]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/hwmon/lm90.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / drivers / hwmon / lm90.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can
39 * be at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is
40 * otherwise similar to MAX6657/MAX6658/MAX6659. Extended range is available
41 * by setting the configuration register accordingly, and is done during
42 * initialization. Extended precision is only available at conversion rates
43 * of 1 Hz and slower. Note that extended precision is not enabled by
44 * default, as this driver initializes all chips to 2 Hz by design.
45 *
46 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
47 * MAX6692 chips made by Maxim. These are again similar to the LM86,
48 * but they use unsigned temperature values and can report temperatures
49 * from 0 to 145 degrees.
50 *
51 * This driver also supports the MAX6680 and MAX6681, two other sensor
52 * chips made by Maxim. These are quite similar to the other Maxim
53 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
54 * be treated identically.
55 *
56 * This driver also supports the MAX6695 and MAX6696, two other sensor
57 * chips made by Maxim. These are also quite similar to other Maxim
58 * chips, but support three temperature sensors instead of two. MAX6695
59 * and MAX6696 only differ in the pinout so they can be treated identically.
60 *
61 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
62 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
63 * and extended mode. They are mostly compatible with LM90 except for a data
64 * format difference for the temperature value registers.
65 *
66 * This driver also supports the SA56004 from Philips. This device is
67 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
68 *
69 * This driver also supports the G781 from GMT. This device is compatible
70 * with the ADM1032.
71 *
72 * This driver also supports TMP451 from Texas Instruments. This device is
73 * supported in both compatibility and extended mode. It's mostly compatible
74 * with ADT7461 except for local temperature low byte register and max
75 * conversion rate.
76 *
77 * Since the LM90 was the first chipset supported by this driver, most
78 * comments will refer to this chipset, but are actually general and
79 * concern all supported chipsets, unless mentioned otherwise.
80 */
81
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/slab.h>
85 #include <linux/jiffies.h>
86 #include <linux/i2c.h>
87 #include <linux/hwmon.h>
88 #include <linux/err.h>
89 #include <linux/mutex.h>
90 #include <linux/of_device.h>
91 #include <linux/sysfs.h>
92 #include <linux/interrupt.h>
93 #include <linux/regulator/consumer.h>
94
95 /*
96 * Addresses to scan
97 * Address is fully defined internally and cannot be changed except for
98 * MAX6659, MAX6680 and MAX6681.
99 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
100 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
101 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
102 * have address 0x4d.
103 * MAX6647 has address 0x4e.
104 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
105 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
106 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
107 * SA56004 can have address 0x48 through 0x4F.
108 */
109
110 static const unsigned short normal_i2c[] = {
111 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
112 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
113
114 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
115 max6646, w83l771, max6696, sa56004, g781, tmp451, max6654 };
116
117 /*
118 * The LM90 registers
119 */
120
121 #define LM90_REG_R_MAN_ID 0xFE
122 #define LM90_REG_R_CHIP_ID 0xFF
123 #define LM90_REG_R_CONFIG1 0x03
124 #define LM90_REG_W_CONFIG1 0x09
125 #define LM90_REG_R_CONFIG2 0xBF
126 #define LM90_REG_W_CONFIG2 0xBF
127 #define LM90_REG_R_CONVRATE 0x04
128 #define LM90_REG_W_CONVRATE 0x0A
129 #define LM90_REG_R_STATUS 0x02
130 #define LM90_REG_R_LOCAL_TEMP 0x00
131 #define LM90_REG_R_LOCAL_HIGH 0x05
132 #define LM90_REG_W_LOCAL_HIGH 0x0B
133 #define LM90_REG_R_LOCAL_LOW 0x06
134 #define LM90_REG_W_LOCAL_LOW 0x0C
135 #define LM90_REG_R_LOCAL_CRIT 0x20
136 #define LM90_REG_W_LOCAL_CRIT 0x20
137 #define LM90_REG_R_REMOTE_TEMPH 0x01
138 #define LM90_REG_R_REMOTE_TEMPL 0x10
139 #define LM90_REG_R_REMOTE_OFFSH 0x11
140 #define LM90_REG_W_REMOTE_OFFSH 0x11
141 #define LM90_REG_R_REMOTE_OFFSL 0x12
142 #define LM90_REG_W_REMOTE_OFFSL 0x12
143 #define LM90_REG_R_REMOTE_HIGHH 0x07
144 #define LM90_REG_W_REMOTE_HIGHH 0x0D
145 #define LM90_REG_R_REMOTE_HIGHL 0x13
146 #define LM90_REG_W_REMOTE_HIGHL 0x13
147 #define LM90_REG_R_REMOTE_LOWH 0x08
148 #define LM90_REG_W_REMOTE_LOWH 0x0E
149 #define LM90_REG_R_REMOTE_LOWL 0x14
