315 &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
316 NULL
317 };
318
319 static const struct attribute_group emc1404_group = {
320 .attrs = emc1404_attrs,
321 };
322
323 /*
324 * EMC14x2 uses a different register and different bits to report alarm and
325 * fault status. For simplicity, provide a separate attribute group for this
326 * chip series.
327 * Since we can not re-use the same attribute names, create a separate attribute
328 * array.
329 */
330 static struct sensor_device_attribute_2 emc1402_alarms[] = {
331 SENSOR_ATTR_2(temp1_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x20),
332 SENSOR_ATTR_2(temp1_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x40),
333 SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x01),
334
335 SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x02, 0x04),
336 SENSOR_ATTR_2(temp2_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x08),
337 SENSOR_ATTR_2(temp2_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x10),
338 SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x02),
339 };
340
341 static struct attribute *emc1402_alarm_attrs[] = {
342 &emc1402_alarms[0].dev_attr.attr,
343 &emc1402_alarms[1].dev_attr.attr,
344 &emc1402_alarms[2].dev_attr.attr,
345 &emc1402_alarms[3].dev_attr.attr,
346 &emc1402_alarms[4].dev_attr.attr,
347 &emc1402_alarms[5].dev_attr.attr,
348 &emc1402_alarms[6].dev_attr.attr,
349 NULL,
350 };
351
352 static const struct attribute_group emc1402_alarm_group = {
353 .attrs = emc1402_alarm_attrs,
354 };
355
356 static int emc1403_detect(struct i2c_client *client,
357 struct i2c_board_info *info)
358 {
359 int id;
360 /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
361
362 id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
363 if (id != 0x5d)
364 return -ENODEV;
365
366 id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
367 switch (id) {
368 case 0x20:
369 strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
370 break;
371 case 0x21:
372 strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
373 break;
374 case 0x22:
375 strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
376 break;
377 case 0x23:
378 strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
379 break;
380 case 0x25:
381 strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
382 break;
383 case 0x27:
384 strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
385 break;
386 default:
387 return -ENODEV;
388 }
389
390 id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
391 if (id < 0x01 || id > 0x04)
392 return -ENODEV;
393
394 return 0;
395 }
396
397 static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
398 {
399 switch (reg) {
400 case 0x00: /* internal diode high byte */
401 case 0x01: /* external diode 1 high byte */
402 case 0x02: /* status */
403 case 0x10: /* external diode 1 low byte */
404 case 0x1b: /* external diode fault */
405 case 0x23: /* external diode 2 high byte */
406 case 0x24: /* external diode 2 low byte */
407 case 0x29: /* internal diode low byte */
408 case 0x2a: /* externl diode 3 high byte */
409 case 0x2b: /* external diode 3 low byte */
410 case 0x35: /* high limit status */
411 case 0x36: /* low limit status */
412 case 0x37: /* therm limit status */
413 return true;
414 default:
415 return false;
416 }
417 }
418
419 static const struct regmap_config emc1403_regmap_config = {
420 .reg_bits = 8,
421 .val_bits = 8,
422 .cache_type = REGCACHE_RBTREE,
423 .volatile_reg = emc1403_regmap_is_volatile,
424 };
425
426 static int emc1403_probe(struct i2c_client *client,
427 const struct i2c_device_id *id)
428 {
429 struct thermal_data *data;
430 struct device *hwmon_dev;
431
432 data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
433 GFP_KERNEL);
434 if (data == NULL)
435 return -ENOMEM;
436
437 data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
438 if (IS_ERR(data->regmap))
439 return PTR_ERR(data->regmap);
440
441 mutex_init(&data->mutex);
442
443 switch (id->driver_data) {
444 case emc1404:
445 data->groups[2] = &emc1404_group;
446 case emc1403:
447 data->groups[1] = &emc1403_group;
448 case emc1402:
449 data->groups[0] = &emc1402_group;
450 }
451
452 if (id->driver_data == emc1402)
453 data->groups[1] = &emc1402_alarm_group;
454
455 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
456 client->name, data,
457 data->groups);
458 if (IS_ERR(hwmon_dev))
459 return PTR_ERR(hwmon_dev);
460
461 dev_info(&client->dev, "%s Thermal chip found\n", id->name);
462 return 0;
463 }
464
465 static const unsigned short emc1403_address_list[] = {
466 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
467 };
468
469 /* Last digit of chip name indicates number of channels */
470 static const struct i2c_device_id emc1403_idtable[] = {
471 { "emc1402", emc1402 },
472 { "emc1403", emc1403 },
473 { "emc1404", emc1404 },
474 { "emc1412", emc1402 },
475 { "emc1413", emc1403 },
476 { "emc1414", emc1404 },
477 { "emc1422", emc1402 },
478 { "emc1423", emc1403 },
479 { "emc1424", emc1404 },
480 { }
481 };
482 MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
483
484 static struct i2c_driver sensor_emc1403 = {
485 .class = I2C_CLASS_HWMON,
486 .driver = {
487 .name = "emc1403",
488 },
489 .detect = emc1403_detect,
490 .probe = emc1403_probe,
491 .id_table = emc1403_idtable,
492 .address_list = emc1403_address_list,
493 };
494
495 module_i2c_driver(sensor_emc1403);
496
497 MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
498 MODULE_DESCRIPTION("emc1403 Thermal Driver");
499 MODULE_LICENSE("GPL v2");