]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/hwmon/lm78.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / hwmon / lm78.c
1 /*
2 * lm78.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2007, 2011 Jean Delvare <jdelvare@suse.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-vid.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/err.h>
33 #include <linux/mutex.h>
34
35 #ifdef CONFIG_ISA
36 #include <linux/platform_device.h>
37 #include <linux/ioport.h>
38 #include <linux/io.h>
39 #endif
40
41 /* Addresses to scan */
42 static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
43 0x2e, 0x2f, I2C_CLIENT_END };
44 enum chips { lm78, lm79 };
45
46 /* Many LM78 constants specified below */
47
48 /* Length of ISA address segment */
49 #define LM78_EXTENT 8
50
51 /* Where are the ISA address/data registers relative to the base address */
52 #define LM78_ADDR_REG_OFFSET 5
53 #define LM78_DATA_REG_OFFSET 6
54
55 /* The LM78 registers */
56 #define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2)
57 #define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2)
58 #define LM78_REG_IN(nr) (0x20 + (nr))
59
60 #define LM78_REG_FAN_MIN(nr) (0x3b + (nr))
61 #define LM78_REG_FAN(nr) (0x28 + (nr))
62
63 #define LM78_REG_TEMP 0x27
64 #define LM78_REG_TEMP_OVER 0x39
65 #define LM78_REG_TEMP_HYST 0x3a
66
67 #define LM78_REG_ALARM1 0x41
68 #define LM78_REG_ALARM2 0x42
69
70 #define LM78_REG_VID_FANDIV 0x47
71
72 #define LM78_REG_CONFIG 0x40
73 #define LM78_REG_CHIPID 0x49
74 #define LM78_REG_I2C_ADDR 0x48
75
76
77 /*
78 * Conversions. Rounding and limit checking is only done on the TO_REG
79 * variants.
80 */
81
82 /*
83 * IN: mV (0V to 4.08V)
84 * REG: 16mV/bit
85 */
86 static inline u8 IN_TO_REG(unsigned long val)
87 {
88 unsigned long nval = clamp_val(val, 0, 4080);
89 return (nval + 8) / 16;
90 }
91 #define IN_FROM_REG(val) ((val) * 16)
92
93 static inline u8 FAN_TO_REG(long rpm, int div)
94 {
95 if (rpm <= 0)
96 return 255;
97 if (rpm > 1350000)
98 return 1;
99 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
100 }
101
102 static inline int FAN_FROM_REG(u8 val, int div)
103 {
104 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
105 }
106
107 /*
108 * TEMP: mC (-128C to +127C)
109 * REG: 1C/bit, two's complement
110 */
111 static inline s8 TEMP_TO_REG(long val)
112 {
113 int nval = clamp_val(val, -128000, 127000) ;
114 return nval < 0 ? (nval - 500) / 1000 : (nval + 500) / 1000;
115 }
116
117 static inline int TEMP_FROM_REG(s8 val)
118 {
119 return val * 1000;
120 }
121
122 #define DIV_FROM_REG(val) (1 << (val))
123
124 struct lm78_data {
125 struct i2c_client *client;
126 struct mutex lock;
127 enum chips type;
128
129 /* For ISA device only */
130 const char *name;
131 int isa_addr;
132
133 struct mutex update_lock;
134 char valid; /* !=0 if following fields are valid */
135 unsigned long last_updated; /* In jiffies */
136
137 u8 in[7]; /* Register value */
138 u8 in_max[7]; /* Register value */
139 u8 in_min[7]; /* Register value */
140 u8 fan[3]; /* Register value */
141 u8 fan_min[3]; /* Register value */
142 s8 temp; /* Register value */
143 s8 temp_over; /* Register value */
144 s8 temp_hyst; /* Register value */
145 u8 fan_div[3]; /* Register encoding, shifted right */
146 u8 vid; /* Register encoding, combined */
147 u16 alarms; /* Register encoding, combined */
148 };
149
150
151 static int lm78_read_value(struct lm78_data *data, u8 reg);
152 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value);
153 static struct lm78_data *lm78_update_device(struct device *dev);
154 static void lm78_init_device(struct lm78_data *data);
155
156
157 /* 7 Voltages */
158 static ssize_t show_in(struct device *dev, struct device_attribute *da,
159 char *buf)
160 {
161 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
162 struct lm78_data *data = lm78_update_device(dev);
163 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index]));