150 #define LM90_REG_W_REMOTE_LOWL 0x14
151 #define LM90_REG_R_REMOTE_CRIT 0x19
152 #define LM90_REG_W_REMOTE_CRIT 0x19
153 #define LM90_REG_R_TCRIT_HYST 0x21
154 #define LM90_REG_W_TCRIT_HYST 0x21
155
156 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
157
158 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
159 #define MAX6696_REG_R_STATUS2 0x12
160 #define MAX6659_REG_R_REMOTE_EMERG 0x16
161 #define MAX6659_REG_W_REMOTE_EMERG 0x16
162 #define MAX6659_REG_R_LOCAL_EMERG 0x17
163 #define MAX6659_REG_W_LOCAL_EMERG 0x17
164
165 /* SA56004 registers */
166
167 #define SA56004_REG_R_LOCAL_TEMPL 0x22
168
169 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
170
171 /* TMP451 registers */
172 #define TMP451_REG_R_LOCAL_TEMPL 0x15
173
174 /*
175 * Device flags
176 */
177 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
178 /* Device features */
179 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
180 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
181 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
182 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
183 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
184 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
185 #define LM90_PAUSE_FOR_CONFIG (1 << 8) /* Pause conversion for config */
186
187 /* LM90 status */
188 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */
189 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */
190 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */
191 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */
192 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */
193 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */
194 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */
195
196 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */
197 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */
198 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */
199 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */
200 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */
201 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */
202 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */
203
204 /*
205 * Driver data (common to all clients)
206 */
207
208 static const struct i2c_device_id lm90_id[] = {
209 { "adm1032", adm1032 },
210 { "adt7461", adt7461 },
211 { "adt7461a", adt7461 },
212 { "g781", g781 },
213 { "lm90", lm90 },
214 { "lm86", lm86 },
215 { "lm89", lm86 },
216 { "lm99", lm99 },
217 { "max6646", max6646 },
218 { "max6647", max6646 },
219 { "max6649", max6646 },
220 { "max6654", max6654 },
221 { "max6657", max6657 },
222 { "max6658", max6657 },
223 { "max6659", max6659 },
224 { "max6680", max6680 },
225 { "max6681", max6680 },
226 { "max6695", max6696 },
227 { "max6696", max6696 },
228 { "nct1008", adt7461 },
229 { "w83l771", w83l771 },
230 { "sa56004", sa56004 },
231 { "tmp451", tmp451 },
232 { }
233 };
234 MODULE_DEVICE_TABLE(i2c, lm90_id);
235
236 static const struct of_device_id __maybe_unused lm90_of_match[] = {
237 {
238 .compatible = "adi,adm1032",
239 .data = (void *)adm1032
240 },
241 {
242 .compatible = "adi,adt7461",
243 .data = (void *)adt7461
244 },
245 {
246 .compatible = "adi,adt7461a",
247 .data = (void *)adt7461
248 },
249 {
250 .compatible = "gmt,g781",
251 .data = (void *)g781
252 },
253 {
254 .compatible = "national,lm90",
255 .data = (void *)lm90
256 },
257 {
258 .compatible = "national,lm86",
259 .data = (void *)lm86
260 },
261 {
262 .compatible = "national,lm89",
263 .data = (void *)lm86
264 },
265 {
266 .compatible = "national,lm99",
267 .data = (void *)lm99
268 },
269 {
270 .compatible = "dallas,max6646",
271 .data = (void *)max6646
272 },
273 {
274 .compatible = "dallas,max6647",
275 .data = (void *)max6646
276 },
277 {
278 .compatible = "dallas,max6649",
279 .data = (void *)max6646
280 },
281 {
282 .compatible = "dallas,max6654",
283 .data = (void *)max6654
284 },
285 {
286 .compatible = "dallas,max6657",
287 .data = (void *)max6657
288 },
289 {
290 .compatible = "dallas,max6658",
291 .data = (void *)max6657
292 },
293 {
294 .compatible = "dallas,max6659",
295 .data = (void *)max6659
296 },
297 {
298 .compatible = "dallas,max6680",
299 .data = (void *)max6680
300 },
301 {
302 .compatible = "dallas,max6681",
303 .data = (void *)max6680
304 },
305 {
306 .compatible = "dallas,max6695",
307 .data = (void *)max6696
308 },
309 {
310 .compatible = "dallas,max6696",
311 .data = (void *)max6696
312 },
313 {
314 .compatible = "onnn,nct1008",
315 .data = (void *)adt7461
316 },
317 {
318 .compatible = "winbond,w83l771",
319 .data = (void *)w83l771
320 },
321 {
322 .compatible = "nxp,sa56004",
323 .data = (void *)sa56004
324 },
325 {
326 .compatible = "ti,tmp451",
327 .data = (void *)tmp451
328 },
