]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hwmon/emc2103.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / hwmon / emc2103.c
1 /*
2 * emc2103.c - Support for SMSC EMC2103
3 * Copyright (c) 2010 SMSC
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/i2c.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/err.h>
28 #include <linux/mutex.h>
29
30 /* Addresses scanned */
31 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
32
33 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
34 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
35 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
36
37 #define REG_CONF1 0x20
38 #define REG_TEMP_MAX_ALARM 0x24
39 #define REG_TEMP_MIN_ALARM 0x25
40 #define REG_FAN_CONF1 0x42
41 #define REG_FAN_TARGET_LO 0x4c
42 #define REG_FAN_TARGET_HI 0x4d
43 #define REG_FAN_TACH_HI 0x4e
44 #define REG_FAN_TACH_LO 0x4f
45 #define REG_PRODUCT_ID 0xfd
46 #define REG_MFG_ID 0xfe
47
48 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
49 #define FAN_RPM_FACTOR 3932160
50
51 /*
52 * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
53 * in anti-parallel mode, and in this configuration both can be read
54 * independently (so we have 4 temperature inputs). The device can't
55 * detect if it's connected in this mode, so we have to manually enable
56 * it. Default is to leave the device in the state it's already in (-1).
57 * This parameter allows APD mode to be optionally forced on or off
58 */
59 static int apd = -1;
60 module_param(apd, bint, 0);
61 MODULE_PARM_DESC(apd, "Set to zero to disable anti-parallel diode mode");
62
63 struct temperature {
64 s8 degrees;
65 u8 fraction; /* 0-7 multiples of 0.125 */
66 };
67
68 struct emc2103_data {
69 struct i2c_client *client;
70 const struct attribute_group *groups[4];
71 struct mutex update_lock;
72 bool valid; /* registers are valid */
73 bool fan_rpm_control;
74 int temp_count; /* num of temp sensors */
75 unsigned long last_updated; /* in jiffies */
76 struct temperature temp[4]; /* internal + 3 external */
77 s8 temp_min[4]; /* no fractional part */
78 s8 temp_max[4]; /* no fractional part */
79 u8 temp_min_alarm;
80 u8 temp_max_alarm;
81 u8 fan_multiplier;
82 u16 fan_tach;
83 u16 fan_target;
84 };
85
86 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
87 {
88 int status = i2c_smbus_read_byte_data(client, i2c_reg);
89 if (status < 0) {
90 dev_warn(&client->dev, "reg 0x%02x, err %d\n",
91 i2c_reg, status);
92 } else {
93 *output = status;
94 }
95 return status;
96 }
97
98 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
99 struct temperature *temp)
100 {
101 u8 degrees, fractional;
102
103 if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
104 return;
105
106 if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
107 return;
108
109 temp->degrees = degrees;
110 temp->fraction = (fractional & 0xe0) >> 5;
111 }
112
113 static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
114 u8 hi_addr, u8 lo_addr)
115 {
116 u8 high_byte, lo_byte;
117
118 if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
119 return;
120
121 if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
122 return;
123
124 *output = ((u16)high_byte << 5) | (lo_byte >> 3);
125 }
126
127 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
128 {
129 u8 high_byte = (new_target & 0x1fe0) >> 5;
130 u8 low_byte = (new_target & 0x001f) << 3;
131 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
132 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
133 }
134
135 static void read_fan_config_from_i2c(struct i2c_client *client)
136
137 {
138 struct emc2103_data *data = i2c_get_clientdata(client);
139 u8 conf1;
140
141 if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
142 return;
143
144 data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
145 data->fan_rpm_control = (conf1 & 0x80) != 0;
146 }
147
148 static struct emc2103_data *emc2103_update_device(struct device *dev)
149 {
150 struct emc2103_data *data = dev_get_drvdata(dev);
151 struct i2c_client *client = data->client;
152
153 mutex_lock(&data->update_lock);
154
155 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
156 || !data->valid) {
157 int i;
158
159 for (i = 0; i < data->temp_count; i++) {
160 read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
161 read_u8_from_i2c(client, REG_TEMP_MIN[i],
162 &data->temp_min[i]);
163 read_u8_from_i2c(client, REG_TEMP_MAX[i],
164 &data->temp_max[i]);
165 }
166
167 read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