164 }
165
166 static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
167 char *buf)
168 {
169 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
170 struct lm78_data *data = lm78_update_device(dev);
171 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index]));
172 }
173
174 static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
175 char *buf)
176 {
177 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
178 struct lm78_data *data = lm78_update_device(dev);
179 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index]));
180 }
181
182 static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
183 const char *buf, size_t count)
184 {
185 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
186 struct lm78_data *data = dev_get_drvdata(dev);
187 int nr = attr->index;
188 unsigned long val;
189 int err;
190
191 err = kstrtoul(buf, 10, &val);
192 if (err)
193 return err;
194
195 mutex_lock(&data->update_lock);
196 data->in_min[nr] = IN_TO_REG(val);
197 lm78_write_value(data, LM78_REG_IN_MIN(nr), data->in_min[nr]);
198 mutex_unlock(&data->update_lock);
199 return count;
200 }
201
202 static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
203 const char *buf, size_t count)
204 {
205 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
206 struct lm78_data *data = dev_get_drvdata(dev);
207 int nr = attr->index;
208 unsigned long val;
209 int err;
210
211 err = kstrtoul(buf, 10, &val);
212 if (err)
213 return err;
214
215 mutex_lock(&data->update_lock);
216 data->in_max[nr] = IN_TO_REG(val);
217 lm78_write_value(data, LM78_REG_IN_MAX(nr), data->in_max[nr]);
218 mutex_unlock(&data->update_lock);
219 return count;
220 }
221
222 #define show_in_offset(offset) \
223 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
224 show_in, NULL, offset); \
225 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
226 show_in_min, set_in_min, offset); \
227 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
228 show_in_max, set_in_max, offset);
229
230 show_in_offset(0);
231 show_in_offset(1);
232 show_in_offset(2);
233 show_in_offset(3);
234 show_in_offset(4);
235 show_in_offset(5);
236 show_in_offset(6);
237
238 /* Temperature */
239 static ssize_t temp1_input_show(struct device *dev,
240 struct device_attribute *da, char *buf)
241 {
242 struct lm78_data *data = lm78_update_device(dev);
243 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp));
244 }
245
246 static ssize_t temp1_max_show(struct device *dev, struct device_attribute *da,
247 char *buf)
248 {
249 struct lm78_data *data = lm78_update_device(dev);
250 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_over));
251 }
252
253 static ssize_t temp1_max_store(struct device *dev,
254 struct device_attribute *da, const char *buf,
255 size_t count)
256 {
257 struct lm78_data *data = dev_get_drvdata(dev);
258 long val;
259 int err;
260
261 err = kstrtol(buf, 10, &val);
262 if (err)
263 return err;
264
265 mutex_lock(&data->update_lock);
266 data->temp_over = TEMP_TO_REG(val);
267 lm78_write_value(data, LM78_REG_TEMP_OVER, data->temp_over);
268 mutex_unlock(&data->update_lock);
269 return count;
270 }
271
272 static ssize_t temp1_max_hyst_show(struct device *dev,
273 struct device_attribute *da, char *buf)
274 {
275 struct lm78_data *data = lm78_update_device(dev);
276 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_hyst));
277 }
278
279 static ssize_t temp1_max_hyst_store(struct device *dev,
280 struct device_attribute *da,
281 const char *buf, size_t count)
282 {
283 struct lm78_data *data = dev_get_drvdata(dev);
284 long val;
285 int err;
286
287 err = kstrtol(buf, 10, &val);
288 if (err)
289 return err;
290
291 mutex_lock(&data->update_lock);
292 data->temp_hyst = TEMP_TO_REG(val);
293 lm78_write_value(data, LM78_REG_TEMP_HYST, data->temp_hyst);
294 mutex_unlock(&data->update_lock);
295 return count;
296 }
297