329 { },
330 };
331 MODULE_DEVICE_TABLE(of, lm90_of_match);
332
333 /*
334 * chip type specific parameters
335 */
336 struct lm90_params {
337 u32 flags; /* Capabilities */
338 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
339 /* Upper 8 bits for max6695/96 */
340 u8 max_convrate; /* Maximum conversion rate register value */
341 u8 reg_local_ext; /* Extended local temp register (optional) */
342 };
343
344 static const struct lm90_params lm90_params[] = {
345 [adm1032] = {
346 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
347 | LM90_HAVE_BROKEN_ALERT,
348 .alert_alarms = 0x7c,
349 .max_convrate = 10,
350 },
351 [adt7461] = {
352 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
353 | LM90_HAVE_BROKEN_ALERT,
354 .alert_alarms = 0x7c,
355 .max_convrate = 10,
356 },
357 [g781] = {
358 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
359 | LM90_HAVE_BROKEN_ALERT,
360 .alert_alarms = 0x7c,
361 .max_convrate = 8,
362 },
363 [lm86] = {
364 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
365 .alert_alarms = 0x7b,
366 .max_convrate = 9,
367 },
368 [lm90] = {
369 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
370 .alert_alarms = 0x7b,
371 .max_convrate = 9,
372 },
373 [lm99] = {
374 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
375 .alert_alarms = 0x7b,
376 .max_convrate = 9,
377 },
378 [max6646] = {
379 .alert_alarms = 0x7c,
380 .max_convrate = 6,
381 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
382 },
383 [max6654] = {
384 .alert_alarms = 0x7c,
385 .max_convrate = 7,
386 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
387 },
388 [max6657] = {
389 .flags = LM90_PAUSE_FOR_CONFIG,
390 .alert_alarms = 0x7c,
391 .max_convrate = 8,
392 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
393 },
394 [max6659] = {
395 .flags = LM90_HAVE_EMERGENCY,
396 .alert_alarms = 0x7c,
397 .max_convrate = 8,
398 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
399 },
400 [max6680] = {
401 .flags = LM90_HAVE_OFFSET,
402 .alert_alarms = 0x7c,
403 .max_convrate = 7,
404 },
405 [max6696] = {
406 .flags = LM90_HAVE_EMERGENCY
407 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
408 .alert_alarms = 0x1c7c,
409 .max_convrate = 6,
410 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
411 },
412 [w83l771] = {
413 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
414 .alert_alarms = 0x7c,
415 .max_convrate = 8,
416 },
417 [sa56004] = {
418 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
419 .alert_alarms = 0x7b,
420 .max_convrate = 9,
421 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
422 },
423 [tmp451] = {
424 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
425 | LM90_HAVE_BROKEN_ALERT,
426 .alert_alarms = 0x7c,
427 .max_convrate = 9,
428 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
429 },
430 };
431
432 /*
433 * TEMP8 register index
434 */
435 enum lm90_temp8_reg_index {
436 LOCAL_LOW = 0,
437 LOCAL_HIGH,
438 LOCAL_CRIT,
439 REMOTE_CRIT,
440 LOCAL_EMERG, /* max6659 and max6695/96 */
441 REMOTE_EMERG, /* max6659 and max6695/96 */
442 REMOTE2_CRIT, /* max6695/96 only */
443 REMOTE2_EMERG, /* max6695/96 only */
444 TEMP8_REG_NUM
445 };
446
447 /*
448 * TEMP11 register index
449 */
450 enum lm90_temp11_reg_index {
451 REMOTE_TEMP = 0,
452 REMOTE_LOW,
453 REMOTE_HIGH,
454 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
455 LOCAL_TEMP,
456 REMOTE2_TEMP, /* max6695/96 only */
457 REMOTE2_LOW, /* max6695/96 only */
458 REMOTE2_HIGH, /* max6695/96 only */
459 TEMP11_REG_NUM
460 };
461
462 /*
463 * Client data (each client gets its own)
464 */
465
466 struct lm90_data {
467 struct i2c_client *client;
468 u32 channel_config[4];
469 struct hwmon_channel_info temp_info;
470 const struct hwmon_channel_info *info[3];
471 struct hwmon_chip_info chip;
472 struct mutex update_lock;
473 bool valid; /* true if register values are valid */
474 unsigned long last_updated; /* in jiffies */
475 int kind;
476 u32 flags;
477
478 unsigned int update_interval; /* in milliseconds */
479
480 u8 config; /* Current configuration register value */
481 u8 config_orig; /* Original configuration register value */
482 u8 convrate_orig; /* Original conversion rate register value */
483 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
484 /* Upper 8 bits for max6695/96 */
485 u8 max_convrate; /* Maximum conversion rate */
486 u8 reg_local_ext; /* local extension register offset */
487
488 /* registers values */
489 s8 temp8[TEMP8_REG_NUM];
490 s16 temp11[TEMP11_REG_NUM];
491 u8 temp_hyst;
492 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
493 };
494
495 /*
496 * Support functions
497 */
498
499 /*
500 * The ADM1032 supports PEC but not on write byte transactions, so we need
501 * to explicitly ask for a transaction without PEC.
