]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/hwmon/lm85.c
drm/vc4: Add DSI driver
[mirror_ubuntu-zesty-kernel.git] / drivers / hwmon / lm85.c
1 /*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
9 *
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 #include <linux/util_macros.h>
38
39 /* Addresses to scan */
40 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
41
42 enum chips {
43 lm85,
44 adm1027, adt7463, adt7468,
45 emc6d100, emc6d102, emc6d103, emc6d103s
46 };
47
48 /* The LM85 registers */
49
50 #define LM85_REG_IN(nr) (0x20 + (nr))
51 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
52 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
53
54 #define LM85_REG_TEMP(nr) (0x25 + (nr))
55 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
56 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
57
58 /* Fan speeds are LSB, MSB (2 bytes) */
59 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
60 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
61
62 #define LM85_REG_PWM(nr) (0x30 + (nr))
63
64 #define LM85_REG_COMPANY 0x3e
65 #define LM85_REG_VERSTEP 0x3f
66
67 #define ADT7468_REG_CFG5 0x7c
68 #define ADT7468_OFF64 (1 << 0)
69 #define ADT7468_HFPWM (1 << 1)
70 #define IS_ADT7468_OFF64(data) \
71 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
72 #define IS_ADT7468_HFPWM(data) \
73 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
74
75 /* These are the recognized values for the above regs */
76 #define LM85_COMPANY_NATIONAL 0x01
77 #define LM85_COMPANY_ANALOG_DEV 0x41
78 #define LM85_COMPANY_SMSC 0x5c
79 #define LM85_VERSTEP_LM85C 0x60
80 #define LM85_VERSTEP_LM85B 0x62
81 #define LM85_VERSTEP_LM96000_1 0x68
82 #define LM85_VERSTEP_LM96000_2 0x69
83 #define LM85_VERSTEP_ADM1027 0x60
84 #define LM85_VERSTEP_ADT7463 0x62
85 #define LM85_VERSTEP_ADT7463C 0x6A
86 #define LM85_VERSTEP_ADT7468_1 0x71
87 #define LM85_VERSTEP_ADT7468_2 0x72
88 #define LM85_VERSTEP_EMC6D100_A0 0x60
89 #define LM85_VERSTEP_EMC6D100_A1 0x61
90 #define LM85_VERSTEP_EMC6D102 0x65
91 #define LM85_VERSTEP_EMC6D103_A0 0x68
92 #define LM85_VERSTEP_EMC6D103_A1 0x69
93 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
94
95 #define LM85_REG_CONFIG 0x40
96
97 #define LM85_REG_ALARM1 0x41
98 #define LM85_REG_ALARM2 0x42
99
100 #define LM85_REG_VID 0x43
101
102 /* Automated FAN control */
103 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
104 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
105 #define LM85_REG_AFAN_SPIKE1 0x62
106 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
107 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
108 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
109 #define LM85_REG_AFAN_HYST1 0x6d
110 #define LM85_REG_AFAN_HYST2 0x6e
111
112 #define ADM1027_REG_EXTEND_ADC1 0x76
113 #define ADM1027_REG_EXTEND_ADC2 0x77
114
115 #define EMC6D100_REG_ALARM3 0x7d
116 /* IN5, IN6 and IN7 */
117 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
118 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
119 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
120 #define EMC6D102_REG_EXTEND_ADC1 0x85
121 #define EMC6D102_REG_EXTEND_ADC2 0x86
122 #define EMC6D102_REG_EXTEND_ADC3 0x87
123 #define EMC6D102_REG_EXTEND_ADC4 0x88
124
125 /*
126 * Conversions. Rounding and limit checking is only done on the TO_REG
127 * variants. Note that you should be a bit careful with which arguments
128 * these macros are called: arguments may be evaluated more than once.
129 */
130
131 /* IN are scaled according to built-in resistors */
132 static const int lm85_scaling[] = { /* .001 Volts */
133 2500, 2250, 3300, 5000, 12000,
134 3300, 1500, 1800 /*EMC6D100*/
135 };
136 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
137
138 #define INS_TO_REG(n, val) \
139 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
140 lm85_scaling[n], 192)
141
142 #define INSEXT_FROM_REG(n, val, ext) \
143 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
144
145 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
146
147 /* FAN speed is measured using 90kHz clock */
148 static inline u16 FAN_TO_REG(unsigned long val)
149 {
150 if (!val)
151 return 0xffff;
152 return clamp_val(5400000 / val, 1, 0xfffe);
153 }
154 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
155 5400000 / (val))
156
157 /* Temperature is reported in .001 degC increments */
158 #define TEMP_TO_REG(val) \
159 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
160 #define TEMPEXT_FROM_REG(val, ext) \
161 SCALE(((val) << 4) + (ext), 16, 1000)
162 #define TEMP_FROM_REG(val) ((val) * 1000)
163
164 #define PWM_TO_REG(val) clamp_val(val, 0, 255)
165 #define PWM_FROM_REG(val) (val)
166
167
168 /*
169 * ZONEs have the following parameters:
170 * Limit (low) temp, 1. degC
171 * Hysteresis (below limit), 1. degC (0-15)
172 * Range of speed control, .1 degC (2-80)
173 * Critical (high) temp, 1. degC
174 *
175 * FAN PWMs have the following parameters:
176 * Reference Zone, 1, 2, 3, etc.
177 * Spinup time, .05 sec
178 * PWM value at limit/low temp, 1 count
179 * PWM Frequency, 1. Hz
180 * PWM is Min or OFF below limit, flag
181 * Invert PWM output, flag
182 *
183 * Some chips filter the temp, others the fan.