168 &data->temp_min_alarm);
169 read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
170 &data->temp_max_alarm);
171
172 read_fan_from_i2c(client, &data->fan_tach,
173 REG_FAN_TACH_HI, REG_FAN_TACH_LO);
174 read_fan_from_i2c(client, &data->fan_target,
175 REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
176 read_fan_config_from_i2c(client);
177
178 data->last_updated = jiffies;
179 data->valid = true;
180 }
181
182 mutex_unlock(&data->update_lock);
183
184 return data;
185 }
186
187 static ssize_t
188 show_temp(struct device *dev, struct device_attribute *da, char *buf)
189 {
190 int nr = to_sensor_dev_attr(da)->index;
191 struct emc2103_data *data = emc2103_update_device(dev);
192 int millidegrees = data->temp[nr].degrees * 1000
193 + data->temp[nr].fraction * 125;
194 return sprintf(buf, "%d\n", millidegrees);
195 }
196
197 static ssize_t
198 show_temp_min(struct device *dev, struct device_attribute *da, char *buf)
199 {
200 int nr = to_sensor_dev_attr(da)->index;
201 struct emc2103_data *data = emc2103_update_device(dev);
202 int millidegrees = data->temp_min[nr] * 1000;
203 return sprintf(buf, "%d\n", millidegrees);
204 }
205
206 static ssize_t
207 show_temp_max(struct device *dev, struct device_attribute *da, char *buf)
208 {
209 int nr = to_sensor_dev_attr(da)->index;
210 struct emc2103_data *data = emc2103_update_device(dev);
211 int millidegrees = data->temp_max[nr] * 1000;
212 return sprintf(buf, "%d\n", millidegrees);
213 }
214
215 static ssize_t
216 show_temp_fault(struct device *dev, struct device_attribute *da, char *buf)
217 {
218 int nr = to_sensor_dev_attr(da)->index;
219 struct emc2103_data *data = emc2103_update_device(dev);
220 bool fault = (data->temp[nr].degrees == -128);
221 return sprintf(buf, "%d\n", fault ? 1 : 0);
222 }
223
224 static ssize_t
225 show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf)
226 {
227 int nr = to_sensor_dev_attr(da)->index;
228 struct emc2103_data *data = emc2103_update_device(dev);
229 bool alarm = data->temp_min_alarm & (1 << nr);
230 return sprintf(buf, "%d\n", alarm ? 1 : 0);
231 }
232
233 static ssize_t
234 show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf)
235 {
236 int nr = to_sensor_dev_attr(da)->index;
237 struct emc2103_data *data = emc2103_update_device(dev);
238 bool alarm = data->temp_max_alarm & (1 << nr);
239 return sprintf(buf, "%d\n", alarm ? 1 : 0);
240 }
241
242 static ssize_t set_temp_min(struct device *dev, struct device_attribute *da,
243 const char *buf, size_t count)
244 {
245 int nr = to_sensor_dev_attr(da)->index;
246 struct emc2103_data *data = dev_get_drvdata(dev);
247 struct i2c_client *client = data->client;
248 long val;
249
250 int result = kstrtol(buf, 10, &val);
251 if (result < 0)
252 return result;
253
254 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
255
256 mutex_lock(&data->update_lock);
257 data->temp_min[nr] = val;
258 i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
259 mutex_unlock(&data->update_lock);
260
261 return count;
262 }
263
264 static ssize_t set_temp_max(struct device *dev, struct device_attribute *da,
265 const char *buf, size_t count)
266 {
267 int nr = to_sensor_dev_attr(da)->index;
268 struct emc2103_data *data = dev_get_drvdata(dev);
269 struct i2c_client *client = data->client;
270 long val;
271
272 int result = kstrtol(buf, 10, &val);
273 if (result < 0)
274 return result;
275
276 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
277
278 mutex_lock(&data->update_lock);
279 data->temp_max[nr] = val;
280 i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
281 mutex_unlock(&data->update_lock);
282
283 return count;
284 }
285
286 static ssize_t
287 fan1_input_show(struct device *dev, struct device_attribute *da, char *buf)
288 {
289 struct emc2103_data *data = emc2103_update_device(dev);
290 int rpm = 0;
291 if (data->fan_tach != 0)
292 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
293 return sprintf(buf, "%d\n", rpm);
294 }
295
296 static ssize_t
297 fan1_div_show(struct device *dev, struct device_attribute *da, char *buf)
298 {
299 struct emc2103_data *data = emc2103_update_device(dev);
300 int fan_div = 8 / data->fan_multiplier;
301 return sprintf(buf, "%d\n", fan_div);
302 }
303
304 /*
305 * Note: we also update the fan target here, because its value is
306 * determined in part by the fan clock divider. This follows the principle
307 * of least surprise; the user doesn't expect the fan target to change just
308 * because the divider changed.