502 */
503 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
504 {
505 return i2c_smbus_xfer(client->adapter, client->addr,
506 client->flags & ~I2C_CLIENT_PEC,
507 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
508 }
509
510 /*
511 * It is assumed that client->update_lock is held (unless we are in
512 * detection or initialization steps). This matters when PEC is enabled,
513 * because we don't want the address pointer to change between the write
514 * byte and the read byte transactions.
515 */
516 static int lm90_read_reg(struct i2c_client *client, u8 reg)
517 {
518 int err;
519
520 if (client->flags & I2C_CLIENT_PEC) {
521 err = adm1032_write_byte(client, reg);
522 if (err >= 0)
523 err = i2c_smbus_read_byte(client);
524 } else
525 err = i2c_smbus_read_byte_data(client, reg);
526
527 return err;
528 }
529
530 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl)
531 {
532 int oldh, newh, l;
533
534 /*
535 * There is a trick here. We have to read two registers to have the
536 * sensor temperature, but we have to beware a conversion could occur
537 * between the readings. The datasheet says we should either use
538 * the one-shot conversion register, which we don't want to do
539 * (disables hardware monitoring) or monitor the busy bit, which is
540 * impossible (we can't read the values and monitor that bit at the
541 * exact same time). So the solution used here is to read the high
542 * byte once, then the low byte, then the high byte again. If the new
543 * high byte matches the old one, then we have a valid reading. Else
544 * we have to read the low byte again, and now we believe we have a
545 * correct reading.
546 */
547 oldh = lm90_read_reg(client, regh);
548 if (oldh < 0)
549 return oldh;
550 l = lm90_read_reg(client, regl);
551 if (l < 0)
552 return l;
553 newh = lm90_read_reg(client, regh);
554 if (newh < 0)
555 return newh;
556 if (oldh != newh) {
557 l = lm90_read_reg(client, regl);
558 if (l < 0)
559 return l;
560 }
561 return (newh << 8) | l;
562 }
563
564 static int lm90_update_confreg(struct lm90_data *data, u8 config)
565 {
566 if (data->config != config) {
567 int err;
568
569 err = i2c_smbus_write_byte_data(data->client,
570 LM90_REG_W_CONFIG1,
571 config);
572 if (err)
573 return err;
574 data->config = config;
575 }
576 return 0;
577 }
578
579 /*
580 * client->update_lock must be held when calling this function (unless we are
581 * in detection or initialization steps), and while a remote channel other
582 * than channel 0 is selected. Also, calling code must make sure to re-select
583 * external channel 0 before releasing the lock. This is necessary because
584 * various registers have different meanings as a result of selecting a
585 * non-default remote channel.
586 */
587 static int lm90_select_remote_channel(struct lm90_data *data, int channel)
588 {
589 int err = 0;
590
591 if (data->kind == max6696) {
592 u8 config = data->config & ~0x08;
593
594 if (channel)
595 config |= 0x08;
596 err = lm90_update_confreg(data, config);
597 }
598 return err;
599 }
600
601 static int lm90_write_convrate(struct lm90_data *data, int val)
602 {
603 u8 config = data->config;
604 int err;
605
606 /* Save config and pause conversion */
607 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
608 err = lm90_update_confreg(data, config | 0x40);
609 if (err < 0)
610 return err;
611 }
612
613 /* Set conv rate */
614 err = i2c_smbus_write_byte_data(data->client, LM90_REG_W_CONVRATE, val);
615
616 /* Revert change to config */
617 lm90_update_confreg(data, config);
618
619 return err;
620 }
621
622 /*
623 * Set conversion rate.