184 * Filter constant (or disabled) .1 seconds
185 */
186
187 /* These are the zone temperature range encodings in .001 degree C */
188 static const int lm85_range_map[] = {
189 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191 };
192
193 static int RANGE_TO_REG(long range)
194 {
195 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
196 }
197 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
198
199 /* These are the PWM frequency encodings */
200 static const int lm85_freq_map[8] = { /* 1 Hz */
201 10, 15, 23, 30, 38, 47, 61, 94
202 };
203 static const int adm1027_freq_map[8] = { /* 1 Hz */
204 11, 15, 22, 29, 35, 44, 59, 88
205 };
206 #define FREQ_MAP_LEN 8
207
208 static int FREQ_TO_REG(const int *map,
209 unsigned int map_size, unsigned long freq)
210 {
211 return find_closest(freq, map, map_size);
212 }
213
214 static int FREQ_FROM_REG(const int *map, u8 reg)
215 {
216 return map[reg & 0x07];
217 }
218
219 /*
220 * Since we can't use strings, I'm abusing these numbers
221 * to stand in for the following meanings:
222 * 1 -- PWM responds to Zone 1
223 * 2 -- PWM responds to Zone 2
224 * 3 -- PWM responds to Zone 3
225 * 23 -- PWM responds to the higher temp of Zone 2 or 3
226 * 123 -- PWM responds to highest of Zone 1, 2, or 3
227 * 0 -- PWM is always at 0% (ie, off)
228 * -1 -- PWM is always at 100%
229 * -2 -- PWM responds to manual control
230 */
231
232 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
233 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
234
235 static int ZONE_TO_REG(int zone)
236 {
237 int i;
238
239 for (i = 0; i <= 7; ++i)
240 if (zone == lm85_zone_map[i])
241 break;
242 if (i > 7) /* Not found. */
243 i = 3; /* Always 100% */
244 return i << 5;
245 }
246
247 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
248 #define HYST_FROM_REG(val) ((val) * 1000)
249
250 /*
251 * Chip sampling rates
252 *
253 * Some sensors are not updated more frequently than once per second
254 * so it doesn't make sense to read them more often than that.
255 * We cache the results and return the saved data if the driver
256 * is called again before a second has elapsed.
257 *
258 * Also, there is significant configuration data for this chip
259 * given the automatic PWM fan control that is possible. There
260 * are about 47 bytes of config data to only 22 bytes of actual
261 * readings. So, we keep the config data up to date in the cache
262 * when it is written and only sample it once every 1 *minute*
263 */
264 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
265 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
266
267 /*
268 * LM85 can automatically adjust fan speeds based on temperature
269 * This structure encapsulates an entire Zone config. There are
270 * three zones (one for each temperature input) on the lm85
271 */
272 struct lm85_zone {
273 s8 limit; /* Low temp limit */
274 u8 hyst; /* Low limit hysteresis. (0-15) */
275 u8 range; /* Temp range, encoded */
276 s8 critical; /* "All fans ON" temp limit */
277 u8 max_desired; /*
278 * Actual "max" temperature specified. Preserved
279 * to prevent "drift" as other autofan control
280 * values change.
281 */
282 };
283
284 struct lm85_autofan {
285 u8 config; /* Register value */
286 u8 min_pwm; /* Minimum PWM value, encoded */
287 u8 min_off; /* Min PWM or OFF below "limit", flag */
288 };
289
290 /*
291 * For each registered chip, we need to keep some data in memory.
292 * The structure is dynamically allocated.
293 */
294 struct lm85_data {
295 struct i2c_client *client;
296 const struct attribute_group *groups[6];
297 const int *freq_map;
298 enum chips type;
299
300 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
301
302 struct mutex update_lock;
303 int valid; /* !=0 if following fields are valid */
304 unsigned long last_reading; /* In jiffies */
305 unsigned long last_config; /* In jiffies */
306
307 u8 in[8]; /* Register value */
308 u8 in_max[8]; /* Register value */
309 u8 in_min[8]; /* Register value */
310 s8 temp[3]; /* Register value */
311 s8 temp_min[3]; /* Register value */
312 s8 temp_max[3]; /* Register value */
313 u16 fan[4]; /* Register value */
314 u16 fan_min[4]; /* Register value */
315 u8 pwm[3]; /* Register value */
316 u8 pwm_freq[3]; /* Register encoding */
317 u8 temp_ext[3]; /* Decoded values */
318 u8 in_ext[8]; /* Decoded values */
319 u8 vid; /* Register value */
320 u8 vrm; /* VRM version */
321 u32 alarms; /* Register encoding, combined */
322 u8 cfg5; /* Config Register 5 on ADT7468 */
323 struct lm85_autofan autofan[3];
324 struct lm85_zone zone[3];
325 };
326
327 static int lm85_read_value(struct i2c_client *client, u8 reg)
328 {
329 int res;
330
331 /* What size location is it? */
332 switch (reg) {
333 case LM85_REG_FAN(0): /* Read WORD data */
334 case LM85_REG_FAN(1):
335 case LM85_REG_FAN(2):
336 case LM85_REG_FAN(3):
337 case LM85_REG_FAN_MIN(0):
338 case LM85_REG_FAN_MIN(1):
339 case LM85_REG_FAN_MIN(2):
340 case LM85_REG_FAN_MIN(3):
341 case LM85_REG_ALARM1: /* Read both bytes at once */
342 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
343 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
344 break;
345 default: /* Read BYTE data */
346 res = i2c_smbus_read_byte_data(client, reg);
347 break;
348 }
349
350 return res;
351 }
352
353 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
354 {
355 switch (reg) {
356 case LM85_REG_FAN(0): /* Write WORD data */
357 case LM85_REG_FAN(1):
358 case LM85_REG_FAN(2):
359 case LM85_REG_FAN(3):
360 case LM85_REG_FAN_MIN(0):
361 case LM85_REG_FAN_MIN(1):
362 case LM85_REG_FAN_MIN(2):
363 case LM85_REG_FAN_MIN(3):
364 /* NOTE: ALARM is read only, so not included here */
365 i2c_smbus_write_byte_data(client, reg, value & 0xff);
366 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
367 break;
368 default: /* Write BYTE data */
369 i2c_smbus_write_byte_data(client, reg, value);
370 break;
371 }
372 }
373
374 static struct lm85_data *lm85_update_device(struct device *dev)
375 {
376 struct lm85_data *data = dev_get_drvdata(dev);
377 struct i2c_client *client = data->client;
378 int i;
379
380 mutex_lock(&data->update_lock);
381
382 if (!data->valid ||
383 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
384 /* Things that change quickly */
385 dev_dbg(&client->dev, "Reading sensor values\n");
386
387 /*
388 * Have to read extended bits first to "freeze" the
389 * more significant bits that are read later.
390 * There are 2 additional resolution bits per channel and we
391 * have room for 4, so we shift them to the left.