309 */
310 static ssize_t fan1_div_store(struct device *dev, struct device_attribute *da,
311 const char *buf, size_t count)
312 {
313 struct emc2103_data *data = emc2103_update_device(dev);
314 struct i2c_client *client = data->client;
315 int new_range_bits, old_div = 8 / data->fan_multiplier;
316 long new_div;
317
318 int status = kstrtol(buf, 10, &new_div);
319 if (status < 0)
320 return status;
321
322 if (new_div == old_div) /* No change */
323 return count;
324
325 switch (new_div) {
326 case 1:
327 new_range_bits = 3;
328 break;
329 case 2:
330 new_range_bits = 2;
331 break;
332 case 4:
333 new_range_bits = 1;
334 break;
335 case 8:
336 new_range_bits = 0;
337 break;
338 default:
339 return -EINVAL;
340 }
341
342 mutex_lock(&data->update_lock);
343
344 status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
345 if (status < 0) {
346 dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
347 REG_FAN_CONF1, status);
348 mutex_unlock(&data->update_lock);
349 return status;
350 }
351 status &= 0x9F;
352 status |= (new_range_bits << 5);
353 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
354
355 data->fan_multiplier = 8 / new_div;
356
357 /* update fan target if high byte is not disabled */
358 if ((data->fan_target & 0x1fe0) != 0x1fe0) {
359 u16 new_target = (data->fan_target * old_div) / new_div;
360 data->fan_target = min(new_target, (u16)0x1fff);
361 write_fan_target_to_i2c(client, data->fan_target);
362 }
363
364 /* invalidate data to force re-read from hardware */
365 data->valid = false;
366
367 mutex_unlock(&data->update_lock);
368 return count;
369 }
370
371 static ssize_t
372 fan1_target_show(struct device *dev, struct device_attribute *da, char *buf)
373 {
374 struct emc2103_data *data = emc2103_update_device(dev);
375 int rpm = 0;
376
377 /* high byte of 0xff indicates disabled so return 0 */
378 if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
379 rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
380 / data->fan_target;
381
382 return sprintf(buf, "%d\n", rpm);
383 }
384
385 static ssize_t fan1_target_store(struct device *dev,
386 struct device_attribute *da, const char *buf,
387 size_t count)
388 {
389 struct emc2103_data *data = emc2103_update_device(dev);
390 struct i2c_client *client = data->client;
391 unsigned long rpm_target;
392
393 int result = kstrtoul(buf, 10, &rpm_target);
394 if (result < 0)
395 return result;
396
397 /* Datasheet states 16384 as maximum RPM target (table 3.2) */
398 rpm_target = clamp_val(rpm_target, 0, 16384);
399
400 mutex_lock(&data->update_lock);
401
402 if (rpm_target == 0)
403 data->fan_target = 0x1fff;
404 else
405 data->fan_target = clamp_val(
406 (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
407 0, 0x1fff);
408
409 write_fan_target_to_i2c(client, data->fan_target);
410
411 mutex_unlock(&data->update_lock);
412 return count;
413 }
414
415 static ssize_t
416 fan1_fault_show(struct device *dev, struct device_attribute *da, char *buf)
417 {
418 struct emc2103_data *data = emc2103_update_device(dev);
419 bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
420 return sprintf(buf, "%d\n", fault ? 1 : 0);
421 }
422
423 static ssize_t
424 pwm1_enable_show(struct device *dev, struct device_attribute *da, char *buf)
425 {
426 struct emc2103_data *data = emc2103_update_device(dev);
427 return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
428 }
429
430 static ssize_t pwm1_enable_store(struct device *dev,
431 struct device_attribute *da, const char *buf,
432 size_t count)
433 {
434 struct emc2103_data *data = dev_get_drvdata(dev);
435 struct i2c_client *client = data->client;
436 long new_value;
437 u8 conf_reg;
438
439 int result = kstrtol(buf, 10, &new_value);
440 if (result < 0)
441 return result;
442
443 mutex_lock(&data->update_lock);
444 switch (new_value) {
445 case 0:
446 data->fan_rpm_control = false;
447 break;