624 * client->update_lock must be held when calling this function (unless we are
625 * in detection or initialization steps).
626 */
627 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
628 unsigned int interval)
629 {
630 unsigned int update_interval;
631 int i, err;
632
633 /* Shift calculations to avoid rounding errors */
634 interval <<= 6;
635
636 /* find the nearest update rate */
637 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
638 i < data->max_convrate; i++, update_interval >>= 1)
639 if (interval >= update_interval * 3 / 4)
640 break;
641
642 err = lm90_write_convrate(data, i);
643 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
644 return err;
645 }
646
647 static int lm90_update_limits(struct device *dev)
648 {
649 struct lm90_data *data = dev_get_drvdata(dev);
650 struct i2c_client *client = data->client;
651 int val;
652
653 val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT);
654 if (val < 0)
655 return val;
656 data->temp8[LOCAL_CRIT] = val;
657
658 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
659 if (val < 0)
660 return val;
661 data->temp8[REMOTE_CRIT] = val;
662
663 val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST);
664 if (val < 0)
665 return val;
666 data->temp_hyst = val;
667
668 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
669 if (val < 0)
670 return val;
671 data->temp11[REMOTE_LOW] = val << 8;
672
673 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
674 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL);
675 if (val < 0)
676 return val;
677 data->temp11[REMOTE_LOW] |= val;
678 }
679
680 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
681 if (val < 0)
682 return val;
683 data->temp11[REMOTE_HIGH] = val << 8;
684
685 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
686 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL);
687 if (val < 0)
688 return val;
689 data->temp11[REMOTE_HIGH] |= val;
690 }
691
692 if (data->flags & LM90_HAVE_OFFSET) {
693 val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH,
694 LM90_REG_R_REMOTE_OFFSL);
695 if (val < 0)
696 return val;
697 data->temp11[REMOTE_OFFSET] = val;
698 }
699
700 if (data->flags & LM90_HAVE_EMERGENCY) {
701 val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG);
702 if (val < 0)
703 return val;
704 data->temp8[LOCAL_EMERG] = val;
705
706 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
707 if (val < 0)
708 return val;
709 data->temp8[REMOTE_EMERG] = val;
710 }
711
712 if (data->kind == max6696) {
713 val = lm90_select_remote_channel(data, 1);
714 if (val < 0)
715 return val;
716
717 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
718 if (val < 0)
719 return val;
720 data->temp8[REMOTE2_CRIT] = val;
721
722 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
723 if (val < 0)
724 return val;
725 data->temp8[REMOTE2_EMERG] = val;
726
727 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
728 if (val < 0)
729 return val;
730 data->temp11[REMOTE2_LOW] = val << 8;
731
732 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
733 if (val < 0)
734 return val;
735 data->temp11[REMOTE2_HIGH] = val << 8;
736
737 lm90_select_remote_channel(data, 0);
738 }
739
740 return 0;
741 }
742
743 static int lm90_update_device(struct device *dev)
744 {
745 struct lm90_data *data = dev_get_drvdata(dev);
746 struct i2c_client *client = data->client;
747 unsigned long next_update;
748 int val;
749
750 if (!data->valid) {
751 val = lm90_update_limits(dev);
752 if (val < 0)
753 return val;
754 }
755
756 next_update = data->last_updated +
757 msecs_to_jiffies(data->update_interval);
758 if (time_after(jiffies, next_update) || !data->valid) {
759 dev_dbg(&client->dev, "Updating lm90 data.\n");
760
761 data->valid = false;
762
763 val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW);
764 if (val < 0)
765 return val;
766 data->temp8[LOCAL_LOW] = val;
767
768 val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH);
769 if (val < 0)
770 return val;
771 data->temp8[LOCAL_HIGH] = val;
772
773 if (data->reg_local_ext) {
774 val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
775 data->reg_local_ext);
776 if (val < 0)
777 return val;
778 data->temp11[LOCAL_TEMP] = val;
779 } else {
780 val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP);