298 static DEVICE_ATTR_RO(temp1_input);
299 static DEVICE_ATTR_RW(temp1_max);
300 static DEVICE_ATTR_RW(temp1_max_hyst);
301
302 /* 3 Fans */
303 static ssize_t show_fan(struct device *dev, struct device_attribute *da,
304 char *buf)
305 {
306 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
307 struct lm78_data *data = lm78_update_device(dev);
308 int nr = attr->index;
309 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
310 DIV_FROM_REG(data->fan_div[nr])));
311 }
312
313 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
314 char *buf)
315 {
316 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
317 struct lm78_data *data = lm78_update_device(dev);
318 int nr = attr->index;
319 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
320 DIV_FROM_REG(data->fan_div[nr])));
321 }
322
323 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
324 const char *buf, size_t count)
325 {
326 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
327 struct lm78_data *data = dev_get_drvdata(dev);
328 int nr = attr->index;
329 unsigned long val;
330 int err;
331
332 err = kstrtoul(buf, 10, &val);
333 if (err)
334 return err;
335
336 mutex_lock(&data->update_lock);
337 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
338 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]);
339 mutex_unlock(&data->update_lock);
340 return count;
341 }
342
343 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
344 char *buf)
345 {
346 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
347 struct lm78_data *data = lm78_update_device(dev);
348 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[attr->index]));
349 }
350
351 /*
352 * Note: we save and restore the fan minimum here, because its value is
353 * determined in part by the fan divisor. This follows the principle of
354 * least surprise; the user doesn't expect the fan minimum to change just
355 * because the divisor changed.
356 */
357 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
358 const char *buf, size_t count)
359 {
360 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
361 struct lm78_data *data = dev_get_drvdata(dev);
362 int nr = attr->index;
363 unsigned long min;
364 u8 reg;
365 unsigned long val;
366 int err;
367
368 err = kstrtoul(buf, 10, &val);
369 if (err)
370 return err;
371
372 mutex_lock(&data->update_lock);
373 min = FAN_FROM_REG(data->fan_min[nr],
374 DIV_FROM_REG(data->fan_div[nr]));
375
376 switch (val) {
377 case 1:
378 data->fan_div[nr] = 0;
379 break;
380 case 2:
381 data->fan_div[nr] = 1;
382 break;
383 case 4:
384 data->fan_div[nr] = 2;
385 break;
386 case 8:
387 data->fan_div[nr] = 3;
388 break;
389 default:
390 dev_err(dev,
391 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
392 val);
393 mutex_unlock(&data->update_lock);
394 return -EINVAL;
395 }
396
397 reg = lm78_read_value(data, LM78_REG_VID_FANDIV);
398 switch (nr) {
399 case 0:
400 reg = (reg & 0xcf) | (data->fan_div[nr] << 4);
401 break;
402 case 1:
403 reg = (reg & 0x3f) | (data->fan_div[nr] << 6);
404 break;
405 }
406 lm78_write_value(data, LM78_REG_VID_FANDIV, reg);
407
408 data->fan_min[nr] =
409 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
410 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]);
411 mutex_unlock(&data->update_lock);
412
413 return count;
414 }
415
416 #define show_fan_offset(offset) \
417 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
418 show_fan, NULL, offset - 1); \
419 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
420 show_fan_min, set_fan_min, offset - 1);
421
422 show_fan_offset(1);
423 show_fan_offset(2);
424 show_fan_offset(3);
425
426 /* Fan 3 divisor is locked in H/W */
427 static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR,
428 show_fan_div, set_fan_div, 0);
429 static SENSOR_DEVICE_ATTR(fan2_div, S_IRUGO | S_IWUSR,
430 show_fan_div, set_fan_div, 1);
431 static SENSOR_DEVICE_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2);