392 */
393 if (data->type == adm1027 || data->type == adt7463 ||
394 data->type == adt7468) {
395 int ext1 = lm85_read_value(client,
396 ADM1027_REG_EXTEND_ADC1);
397 int ext2 = lm85_read_value(client,
398 ADM1027_REG_EXTEND_ADC2);
399 int val = (ext1 << 8) + ext2;
400
401 for (i = 0; i <= 4; i++)
402 data->in_ext[i] =
403 ((val >> (i * 2)) & 0x03) << 2;
404
405 for (i = 0; i <= 2; i++)
406 data->temp_ext[i] =
407 (val >> ((i + 4) * 2)) & 0x0c;
408 }
409
410 data->vid = lm85_read_value(client, LM85_REG_VID);
411
412 for (i = 0; i <= 3; ++i) {
413 data->in[i] =
414 lm85_read_value(client, LM85_REG_IN(i));
415 data->fan[i] =
416 lm85_read_value(client, LM85_REG_FAN(i));
417 }
418
419 if (!data->has_vid5)
420 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
421
422 if (data->type == adt7468)
423 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
424
425 for (i = 0; i <= 2; ++i) {
426 data->temp[i] =
427 lm85_read_value(client, LM85_REG_TEMP(i));
428 data->pwm[i] =
429 lm85_read_value(client, LM85_REG_PWM(i));
430
431 if (IS_ADT7468_OFF64(data))
432 data->temp[i] -= 64;
433 }
434
435 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
436
437 if (data->type == emc6d100) {
438 /* Three more voltage sensors */
439 for (i = 5; i <= 7; ++i) {
440 data->in[i] = lm85_read_value(client,
441 EMC6D100_REG_IN(i));
442 }
443 /* More alarm bits */
444 data->alarms |= lm85_read_value(client,
445 EMC6D100_REG_ALARM3) << 16;
446 } else if (data->type == emc6d102 || data->type == emc6d103 ||
447 data->type == emc6d103s) {
448 /*
449 * Have to read LSB bits after the MSB ones because
450 * the reading of the MSB bits has frozen the
451 * LSBs (backward from the ADM1027).
452 */
453 int ext1 = lm85_read_value(client,
454 EMC6D102_REG_EXTEND_ADC1);
455 int ext2 = lm85_read_value(client,
456 EMC6D102_REG_EXTEND_ADC2);
457 int ext3 = lm85_read_value(client,
458 EMC6D102_REG_EXTEND_ADC3);
459 int ext4 = lm85_read_value(client,
460 EMC6D102_REG_EXTEND_ADC4);
461 data->in_ext[0] = ext3 & 0x0f;
462 data->in_ext[1] = ext4 & 0x0f;
463 data->in_ext[2] = ext4 >> 4;
464 data->in_ext[3] = ext3 >> 4;
465 data->in_ext[4] = ext2 >> 4;
466
467 data->temp_ext[0] = ext1 & 0x0f;
468 data->temp_ext[1] = ext2 & 0x0f;
469 data->temp_ext[2] = ext1 >> 4;
470 }
471
472 data->last_reading = jiffies;
473 } /* last_reading */
474
475 if (!data->valid ||
476 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
477 /* Things that don't change often */
478 dev_dbg(&client->dev, "Reading config values\n");
479
480 for (i = 0; i <= 3; ++i) {
481 data->in_min[i] =
482 lm85_read_value(client, LM85_REG_IN_MIN(i));
483 data->in_max[i] =
484 lm85_read_value(client, LM85_REG_IN_MAX(i));
485 data->fan_min[i] =
486 lm85_read_value(client, LM85_REG_FAN_MIN(i));
487 }
488
489 if (!data->has_vid5) {
490 data->in_min[4] = lm85_read_value(client,
491 LM85_REG_IN_MIN(4));
492 data->in_max[4] = lm85_read_value(client,
493 LM85_REG_IN_MAX(4));
494 }
495
496 if (data->type == emc6d100) {
497 for (i = 5; i <= 7; ++i) {
498 data->in_min[i] = lm85_read_value(client,
499 EMC6D100_REG_IN_MIN(i));
500 data->in_max[i] = lm85_read_value(client,
501 EMC6D100_REG_IN_MAX(i));
502 }
503 }
504
505 for (i = 0; i <= 2; ++i) {
506 int val;
507
508 data->temp_min[i] =
509 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
510 data->temp_max[i] =
511 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
512
513 data->autofan[i].config =
514 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
515 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
516 data->pwm_freq[i] = val & 0x07;
517 data->zone[i].range = val >> 4;
518 data->autofan[i].min_pwm =
519 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
520 data->zone[i].limit =
521 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
522 data->zone[i].critical =
523 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
524
525 if (IS_ADT7468_OFF64(data)) {
526 data->temp_min[i] -= 64;
527 data->temp_max[i] -= 64;
528 data->zone[i].limit -= 64;
529 data->zone[i].critical -= 64;
530 }
531 }
532
533 if (data->type != emc6d103s) {
534 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
535 data->autofan[0].min_off = (i & 0x20) != 0;
536 data->autofan[1].min_off = (i & 0x40) != 0;
537 data->autofan[2].min_off = (i & 0x80) != 0;
538
539 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
540 data->zone[0].hyst = i >> 4;
541 data->zone[1].hyst = i & 0x0f;
542
543 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
544 data->zone[2].hyst = i >> 4;
545 }
546
547 data->last_config = jiffies;
548 } /* last_config */
549
550 data->valid = 1;
551
552 mutex_unlock(&data->update_lock);
553
554 return data;
555 }
556
557 /* 4 Fans */
558 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
559 char *buf)
560 {
561 int nr = to_sensor_dev_attr(attr)->index;
562 struct lm85_data *data = lm85_update_device(dev);
563 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
564 }
565
566 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
567 char *buf)
568 {
569 int nr = to_sensor_dev_attr(attr)->index;
570 struct lm85_data *data = lm85_update_device(dev);
571 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
572 }
573
574 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
575 const char *buf, size_t count)
576 {
577 int nr = to_sensor_dev_attr(attr)->index;
578 struct lm85_data *data = dev_get_drvdata(dev);
579 struct i2c_client *client = data->client;
580 unsigned long val;
581 int err;
582
583 err = kstrtoul(buf, 10, &val);
584 if (err)
585 return err;
586
587 mutex_lock(&data->update_lock);
588 data->fan_min[nr] = FAN_TO_REG(val);
589 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
590 mutex_unlock(&data->update_lock);
591 return count;
592 }
593
594 #define show_fan_offset(offset) \
595 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
596 show_fan, NULL, offset - 1); \
597 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
598 show_fan_min, set_fan_min, offset - 1)
599
600 show_fan_offset(1);
601 show_fan_offset(2);
602 show_fan_offset(3);
603 show_fan_offset(4);