448 case 3:
449 data->fan_rpm_control = true;
450 break;
451 default:
452 count = -EINVAL;
453 goto err;
454 }
455
456 result = read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
457 if (result) {
458 count = result;
459 goto err;
460 }
461
462 if (data->fan_rpm_control)
463 conf_reg |= 0x80;
464 else
465 conf_reg &= ~0x80;
466
467 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
468 err:
469 mutex_unlock(&data->update_lock);
470 return count;
471 }
472
473 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
474 static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min,
475 set_temp_min, 0);
476 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
477 set_temp_max, 0);
478 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0);
479 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm,
480 NULL, 0);
481 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm,
482 NULL, 0);
483
484 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
485 static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min,
486 set_temp_min, 1);
487 static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
488 set_temp_max, 1);
489 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1);
490 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm,
491 NULL, 1);
492 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm,
493 NULL, 1);
494
495 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
496 static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min,
497 set_temp_min, 2);
498 static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
499 set_temp_max, 2);
500 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2);
501 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm,
502 NULL, 2);
503 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm,
504 NULL, 2);
505
506 static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
507 static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min,
508 set_temp_min, 3);
509 static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
510 set_temp_max, 3);
511 static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3);
512 static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm,
513 NULL, 3);
514 static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm,
515 NULL, 3);
516
517 static DEVICE_ATTR_RO(fan1_input);
518 static DEVICE_ATTR_RW(fan1_div);
519 static DEVICE_ATTR_RW(fan1_target);
520 static DEVICE_ATTR_RO(fan1_fault);
521
522 static DEVICE_ATTR_RW(pwm1_enable);
523
524 /* sensors present on all models */
525 static struct attribute *emc2103_attributes[] = {
526 &sensor_dev_attr_temp1_input.dev_attr.attr,
527 &sensor_dev_attr_temp1_min.dev_attr.attr,
528 &sensor_dev_attr_temp1_max.dev_attr.attr,
529 &sensor_dev_attr_temp1_fault.dev_attr.attr,
530 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
531 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
532 &sensor_dev_attr_temp2_input.dev_attr.attr,
533 &sensor_dev_attr_temp2_min.dev_attr.attr,
534 &sensor_dev_attr_temp2_max.dev_attr.attr,
535 &sensor_dev_attr_temp2_fault.dev_attr.attr,
536 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
537 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
538 &dev_attr_fan1_input.attr,
539 &dev_attr_fan1_div.attr,
540 &dev_attr_fan1_target.attr,
541 &dev_attr_fan1_fault.attr,
542 &dev_attr_pwm1_enable.attr,
543 NULL
544 };
545
546 /* extra temperature sensors only present on 2103-2 and 2103-4 */
547 static struct attribute *emc2103_attributes_temp3[] = {
548 &sensor_dev_attr_temp3_input.dev_attr.attr,
549 &sensor_dev_attr_temp3_min.dev_attr.attr,
550 &sensor_dev_attr_temp3_max.dev_attr.attr,
551 &sensor_dev_attr_temp3_fault.dev_attr.attr,
552 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
553 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
554 NULL
555 };
556
557 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