432
433 /* VID */
434 static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *da,
435 char *buf)
436 {
437 struct lm78_data *data = lm78_update_device(dev);
438 return sprintf(buf, "%d\n", vid_from_reg(data->vid, 82));
439 }
440 static DEVICE_ATTR_RO(cpu0_vid);
441
442 /* Alarms */
443 static ssize_t alarms_show(struct device *dev, struct device_attribute *da,
444 char *buf)
445 {
446 struct lm78_data *data = lm78_update_device(dev);
447 return sprintf(buf, "%u\n", data->alarms);
448 }
449 static DEVICE_ATTR_RO(alarms);
450
451 static ssize_t show_alarm(struct device *dev, struct device_attribute *da,
452 char *buf)
453 {
454 struct lm78_data *data = lm78_update_device(dev);
455 int nr = to_sensor_dev_attr(da)->index;
456 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
457 }
458 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
459 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
460 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
461 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
462 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
463 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
464 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10);
465 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
466 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
467 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
468 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
469
470 static struct attribute *lm78_attrs[] = {
471 &sensor_dev_attr_in0_input.dev_attr.attr,
472 &sensor_dev_attr_in0_min.dev_attr.attr,
473 &sensor_dev_attr_in0_max.dev_attr.attr,
474 &sensor_dev_attr_in0_alarm.dev_attr.attr,
475 &sensor_dev_attr_in1_input.dev_attr.attr,
476 &sensor_dev_attr_in1_min.dev_attr.attr,
477 &sensor_dev_attr_in1_max.dev_attr.attr,
478 &sensor_dev_attr_in1_alarm.dev_attr.attr,
479 &sensor_dev_attr_in2_input.dev_attr.attr,
480 &sensor_dev_attr_in2_min.dev_attr.attr,
481 &sensor_dev_attr_in2_max.dev_attr.attr,
482 &sensor_dev_attr_in2_alarm.dev_attr.attr,
483 &sensor_dev_attr_in3_input.dev_attr.attr,
484 &sensor_dev_attr_in3_min.dev_attr.attr,
485 &sensor_dev_attr_in3_max.dev_attr.attr,
486 &sensor_dev_attr_in3_alarm.dev_attr.attr,
487 &sensor_dev_attr_in4_input.dev_attr.attr,
488 &sensor_dev_attr_in4_min.dev_attr.attr,
489 &sensor_dev_attr_in4_max.dev_attr.attr,
490 &sensor_dev_attr_in4_alarm.dev_attr.attr,
491 &sensor_dev_attr_in5_input.dev_attr.attr,
492 &sensor_dev_attr_in5_min.dev_attr.attr,
493 &sensor_dev_attr_in5_max.dev_attr.attr,
494 &sensor_dev_attr_in5_alarm.dev_attr.attr,
495 &sensor_dev_attr_in6_input.dev_attr.attr,
496 &sensor_dev_attr_in6_min.dev_attr.attr,
497 &sensor_dev_attr_in6_max.dev_attr.attr,
498 &sensor_dev_attr_in6_alarm.dev_attr.attr,
499 &dev_attr_temp1_input.attr,
500 &dev_attr_temp1_max.attr,
501 &dev_attr_temp1_max_hyst.attr,
502 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
503 &sensor_dev_attr_fan1_input.dev_attr.attr,
504 &sensor_dev_attr_fan1_min.dev_attr.attr,
505 &sensor_dev_attr_fan1_div.dev_attr.attr,
506 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
507 &sensor_dev_attr_fan2_input.dev_attr.attr,
508 &sensor_dev_attr_fan2_min.dev_attr.attr,
509 &sensor_dev_attr_fan2_div.dev_attr.attr,
510 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
511 &sensor_dev_attr_fan3_input.dev_attr.attr,
512 &sensor_dev_attr_fan3_min.dev_attr.attr,
513 &sensor_dev_attr_fan3_div.dev_attr.attr,
514 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
515 &dev_attr_alarms.attr,
516 &dev_attr_cpu0_vid.attr,
517
518 NULL
519 };
520
521 ATTRIBUTE_GROUPS(lm78);
522
523 /*
524 * ISA related code
525 */
526 #ifdef CONFIG_ISA
527
528 /* ISA device, if found */
529 static struct platform_device *pdev;
530
531 static unsigned short isa_address = 0x290;
532
533 static struct lm78_data *lm78_data_if_isa(void)
534 {
535 return pdev ? platform_get_drvdata(pdev) : NULL;