604
605 /* vid, vrm, alarms */
606
607 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
608 char *buf)
609 {
610 struct lm85_data *data = lm85_update_device(dev);
611 int vid;
612
613 if (data->has_vid5) {
614 /* 6-pin VID (VRM 10) */
615 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
616 } else {
617 /* 5-pin VID (VRM 9) */
618 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
619 }
620
621 return sprintf(buf, "%d\n", vid);
622 }
623
624 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
625
626 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
627 char *buf)
628 {
629 struct lm85_data *data = dev_get_drvdata(dev);
630 return sprintf(buf, "%ld\n", (long) data->vrm);
631 }
632
633 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
634 const char *buf, size_t count)
635 {
636 struct lm85_data *data = dev_get_drvdata(dev);
637 unsigned long val;
638 int err;
639
640 err = kstrtoul(buf, 10, &val);
641 if (err)
642 return err;
643
644 if (val > 255)
645 return -EINVAL;
646
647 data->vrm = val;
648 return count;
649 }
650
651 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
652
653 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
654 *attr, char *buf)
655 {
656 struct lm85_data *data = lm85_update_device(dev);
657 return sprintf(buf, "%u\n", data->alarms);
658 }
659
660 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
661
662 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
663 char *buf)
664 {
665 int nr = to_sensor_dev_attr(attr)->index;
666 struct lm85_data *data = lm85_update_device(dev);
667 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
668 }
669
670 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
671 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
672 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
673 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
674 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
675 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
676 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
677 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
678 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
679 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
680 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
681 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
682 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
683 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
684 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
685 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
686 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
687
688 /* pwm */
689
690 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
691 char *buf)
692 {
693 int nr = to_sensor_dev_attr(attr)->index;
694 struct lm85_data *data = lm85_update_device(dev);
695 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
696 }
697
698 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
699 const char *buf, size_t count)
700 {
701 int nr = to_sensor_dev_attr(attr)->index;
702 struct lm85_data *data = dev_get_drvdata(dev);
703 struct i2c_client *client = data->client;
704 unsigned long val;
705 int err;
706
707 err = kstrtoul(buf, 10, &val);
708 if (err)
709 return err;
710
711 mutex_lock(&data->update_lock);
712 data->pwm[nr] = PWM_TO_REG(val);
713 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
714 mutex_unlock(&data->update_lock);
715 return count;
716 }
717
718 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
719 *attr, char *buf)
720 {
721 int nr = to_sensor_dev_attr(attr)->index;
722 struct lm85_data *data = lm85_update_device(dev);
723 int pwm_zone, enable;
724
725 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
726 switch (pwm_zone) {
727 case -1: /* PWM is always at 100% */
728 enable = 0;
729 break;
730 case 0: /* PWM is always at 0% */
731 case -2: /* PWM responds to manual control */
732 enable = 1;
733 break;
734 default: /* PWM in automatic mode */
735 enable = 2;
736 }
737 return sprintf(buf, "%d\n", enable);
738 }
739
740 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
741 *attr, const char *buf, size_t count)
742 {
743 int nr = to_sensor_dev_attr(attr)->index;
744 struct lm85_data *data = dev_get_drvdata(dev);
745 struct i2c_client *client = data->client;
746 u8 config;
747 unsigned long val;
748 int err;
749
750 err = kstrtoul(buf, 10, &val);
751 if (err)
752 return err;
753
754 switch (val) {
755 case 0:
756 config = 3;
757 break;
758 case 1:
759 config = 7;
760 break;
761 case 2:
762 /*
763 * Here we have to choose arbitrarily one of the 5 possible
764 * configurations; I go for the safest
765 */
766 config = 6;
767 break;
768 default:
769 return -EINVAL;
770 }
771
772 mutex_lock(&data->update_lock);
773 data->autofan[nr].config = lm85_read_value(client,
774 LM85_REG_AFAN_CONFIG(nr));
775 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
776 | (config << 5);
777 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
778 data->autofan[nr].config);
779 mutex_unlock(&data->update_lock);
780 return count;
781 }
782
783 static ssize_t show_pwm_freq(struct device *dev,
784 struct device_attribute *attr, char *buf)
785 {
786 int nr = to_sensor_dev_attr(attr)->index;
787 struct lm85_data *data = lm85_update_device(dev);
788 int freq;
789
790 if (IS_ADT7468_HFPWM(data))
791 freq = 22500;
792 else
793 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
794
795 return sprintf(buf, "%d\n", freq);
796 }
797
798 static ssize_t set_pwm_freq(struct device *dev,
799 struct device_attribute *attr, const char *buf, size_t count)
800 {
801 int nr = to_sensor_dev_attr(attr)->index;
802 struct lm85_data *data = dev_get_drvdata(dev);
803 struct i2c_client *client = data->client;
804 unsigned long val;
805 int err;
806
807 err = kstrtoul(buf, 10, &val);
808 if (err)
809 return err;
810
811 mutex_lock(&data->update_lock);
812 /*
813 * The ADT7468 has a special high-frequency PWM output mode,
814 * where all PWM outputs are driven by a 22.5 kHz clock.
815 * This might confuse the user, but there's not much we can do.