558 static struct attribute *emc2103_attributes_temp4[] = {
559 &sensor_dev_attr_temp4_input.dev_attr.attr,
560 &sensor_dev_attr_temp4_min.dev_attr.attr,
561 &sensor_dev_attr_temp4_max.dev_attr.attr,
562 &sensor_dev_attr_temp4_fault.dev_attr.attr,
563 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
564 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
565 NULL
566 };
567
568 static const struct attribute_group emc2103_group = {
569 .attrs = emc2103_attributes,
570 };
571
572 static const struct attribute_group emc2103_temp3_group = {
573 .attrs = emc2103_attributes_temp3,
574 };
575
576 static const struct attribute_group emc2103_temp4_group = {
577 .attrs = emc2103_attributes_temp4,
578 };
579
580 static int
581 emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id)
582 {
583 struct emc2103_data *data;
584 struct device *hwmon_dev;
585 int status, idx = 0;
586
587 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
588 return -EIO;
589
590 data = devm_kzalloc(&client->dev, sizeof(struct emc2103_data),
591 GFP_KERNEL);
592 if (!data)
593 return -ENOMEM;
594
595 i2c_set_clientdata(client, data);
596 data->client = client;
597 mutex_init(&data->update_lock);
598
599 /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
600 status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
601 if (status == 0x24) {
602 /* 2103-1 only has 1 external diode */
603 data->temp_count = 2;
604 } else {
605 /* 2103-2 and 2103-4 have 3 or 4 external diodes */
606 status = i2c_smbus_read_byte_data(client, REG_CONF1);
607 if (status < 0) {
608 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
609 status);
610 return status;
611 }
612
613 /* detect current state of hardware */
614 data->temp_count = (status & 0x01) ? 4 : 3;
615
616 /* force APD state if module parameter is set */
617 if (apd == 0) {
618 /* force APD mode off */
619 data->temp_count = 3;
620 status &= ~(0x01);
621 i2c_smbus_write_byte_data(client, REG_CONF1, status);
622 } else if (apd == 1) {
623 /* force APD mode on */
624 data->temp_count = 4;
625 status |= 0x01;
626 i2c_smbus_write_byte_data(client, REG_CONF1, status);
627 }
628 }
629
630 /* sysfs hooks */
631 data->groups[idx++] = &emc2103_group;
632 if (data->temp_count >= 3)
633 data->groups[idx++] = &emc2103_temp3_group;
634 if (data->temp_count == 4)
635 data->groups[idx++] = &emc2103_temp4_group;
636
637 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
638 client->name, data,
639 data->groups);
640 if (IS_ERR(hwmon_dev))
641 return PTR_ERR(hwmon_dev);
642
643 dev_info(&client->dev, "%s: sensor '%s'\n",
644 dev_name(hwmon_dev), client->name);
645
646 return 0;
647 }
648
649 static const struct i2c_device_id emc2103_ids[] = {
650 { "emc2103", 0, },
651 { /* LIST END */ }
652 };
653 MODULE_DEVICE_TABLE(i2c, emc2103_ids);
654
655 /* Return 0 if detection is successful, -ENODEV otherwise */
656 static int
657 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
658 {
659 struct i2c_adapter *adapter = new_client->adapter;
660 int manufacturer, product;
661
662 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
663 return -ENODEV;
664
665 manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
666 if (manufacturer != 0x5D)
667 return -ENODEV;
668
669 product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
670 if ((product != 0x24) && (product != 0x26))
671 return -ENODEV;
672
673 strlcpy(info->type, "emc2103", I2C_NAME_SIZE);
674
675 return 0;
676 }
677
678 static struct i2c_driver emc2103_driver = {
679 .class = I2C_CLASS_HWMON,
680 .driver = {
681 .name = "emc2103",
682 },
683 .probe = emc2103_probe,
684 .id_table = emc2103_ids,
685 .detect = emc2103_detect,
686 .address_list = normal_i2c,
687 };
688
689 module_i2c_driver(emc2103_driver);
690
691 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
692 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
693 MODULE_LICENSE("GPL");