536 }
537
538 /* Returns 1 if the I2C chip appears to be an alias of the ISA chip */
539 static int lm78_alias_detect(struct i2c_client *client, u8 chipid)
540 {
541 struct lm78_data *isa;
542 int i;
543
544 if (!pdev) /* No ISA chip */
545 return 0;
546 isa = platform_get_drvdata(pdev);
547
548 if (lm78_read_value(isa, LM78_REG_I2C_ADDR) != client->addr)
549 return 0; /* Address doesn't match */
550 if ((lm78_read_value(isa, LM78_REG_CHIPID) & 0xfe) != (chipid & 0xfe))
551 return 0; /* Chip type doesn't match */
552
553 /*
554 * We compare all the limit registers, the config register and the
555 * interrupt mask registers
556 */
557 for (i = 0x2b; i <= 0x3d; i++) {
558 if (lm78_read_value(isa, i) !=
559 i2c_smbus_read_byte_data(client, i))
560 return 0;
561 }
562 if (lm78_read_value(isa, LM78_REG_CONFIG) !=
563 i2c_smbus_read_byte_data(client, LM78_REG_CONFIG))
564 return 0;
565 for (i = 0x43; i <= 0x46; i++) {
566 if (lm78_read_value(isa, i) !=
567 i2c_smbus_read_byte_data(client, i))
568 return 0;
569 }
570
571 return 1;
572 }
573 #else /* !CONFIG_ISA */
574
575 static int lm78_alias_detect(struct i2c_client *client, u8 chipid)
576 {
577 return 0;
578 }
579
580 static struct lm78_data *lm78_data_if_isa(void)
581 {
582 return NULL;
583 }
584 #endif /* CONFIG_ISA */
585
586 static int lm78_i2c_detect(struct i2c_client *client,
587 struct i2c_board_info *info)
588 {
589 int i;
590 struct lm78_data *isa = lm78_data_if_isa();
591 const char *client_name;
592 struct i2c_adapter *adapter = client->adapter;
593 int address = client->addr;
594
595 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
596 return -ENODEV;
597
598 /*
599 * We block updates of the ISA device to minimize the risk of
600 * concurrent access to the same LM78 chip through different
601 * interfaces.
602 */
603 if (isa)
604 mutex_lock(&isa->update_lock);
605
606 if ((i2c_smbus_read_byte_data(client, LM78_REG_CONFIG) & 0x80)
607 || i2c_smbus_read_byte_data(client, LM78_REG_I2C_ADDR) != address)
608 goto err_nodev;
609
610 /* Explicitly prevent the misdetection of Winbond chips */
611 i = i2c_smbus_read_byte_data(client, 0x4f);
612 if (i == 0xa3 || i == 0x5c)
613 goto err_nodev;
614
615 /* Determine the chip type. */
616 i = i2c_smbus_read_byte_data(client, LM78_REG_CHIPID);
617 if (i == 0x00 || i == 0x20 /* LM78 */
618 || i == 0x40) /* LM78-J */
619 client_name = "lm78";
620 else if ((i & 0xfe) == 0xc0)
621 client_name = "lm79";
622 else
623 goto err_nodev;
624
625 if (lm78_alias_detect(client, i)) {
626 dev_dbg(&adapter->dev,
627 "Device at 0x%02x appears to be the same as ISA device\n",
628 address);
629 goto err_nodev;
630 }
631
632 if (isa)
633 mutex_unlock(&isa->update_lock);
634
635 strlcpy(info->type, client_name, I2C_NAME_SIZE);
636
637 return 0;
638
639 err_nodev:
640 if (isa)
641 mutex_unlock(&isa->update_lock);
642 return -ENODEV;
643 }
644
645 static int lm78_i2c_probe(struct i2c_client *client,
646 const struct i2c_device_id *id)
647 {
648 struct device *dev = &client->dev;
649 struct device *hwmon_dev;
650 struct lm78_data *data;
651
652 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
655
656 data->client = client;
657 data->type = id->driver_data;
658
659 /* Initialize the LM78 chip */
660 lm78_init_device(data);
661
662 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
663 data, lm78_groups);
664 return PTR_ERR_OR_ZERO(hwmon_dev);
665 }
666
667 static const struct i2c_device_id lm78_i2c_id[] = {
668 { "lm78", lm78 },
669 { "lm79", lm79 },
670 { }
671 };
672 MODULE_DEVICE_TABLE(i2c, lm78_i2c_id);
673
674 static struct i2c_driver lm78_driver = {
675 .class = I2C_CLASS_HWMON,
676 .driver = {
677 .name = "lm78",
678 },
679 .probe = lm78_i2c_probe,
680 .id_table = lm78_i2c_id,
681 .detect = lm78_i2c_detect,
682 .address_list = normal_i2c,
683 };
684
685 /*
686 * The SMBus locks itself, but ISA access must be locked explicitly!