816 */
817 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
818 data->cfg5 &= ~ADT7468_HFPWM;
819 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
820 } else { /* Low freq. mode */
821 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
822 FREQ_MAP_LEN, val);
823 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
824 (data->zone[nr].range << 4)
825 | data->pwm_freq[nr]);
826 if (data->type == adt7468) {
827 data->cfg5 |= ADT7468_HFPWM;
828 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
829 }
830 }
831 mutex_unlock(&data->update_lock);
832 return count;
833 }
834
835 #define show_pwm_reg(offset) \
836 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
837 show_pwm, set_pwm, offset - 1); \
838 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
839 show_pwm_enable, set_pwm_enable, offset - 1); \
840 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
841 show_pwm_freq, set_pwm_freq, offset - 1)
842
843 show_pwm_reg(1);
844 show_pwm_reg(2);
845 show_pwm_reg(3);
846
847 /* Voltages */
848
849 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
850 char *buf)
851 {
852 int nr = to_sensor_dev_attr(attr)->index;
853 struct lm85_data *data = lm85_update_device(dev);
854 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
855 data->in_ext[nr]));
856 }
857
858 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
859 char *buf)
860 {
861 int nr = to_sensor_dev_attr(attr)->index;
862 struct lm85_data *data = lm85_update_device(dev);
863 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
864 }
865
866 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
867 const char *buf, size_t count)
868 {
869 int nr = to_sensor_dev_attr(attr)->index;
870 struct lm85_data *data = dev_get_drvdata(dev);
871 struct i2c_client *client = data->client;
872 long val;
873 int err;
874
875 err = kstrtol(buf, 10, &val);
876 if (err)
877 return err;
878
879 mutex_lock(&data->update_lock);
880 data->in_min[nr] = INS_TO_REG(nr, val);
881 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
882 mutex_unlock(&data->update_lock);
883 return count;
884 }
885
886 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
887 char *buf)
888 {
889 int nr = to_sensor_dev_attr(attr)->index;
890 struct lm85_data *data = lm85_update_device(dev);
891 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
892 }
893
894 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
895 const char *buf, size_t count)
896 {
897 int nr = to_sensor_dev_attr(attr)->index;
898 struct lm85_data *data = dev_get_drvdata(dev);
899 struct i2c_client *client = data->client;
900 long val;
901 int err;
902
903 err = kstrtol(buf, 10, &val);
904 if (err)
905 return err;
906
907 mutex_lock(&data->update_lock);
908 data->in_max[nr] = INS_TO_REG(nr, val);
909 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
910 mutex_unlock(&data->update_lock);
911 return count;
912 }
913
914 #define show_in_reg(offset) \
915 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
916 show_in, NULL, offset); \
917 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
918 show_in_min, set_in_min, offset); \
919 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
920 show_in_max, set_in_max, offset)
921
922 show_in_reg(0);
923 show_in_reg(1);
924 show_in_reg(2);
925 show_in_reg(3);
926 show_in_reg(4);
927 show_in_reg(5);
928 show_in_reg(6);
929 show_in_reg(7);
930
931 /* Temps */
932
933 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
934 char *buf)
935 {
936 int nr = to_sensor_dev_attr(attr)->index;
937 struct lm85_data *data = lm85_update_device(dev);
938 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
939 data->temp_ext[nr]));
940 }
941
942 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
943 char *buf)
944 {
945 int nr = to_sensor_dev_attr(attr)->index;
946 struct lm85_data *data = lm85_update_device(dev);
947 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
948 }
949
950 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
951 const char *buf, size_t count)
952 {
953 int nr = to_sensor_dev_attr(attr)->index;
954 struct lm85_data *data = dev_get_drvdata(dev);
955 struct i2c_client *client = data->client;
956 long val;
957 int err;
958
959 err = kstrtol(buf, 10, &val);
960 if (err)
961 return err;
962
963 if (IS_ADT7468_OFF64(data))
964 val += 64;
965
966 mutex_lock(&data->update_lock);
967 data->temp_min[nr] = TEMP_TO_REG(val);
968 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
969 mutex_unlock(&data->update_lock);
970 return count;
971 }
972
973 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
974 char *buf)
975 {
976 int nr = to_sensor_dev_attr(attr)->index;
977 struct lm85_data *data = lm85_update_device(dev);
978 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
979 }
980
981 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
982 const char *buf, size_t count)
983 {
984 int nr = to_sensor_dev_attr(attr)->index;
985 struct lm85_data *data = dev_get_drvdata(dev);
986 struct i2c_client *client = data->client;
987 long val;
988 int err;
989
990 err = kstrtol(buf, 10, &val);
991 if (err)
992 return err;
993
994 if (IS_ADT7468_OFF64(data))
995 val += 64;
996
997 mutex_lock(&data->update_lock);
998 data->temp_max[nr] = TEMP_TO_REG(val);
999 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1000 mutex_unlock(&data->update_lock);
1001 return count;
1002 }
1003
1004 #define show_temp_reg(offset) \
1005 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
1006 show_temp, NULL, offset - 1); \
1007 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
1008 show_temp_min, set_temp_min, offset - 1); \
1009 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
1010 show_temp_max, set_temp_max, offset - 1);
1011
1012 show_temp_reg(1);
1013 show_temp_reg(2);
1014 show_temp_reg(3);
1015
1016
1017 /* Automatic PWM control */
1018
1019 static ssize_t show_pwm_auto_channels(struct device *dev,
1020 struct device_attribute *attr, char *buf)
1021 {
1022 int nr = to_sensor_dev_attr(attr)->index;
1023 struct lm85_data *data = lm85_update_device(dev);
1024 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1025 }
1026
1027 static ssize_t set_pwm_auto_channels(struct device *dev,
1028 struct device_attribute *attr, const char *buf, size_t count)
1029 {
1030 int nr = to_sensor_dev_attr(attr)->index;
1031 struct lm85_data *data = dev_get_drvdata(dev);
1032 struct i2c_client *client = data->client;
1033 long val;
1034 int err;
1035
1036 err = kstrtol(buf, 10, &val);
1037 if (err)
1038 return err;
1039
1040 mutex_lock(&data->update_lock);
1041 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1042 | ZONE_TO_REG(val);
1043 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1044 data->autofan[nr].config);
1045 mutex_unlock(&data->update_lock);
1046 return count;
1047 }
1048
1049 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1050 struct device_attribute *attr, char *buf)
1051 {
1052 int nr = to_sensor_dev_attr(attr)->index;
1053 struct lm85_data *data = lm85_update_device(dev);
1054 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1055 }