687 * We don't want to lock the whole ISA bus, so we lock each client
688 * separately.
689 * We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks,
690 * would slow down the LM78 access and should not be necessary.
691 */
692 static int lm78_read_value(struct lm78_data *data, u8 reg)
693 {
694 struct i2c_client *client = data->client;
695
696 #ifdef CONFIG_ISA
697 if (!client) { /* ISA device */
698 int res;
699 mutex_lock(&data->lock);
700 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET);
701 res = inb_p(data->isa_addr + LM78_DATA_REG_OFFSET);
702 mutex_unlock(&data->lock);
703 return res;
704 } else
705 #endif
706 return i2c_smbus_read_byte_data(client, reg);
707 }
708
709 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value)
710 {
711 struct i2c_client *client = data->client;
712
713 #ifdef CONFIG_ISA
714 if (!client) { /* ISA device */
715 mutex_lock(&data->lock);
716 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET);
717 outb_p(value, data->isa_addr + LM78_DATA_REG_OFFSET);
718 mutex_unlock(&data->lock);
719 return 0;
720 } else
721 #endif
722 return i2c_smbus_write_byte_data(client, reg, value);
723 }
724
725 static void lm78_init_device(struct lm78_data *data)
726 {
727 u8 config;
728 int i;
729
730 /* Start monitoring */
731 config = lm78_read_value(data, LM78_REG_CONFIG);
732 if ((config & 0x09) != 0x01)
733 lm78_write_value(data, LM78_REG_CONFIG,
734 (config & 0xf7) | 0x01);
735
736 /* A few vars need to be filled upon startup */
737 for (i = 0; i < 3; i++) {
738 data->fan_min[i] = lm78_read_value(data,
739 LM78_REG_FAN_MIN(i));
740 }
741
742 mutex_init(&data->update_lock);
743 }
744
745 static struct lm78_data *lm78_update_device(struct device *dev)
746 {
747 struct lm78_data *data = dev_get_drvdata(dev);
748 int i;
749
750 mutex_lock(&data->update_lock);
751
752 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
753 || !data->valid) {
754
755 dev_dbg(dev, "Starting lm78 update\n");
756
757 for (i = 0; i <= 6; i++) {
758 data->in[i] =
759 lm78_read_value(data, LM78_REG_IN(i));
760 data->in_min[i] =
761 lm78_read_value(data, LM78_REG_IN_MIN(i));
762 data->in_max[i] =
763 lm78_read_value(data, LM78_REG_IN_MAX(i));
764 }
765 for (i = 0; i < 3; i++) {
766 data->fan[i] =
767 lm78_read_value(data, LM78_REG_FAN(i));
768 data->fan_min[i] =
769 lm78_read_value(data, LM78_REG_FAN_MIN(i));
770 }
771 data->temp = lm78_read_value(data, LM78_REG_TEMP);
772 data->temp_over =
773 lm78_read_value(data, LM78_REG_TEMP_OVER);
774 data->temp_hyst =
775 lm78_read_value(data, LM78_REG_TEMP_HYST);
776 i = lm78_read_value(data, LM78_REG_VID_FANDIV);
777 data->vid = i & 0x0f;
778 if (data->type == lm79)
779 data->vid |=
780 (lm78_read_value(data, LM78_REG_CHIPID) &
781 0x01) << 4;
782 else
783 data->vid |= 0x10;
784 data->fan_div[0] = (i >> 4) & 0x03;
785 data->fan_div[1] = i >> 6;
786 data->alarms = lm78_read_value(data, LM78_REG_ALARM1) +
787 (lm78_read_value(data, LM78_REG_ALARM2) << 8);
788 data->last_updated = jiffies;
789 data->valid = 1;
790
791 data->fan_div[2] = 1;
792 }
793
794 mutex_unlock(&data->update_lock);
795
796 return data;
797 }
798
799 #ifdef CONFIG_ISA
800 static int lm78_isa_probe(struct platform_device *pdev)
801 {
802 struct device *dev = &pdev->dev;
803 struct device *hwmon_dev;
804 struct lm78_data *data;
805 struct resource *res;
806
807 /* Reserve the ISA region */
808 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
809 if (!devm_request_region(dev, res->start + LM78_ADDR_REG_OFFSET,
810 2, "lm78"))
811 return -EBUSY;
812
813 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL);
814 if (!data)
815 return -ENOMEM;
816
817 mutex_init(&data->lock);
818 data->isa_addr = res->start;
819 platform_set_drvdata(pdev, data);
820
821 if (lm78_read_value(data, LM78_REG_CHIPID) & 0x80) {
822 data->type = lm79;
823 data->name = "lm79";
824 } else {
825 data->type = lm78;
826 data->name = "lm78";
827 }
828
829 /* Initialize the LM78 chip */
830 lm78_init_device(data);
831
832 hwmon_dev = devm_hwmon_device_register_with_groups(dev, data->name,
833 data, lm78_groups);
834 return PTR_ERR_OR_ZERO(hwmon_dev);
835 }
836
837 static struct platform_driver lm78_isa_driver = {
838 .driver = {
839 .name = "lm78",
840 },
841 .probe = lm78_isa_probe,
842 };
843
844 /* return 1 if a supported chip is found, 0 otherwise */
845 static int __init lm78_isa_found(unsigned short address)
846 {
847 int val, save, found = 0;
848 int port;
849
850 /*
851 * Some boards declare base+0 to base+7 as a PNP device, some base+4
852 * to base+7 and some base+5 to base+6. So we better request each port
853 * individually for the probing phase.
854 */
855 for (port = address; port < address + LM78_EXTENT; port++) {
856 if (!request_region(port, 1, "lm78")) {
857 pr_debug("Failed to request port 0x%x\n", port);
858 goto release;
859 }
860 }
861
862 #define REALLY_SLOW_IO
863 /*
864 * We need the timeouts for at least some LM78-like
865 * chips. But only if we read 'undefined' registers.
866 */
867 val = inb_p(address + 1);
868 if (inb_p(address + 2) != val
869 || inb_p(address + 3) != val
870 || inb_p(address + 7) != val)
871 goto release;
872 #undef REALLY_SLOW_IO
873
874 /*
875 * We should be able to change the 7 LSB of the address port. The
876 * MSB (busy flag) should be clear initially, set after the write.
877 */
878 save = inb_p(address + LM78_ADDR_REG_OFFSET);
879 if (save & 0x80)
880 goto release;
881 val = ~save & 0x7f;
882 outb_p(val, address + LM78_ADDR_REG_OFFSET);
883 if (inb_p(address + LM78_ADDR_REG_OFFSET) != (val | 0x80)) {
884 outb_p(save, address + LM78_ADDR_REG_OFFSET);
885 goto release;
886 }
887
888 /* We found a device, now see if it could be an LM78 */
889 outb_p(LM78_REG_CONFIG, address + LM78_ADDR_REG_OFFSET);
890 val = inb_p(address + LM78_DATA_REG_OFFSET);
891 if (val & 0x80)
892 goto release;
893 outb_p(LM78_REG_I2C_ADDR, address + LM78_ADDR_REG_OFFSET);
894 val = inb_p(address + LM78_DATA_REG_OFFSET);
895 if (val < 0x03 || val > 0x77) /* Not a valid I2C address */
896 goto release;
897
898 /* The busy flag should be clear again */
899 if (inb_p(address + LM78_ADDR_REG_OFFSET) & 0x80)
900 goto release;
901
902 /* Explicitly prevent the misdetection of Winbond chips */
903 outb_p(0x4f, address + LM78_ADDR_REG_OFFSET);
904 val = inb_p(address + LM78_DATA_REG_OFFSET);
905 if (val == 0xa3 || val == 0x5c)
906 goto release;