1056
1057 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1058 struct device_attribute *attr, const char *buf, size_t count)
1059 {
1060 int nr = to_sensor_dev_attr(attr)->index;
1061 struct lm85_data *data = dev_get_drvdata(dev);
1062 struct i2c_client *client = data->client;
1063 unsigned long val;
1064 int err;
1065
1066 err = kstrtoul(buf, 10, &val);
1067 if (err)
1068 return err;
1069
1070 mutex_lock(&data->update_lock);
1071 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1072 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1073 data->autofan[nr].min_pwm);
1074 mutex_unlock(&data->update_lock);
1075 return count;
1076 }
1077
1078 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1079 struct device_attribute *attr, char *buf)
1080 {
1081 int nr = to_sensor_dev_attr(attr)->index;
1082 struct lm85_data *data = lm85_update_device(dev);
1083 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1084 }
1085
1086 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1087 struct device_attribute *attr, const char *buf, size_t count)
1088 {
1089 int nr = to_sensor_dev_attr(attr)->index;
1090 struct lm85_data *data = dev_get_drvdata(dev);
1091 struct i2c_client *client = data->client;
1092 u8 tmp;
1093 long val;
1094 int err;
1095
1096 err = kstrtol(buf, 10, &val);
1097 if (err)
1098 return err;
1099
1100 mutex_lock(&data->update_lock);
1101 data->autofan[nr].min_off = val;
1102 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1103 tmp &= ~(0x20 << nr);
1104 if (data->autofan[nr].min_off)
1105 tmp |= 0x20 << nr;
1106 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1107 mutex_unlock(&data->update_lock);
1108 return count;
1109 }
1110
1111 #define pwm_auto(offset) \
1112 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
1113 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
1114 set_pwm_auto_channels, offset - 1); \
1115 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
1116 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
1117 set_pwm_auto_pwm_min, offset - 1); \
1118 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
1119 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
1120 set_pwm_auto_pwm_minctl, offset - 1)
1121
1122 pwm_auto(1);
1123 pwm_auto(2);
1124 pwm_auto(3);
1125
1126 /* Temperature settings for automatic PWM control */
1127
1128 static ssize_t show_temp_auto_temp_off(struct device *dev,
1129 struct device_attribute *attr, char *buf)
1130 {
1131 int nr = to_sensor_dev_attr(attr)->index;
1132 struct lm85_data *data = lm85_update_device(dev);
1133 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1134 HYST_FROM_REG(data->zone[nr].hyst));
1135 }
1136
1137 static ssize_t set_temp_auto_temp_off(struct device *dev,
1138 struct device_attribute *attr, const char *buf, size_t count)
1139 {
1140 int nr = to_sensor_dev_attr(attr)->index;
1141 struct lm85_data *data = dev_get_drvdata(dev);
1142 struct i2c_client *client = data->client;
1143 int min;
1144 long val;
1145 int err;
1146
1147 err = kstrtol(buf, 10, &val);
1148 if (err)
1149 return err;
1150
1151 mutex_lock(&data->update_lock);
1152 min = TEMP_FROM_REG(data->zone[nr].limit);
1153 data->zone[nr].hyst = HYST_TO_REG(min - val);
1154 if (nr == 0 || nr == 1) {
1155 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1156 (data->zone[0].hyst << 4)
1157 | data->zone[1].hyst);
1158 } else {
1159 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1160 (data->zone[2].hyst << 4));
1161 }
1162 mutex_unlock(&data->update_lock);
1163 return count;
1164 }
1165
1166 static ssize_t show_temp_auto_temp_min(struct device *dev,
1167 struct device_attribute *attr, char *buf)
1168 {
1169 int nr = to_sensor_dev_attr(attr)->index;
1170 struct lm85_data *data = lm85_update_device(dev);
1171 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1172 }
1173
1174 static ssize_t set_temp_auto_temp_min(struct device *dev,
1175 struct device_attribute *attr, const char *buf, size_t count)
1176 {
1177 int nr = to_sensor_dev_attr(attr)->index;
1178 struct lm85_data *data = dev_get_drvdata(dev);
1179 struct i2c_client *client = data->client;
1180 long val;
1181 int err;
1182
1183 err = kstrtol(buf, 10, &val);
1184 if (err)
1185 return err;
1186
1187 mutex_lock(&data->update_lock);
1188 data->zone[nr].limit = TEMP_TO_REG(val);
1189 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1190 data->zone[nr].limit);
1191
1192 /* Update temp_auto_max and temp_auto_range */
1193 data->zone[nr].range = RANGE_TO_REG(
1194 TEMP_FROM_REG(data->zone[nr].max_desired) -
1195 TEMP_FROM_REG(data->zone[nr].limit));
1196 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1197 ((data->zone[nr].range & 0x0f) << 4)
1198 | (data->pwm_freq[nr] & 0x07));
1199
1200 mutex_unlock(&data->update_lock);
1201 return count;
1202 }
1203
1204 static ssize_t show_temp_auto_temp_max(struct device *dev,
1205 struct device_attribute *attr, char *buf)
1206 {
1207 int nr = to_sensor_dev_attr(attr)->index;
1208 struct lm85_data *data = lm85_update_device(dev);
1209 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1210 RANGE_FROM_REG(data->zone[nr].range));
1211 }
1212
1213 static ssize_t set_temp_auto_temp_max(struct device *dev,
1214 struct device_attribute *attr, const char *buf, size_t count)
1215 {
1216 int nr = to_sensor_dev_attr(attr)->index;
1217 struct lm85_data *data = dev_get_drvdata(dev);
1218 struct i2c_client *client = data->client;
1219 int min;
1220 long val;
1221 int err;
1222
1223 err = kstrtol(buf, 10, &val);
1224 if (err)
1225 return err;
1226
1227 mutex_lock(&data->update_lock);
1228 min = TEMP_FROM_REG(data->zone[nr].limit);
1229 data->zone[nr].max_desired = TEMP_TO_REG(val);
1230 data->zone[nr].range = RANGE_TO_REG(
1231 val - min);
1232 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1233 ((data->zone[nr].range & 0x0f) << 4)
1234 | (data->pwm_freq[nr] & 0x07));
1235 mutex_unlock(&data->update_lock);
1236 return count;
1237 }
1238
1239 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1240 struct device_attribute *attr, char *buf)
1241 {
1242 int nr = to_sensor_dev_attr(attr)->index;
1243 struct lm85_data *data = lm85_update_device(dev);
1244 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1245 }
1246
1247 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1248 struct device_attribute *attr, const char *buf, size_t count)
1249 {
1250 int nr = to_sensor_dev_attr(attr)->index;
1251 struct lm85_data *data = dev_get_drvdata(dev);
1252 struct i2c_client *client = data->client;
1253 long val;
1254 int err;
1255
1256 err = kstrtol(buf, 10, &val);
1257 if (err)
1258 return err;
1259
1260 mutex_lock(&data->update_lock);
1261 data->zone[nr].critical = TEMP_TO_REG(val);
1262 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1263 data->zone[nr].critical);
1264 mutex_unlock(&data->update_lock);
1265 return count;
1266 }
1267
1268 #define temp_auto(offset) \
1269 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1270 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1271 set_temp_auto_temp_off, offset - 1); \
1272 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1273 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1274 set_temp_auto_temp_min, offset - 1); \
1275 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1276 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1277 set_temp_auto_temp_max, offset - 1); \
1278 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1279 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1280 set_temp_auto_temp_crit, offset - 1);
1281
1282 temp_auto(1);
1283 temp_auto(2);
1284 temp_auto(3);
1285
1286 static struct attribute *lm85_attributes[] = {
1287 &sensor_dev_attr_fan1_input.dev_attr.attr,
1288 &sensor_dev_attr_fan2_input.dev_attr.attr,
1289 &sensor_dev_attr_fan3_input.dev_attr.attr,
1290 &sensor_dev_attr_fan4_input.dev_attr.attr,
1291 &sensor_dev_attr_fan1_min.dev_attr.attr,
1292 &sensor_dev_attr_fan2_min.dev_attr.attr,
1293 &sensor_dev_attr_fan3_min.dev_attr.attr,
1294 &sensor_dev_attr_fan4_min.dev_attr.attr,
1295 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1296 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1297 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1298 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299
1300 &sensor_dev_attr_pwm1.dev_attr.attr,
1301 &sensor_dev_attr_pwm2.dev_attr.attr,
1302 &sensor_dev_attr_pwm3.dev_attr.attr,
1303 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1304 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1305 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1306 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1307 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1308 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309
1310 &sensor_dev_attr_in0_input.dev_attr.attr,
1311 &sensor_dev_attr_in1_input.dev_attr.attr,
1312 &sensor_dev_attr_in2_input.dev_attr.attr,
1313 &sensor_dev_attr_in3_input.dev_attr.attr,
1314 &sensor_dev_attr_in0_min.dev_attr.attr,
1315 &sensor_dev_attr_in1_min.dev_attr.attr,
1316 &sensor_dev_attr_in2_min.dev_attr.attr,
1317 &sensor_dev_attr_in3_min.dev_attr.attr,
1318 &sensor_dev_attr_in0_max.dev_attr.attr,
1319 &sensor_dev_attr_in1_max.dev_attr.attr,
1320 &sensor_dev_attr_in2_max.dev_attr.attr,
1321 &sensor_dev_attr_in3_max.dev_attr.attr,
1322 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1323 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1324 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1325 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1326
1327 &sensor_dev_attr_temp1_input.dev_attr.attr,
1328 &sensor_dev_attr_temp2_input.dev_attr.attr,
1329 &sensor_dev_attr_temp3_input.dev_attr.attr,
1330 &sensor_dev_attr_temp1_min.dev_attr.attr,
1331 &sensor_dev_attr_temp2_min.dev_attr.attr,
1332 &sensor_dev_attr_temp3_min.dev_attr.attr,
1333 &sensor_dev_attr_temp1_max.dev_attr.attr,
1334 &sensor_dev_attr_temp2_max.dev_attr.attr,
1335 &sensor_dev_attr_temp3_max.dev_attr.attr,
1336 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1337 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1338 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1339 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1340 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1341
1342 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1343 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1344 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1345 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1346 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1347 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348
1349 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1350 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1351 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1352 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1353 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1354 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1355 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1356 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1357 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358
1359 &dev_attr_vrm.attr,
1360 &dev_attr_cpu0_vid.attr,
1361 &dev_attr_alarms.attr,
1362 NULL
1363 };
1364
1365 static const struct attribute_group lm85_group = {
1366 .attrs = lm85_attributes,
1367 };
1368
1369 static struct attribute *lm85_attributes_minctl[] = {
1370 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1371 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1372 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1373 NULL
1374 };
1375
1376 static const struct attribute_group lm85_group_minctl = {
1377 .attrs = lm85_attributes_minctl,
1378 };
1379
1380 static struct attribute *lm85_attributes_temp_off[] = {
1381 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1382 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1383 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1384 NULL
1385 };
1386
1387 static const struct attribute_group lm85_group_temp_off = {
1388 .attrs = lm85_attributes_temp_off,
1389 };
1390
1391 static struct attribute *lm85_attributes_in4[] = {
1392 &sensor_dev_attr_in4_input.dev_attr.attr,
1393 &sensor_dev_attr_in4_min.dev_attr.attr,
1394 &sensor_dev_attr_in4_max.dev_attr.attr,
1395 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1396 NULL
1397 };
1398
1399 static const struct attribute_group lm85_group_in4 = {
1400 .attrs = lm85_attributes_in4,
1401 };
1402
1403 static struct attribute *lm85_attributes_in567[] = {
1404 &sensor_dev_attr_in5_input.dev_attr.attr,
1405 &sensor_dev_attr_in6_input.dev_attr.attr,
1406 &sensor_dev_attr_in7_input.dev_attr.attr,
1407 &sensor_dev_attr_in5_min.dev_attr.attr,
1408 &sensor_dev_attr_in6_min.dev_attr.attr,
1409 &sensor_dev_attr_in7_min.dev_attr.attr,
1410 &sensor_dev_attr_in5_max.dev_attr.attr,
1411 &sensor_dev_attr_in6_max.dev_attr.attr,
1412 &sensor_dev_attr_in7_max.dev_attr.attr,
1413 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1414 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1415 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1416 NULL
1417 };
1418
1419 static const struct attribute_group lm85_group_in567 = {
1420 .attrs = lm85_attributes_in567,
1421 };
1422
1423 static void lm85_init_client(struct i2c_client *client)
1424 {
1425 int value;
1426
1427 /* Start monitoring if needed */
1428 value = lm85_read_value(client, LM85_REG_CONFIG);
1429 if (!(value & 0x01)) {
1430 dev_info(&client->dev, "Starting monitoring\n");
1431 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1432 }
1433
1434 /* Warn about unusual configuration bits */
1435 if (value & 0x02)
1436 dev_warn(&client->dev, "Device configuration is locked\n");
1437 if (!(value & 0x04))
1438 dev_warn(&client->dev, "Device is not ready\n");
1439 }
1440
1441 static int lm85_is_fake(struct i2c_client *client)
1442 {
1443 /*
1444 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1445 * emulate the former except that it has no hardware monitoring function
1446 * so the readings are always 0.