907
908 /* Explicitly prevent the misdetection of ITE chips */
909 outb_p(0x58, address + LM78_ADDR_REG_OFFSET);
910 val = inb_p(address + LM78_DATA_REG_OFFSET);
911 if (val == 0x90)
912 goto release;
913
914 /* Determine the chip type */
915 outb_p(LM78_REG_CHIPID, address + LM78_ADDR_REG_OFFSET);
916 val = inb_p(address + LM78_DATA_REG_OFFSET);
917 if (val == 0x00 || val == 0x20 /* LM78 */
918 || val == 0x40 /* LM78-J */
919 || (val & 0xfe) == 0xc0) /* LM79 */
920 found = 1;
921
922 if (found)
923 pr_info("Found an %s chip at %#x\n",
924 val & 0x80 ? "LM79" : "LM78", (int)address);
925
926 release:
927 for (port--; port >= address; port--)
928 release_region(port, 1);
929 return found;
930 }
931
932 static int __init lm78_isa_device_add(unsigned short address)
933 {
934 struct resource res = {
935 .start = address,
936 .end = address + LM78_EXTENT - 1,
937 .name = "lm78",
938 .flags = IORESOURCE_IO,
939 };
940 int err;
941
942 pdev = platform_device_alloc("lm78", address);
943 if (!pdev) {
944 err = -ENOMEM;
945 pr_err("Device allocation failed\n");
946 goto exit;
947 }
948
949 err = platform_device_add_resources(pdev, &res, 1);
950 if (err) {
951 pr_err("Device resource addition failed (%d)\n", err);
952 goto exit_device_put;
953 }
954
955 err = platform_device_add(pdev);
956 if (err) {
957 pr_err("Device addition failed (%d)\n", err);
958 goto exit_device_put;
959 }
960
961 return 0;
962
963 exit_device_put:
964 platform_device_put(pdev);
965 exit:
966 pdev = NULL;
967 return err;
968 }
969
970 static int __init lm78_isa_register(void)
971 {
972 int res;
973
974 if (lm78_isa_found(isa_address)) {
975 res = platform_driver_register(&lm78_isa_driver);
976 if (res)
977 goto exit;
978
979 /* Sets global pdev as a side effect */
980 res = lm78_isa_device_add(isa_address);
981 if (res)
982 goto exit_unreg_isa_driver;
983 }
984
985 return 0;
986
987 exit_unreg_isa_driver:
988 platform_driver_unregister(&lm78_isa_driver);
989 exit:
990 return res;
991 }
992
993 static void lm78_isa_unregister(void)
994 {
995 if (pdev) {
996 platform_device_unregister(pdev);
997 platform_driver_unregister(&lm78_isa_driver);
998 }
999 }
1000 #else /* !CONFIG_ISA */
1001
1002 static int __init lm78_isa_register(void)
1003 {
1004 return 0;
1005 }
1006
1007 static void lm78_isa_unregister(void)
1008 {
1009 }
1010 #endif /* CONFIG_ISA */
1011
1012 static int __init sm_lm78_init(void)
1013 {
1014 int res;
1015
1016 /*
1017 * We register the ISA device first, so that we can skip the
1018 * registration of an I2C interface to the same device.
1019 */
1020 res = lm78_isa_register();
1021 if (res)
1022 goto exit;
1023
1024 res = i2c_add_driver(&lm78_driver);
1025 if (res)
1026 goto exit_unreg_isa_device;
1027
1028 return 0;
1029
1030 exit_unreg_isa_device:
1031 lm78_isa_unregister();
1032 exit:
1033 return res;
1034 }
1035
1036 static void __exit sm_lm78_exit(void)
1037 {
1038 lm78_isa_unregister();
1039 i2c_del_driver(&lm78_driver);
1040 }
1041
1042 MODULE_AUTHOR("Frodo Looijaard, Jean Delvare <jdelvare@suse.de>");
1043 MODULE_DESCRIPTION("LM78/LM79 driver");
1044 MODULE_LICENSE("GPL");
1045
1046 module_init(sm_lm78_init);
1047 module_exit(sm_lm78_exit);