1447 */
1448 int i;
1449 u8 in_temp, fan;
1450
1451 for (i = 0; i < 8; i++) {
1452 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1453 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1454 if (in_temp != 0x00 || fan != 0xff)
1455 return 0;
1456 }
1457
1458 return 1;
1459 }
1460
1461 /* Return 0 if detection is successful, -ENODEV otherwise */
1462 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463 {
1464 struct i2c_adapter *adapter = client->adapter;
1465 int address = client->addr;
1466 const char *type_name = NULL;
1467 int company, verstep;
1468
1469 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1470 /* We need to be able to do byte I/O */
1471 return -ENODEV;
1472 }
1473
1474 /* Determine the chip type */
1475 company = lm85_read_value(client, LM85_REG_COMPANY);
1476 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477
1478 dev_dbg(&adapter->dev,
1479 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1480 address, company, verstep);
1481
1482 if (company == LM85_COMPANY_NATIONAL) {
1483 switch (verstep) {
1484 case LM85_VERSTEP_LM85C:
1485 type_name = "lm85c";
1486 break;
1487 case LM85_VERSTEP_LM85B:
1488 type_name = "lm85b";
1489 break;
1490 case LM85_VERSTEP_LM96000_1:
1491 case LM85_VERSTEP_LM96000_2:
1492 /* Check for Winbond WPCD377I */
1493 if (lm85_is_fake(client)) {
1494 dev_dbg(&adapter->dev,
1495 "Found Winbond WPCD377I, ignoring\n");
1496 return -ENODEV;
1497 }
1498 type_name = "lm85";
1499 break;
1500 }
1501 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1502 switch (verstep) {
1503 case LM85_VERSTEP_ADM1027:
1504 type_name = "adm1027";
1505 break;
1506 case LM85_VERSTEP_ADT7463:
1507 case LM85_VERSTEP_ADT7463C:
1508 type_name = "adt7463";
1509 break;
1510 case LM85_VERSTEP_ADT7468_1:
1511 case LM85_VERSTEP_ADT7468_2:
1512 type_name = "adt7468";
1513 break;
1514 }
1515 } else if (company == LM85_COMPANY_SMSC) {
1516 switch (verstep) {
1517 case LM85_VERSTEP_EMC6D100_A0:
1518 case LM85_VERSTEP_EMC6D100_A1:
1519 /* Note: we can't tell a '100 from a '101 */
1520 type_name = "emc6d100";
1521 break;
1522 case LM85_VERSTEP_EMC6D102:
1523 type_name = "emc6d102";
1524 break;
1525 case LM85_VERSTEP_EMC6D103_A0:
1526 case LM85_VERSTEP_EMC6D103_A1:
1527 type_name = "emc6d103";
1528 break;
1529 case LM85_VERSTEP_EMC6D103S:
1530 type_name = "emc6d103s";
1531 break;
1532 }
1533 }
1534
1535 if (!type_name)
1536 return -ENODEV;
1537
1538 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539
1540 return 0;
1541 }
1542
1543 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1544 {
1545 struct device *dev = &client->dev;
1546 struct device *hwmon_dev;
1547 struct lm85_data *data;
1548 int idx = 0;
1549
1550 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1551 if (!data)
1552 return -ENOMEM;
1553
1554 data->client = client;
1555 data->type = id->driver_data;
1556 mutex_init(&data->update_lock);
1557
1558 /* Fill in the chip specific driver values */
1559 switch (data->type) {
1560 case adm1027:
1561 case adt7463:
1562 case adt7468:
1563 case emc6d100:
1564 case emc6d102:
1565 case emc6d103:
1566 case emc6d103s:
1567 data->freq_map = adm1027_freq_map;
1568 break;
1569 default:
1570 data->freq_map = lm85_freq_map;
1571 }
1572
1573 /* Set the VRM version */
1574 data->vrm = vid_which_vrm();
1575
1576 /* Initialize the LM85 chip */
1577 lm85_init_client(client);
1578
1579 /* sysfs hooks */
1580 data->groups[idx++] = &lm85_group;
1581
1582 /* minctl and temp_off exist on all chips except emc6d103s */
1583 if (data->type != emc6d103s) {
1584 data->groups[idx++] = &lm85_group_minctl;
1585 data->groups[idx++] = &lm85_group_temp_off;
1586 }
1587
1588 /*
1589 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1590 * as a sixth digital VID input rather than an analog input.
1591 */
1592 if (data->type == adt7463 || data->type == adt7468) {
1593 u8 vid = lm85_read_value(client, LM85_REG_VID);
1594 if (vid & 0x80)
1595 data->has_vid5 = true;
1596 }
1597
1598 if (!data->has_vid5)
1599 data->groups[idx++] = &lm85_group_in4;
1600
1601 /* The EMC6D100 has 3 additional voltage inputs */
1602 if (data->type == emc6d100)
1603 data->groups[idx++] = &lm85_group_in567;
1604
1605 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1606 data, data->groups);
1607 return PTR_ERR_OR_ZERO(hwmon_dev);
1608 }
1609
1610 static const struct i2c_device_id lm85_id[] = {
1611 { "adm1027", adm1027 },
1612 { "adt7463", adt7463 },
1613 { "adt7468", adt7468 },
1614 { "lm85", lm85 },
1615 { "lm85b", lm85 },
1616 { "lm85c", lm85 },
1617 { "emc6d100", emc6d100 },
1618 { "emc6d101", emc6d100 },
1619 { "emc6d102", emc6d102 },
1620 { "emc6d103", emc6d103 },
1621 { "emc6d103s", emc6d103s },
1622 { }
1623 };
1624 MODULE_DEVICE_TABLE(i2c, lm85_id);
1625
1626 static struct i2c_driver lm85_driver = {
1627 .class = I2C_CLASS_HWMON,
1628 .driver = {
1629 .name = "lm85",
1630 },
1631 .probe = lm85_probe,
1632 .id_table = lm85_id,
1633 .detect = lm85_detect,
1634 .address_list = normal_i2c,
1635 };
1636
1637 module_i2c_driver(lm85_driver);
1638
1639 MODULE_LICENSE("GPL");
1640 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1641 "Margit Schubert-While <margitsw@t-online.de>, "
1642 "Justin Thiessen <jthiessen@penguincomputing.com>");
1643 MODULE_DESCRIPTION("LM85-B, LM85-C driver");