781 if (val < 0)
782 return val;
783 data->temp11[LOCAL_TEMP] = val << 8;
784 }
785 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
786 LM90_REG_R_REMOTE_TEMPL);
787 if (val < 0)
788 return val;
789 data->temp11[REMOTE_TEMP] = val;
790
791 val = lm90_read_reg(client, LM90_REG_R_STATUS);
792 if (val < 0)
793 return val;
794 data->alarms = val; /* lower 8 bit of alarms */
795
796 if (data->kind == max6696) {
797 val = lm90_select_remote_channel(data, 1);
798 if (val < 0)
799 return val;
800
801 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
802 LM90_REG_R_REMOTE_TEMPL);
803 if (val < 0) {
804 lm90_select_remote_channel(data, 0);
805 return val;
806 }
807 data->temp11[REMOTE2_TEMP] = val;
808
809 lm90_select_remote_channel(data, 0);
810
811 val = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
812 if (val < 0)
813 return val;
814 data->alarms |= val << 8;
815 }
816
817 /*
818 * Re-enable ALERT# output if it was originally enabled and
819 * relevant alarms are all clear
820 */
821 if (!(data->config_orig & 0x80) &&
822 !(data->alarms & data->alert_alarms)) {
823 if (data->config & 0x80) {
824 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
825 lm90_update_confreg(data, data->config & ~0x80);
826 }
827 }
828
829 data->last_updated = jiffies;
830 data->valid = true;
831 }
832
833 return 0;
834 }
835
836 /*
837 * Conversions
838 * For local temperatures and limits, critical limits and the hysteresis
839 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
840 * For remote temperatures and limits, it uses signed 11-bit values with
841 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
842 * Maxim chips use unsigned values.
843 */
844
845 static inline int temp_from_s8(s8 val)
846 {
847 return val * 1000;
848 }
849
850 static inline int temp_from_u8(u8 val)
851 {
852 return val * 1000;
853 }
854
855 static inline int temp_from_s16(s16 val)
856 {
857 return val / 32 * 125;
858 }
859
860 static inline int temp_from_u16(u16 val)
861 {
862 return val / 32 * 125;
863 }
864
865 static s8 temp_to_s8(long val)
866 {
867 if (val <= -128000)
868 return -128;
869 if (val >= 127000)
870 return 127;
871 if (val < 0)
872 return (val - 500) / 1000;
873 return (val + 500) / 1000;
874 }
875
876 static u8 temp_to_u8(long val)
877 {
878 if (val <= 0)
879 return 0;
880 if (val >= 255000)
881 return 255;
882 return (val + 500) / 1000;
883 }
884
885 static s16 temp_to_s16(long val)
886 {
887 if (val <= -128000)
888 return 0x8000;
889 if (val >= 127875)
890 return 0x7FE0;
891 if (val < 0)
892 return (val - 62) / 125 * 32;
893 return (val + 62) / 125 * 32;
894 }
895
896 static u8 hyst_to_reg(long val)
897 {
898 if (val <= 0)
899 return 0;
900 if (val >= 30500)
901 return 31;
902 return (val + 500) / 1000;
903 }
904
905 /*
906 * ADT7461 in compatibility mode is almost identical to LM90 except that
907 * attempts to write values that are outside the range 0 < temp < 127 are
908 * treated as the boundary value.
909 *
910 * ADT7461 in "extended mode" operation uses unsigned integers offset by
911 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
912 */
913 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
914 {
915 if (data->flags & LM90_FLAG_ADT7461_EXT)
916 return (val - 64) * 1000;
917 return temp_from_s8(val);
918 }
919
920 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
921 {
922 if (data->flags & LM90_FLAG_ADT7461_EXT)
923 return (val - 0x4000) / 64 * 250;
924 return temp_from_s16(val);
925 }
926
927 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
928 {
929 if (data->flags & LM90_FLAG_ADT7461_EXT) {
930 if (val <= -64000)
931 return 0;
932 if (val >= 191000)
933 return 0xFF;
934 return (val + 500 + 64000) / 1000;
935 }
936 if (val <= 0)
937 return 0;
938 if (val >= 127000)
939 return 127;
940 return (val + 500) / 1000;
941 }
942
943 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
944 {
945 if (data->flags & LM90_FLAG_ADT7461_EXT) {
946 if (val <= -64000)
947 return 0;
948 if (val >= 191750)
949 return 0xFFC0;
950 return (val + 64000 + 125) / 250 * 64;
951 }
952 if (val <= 0)
953 return 0;
954 if (val >= 127750)
955 return 0x7FC0;
956 return (val + 125) / 250 * 64;
957 }
958
959 /* pec used for ADM1032 only */
960 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
961 char *buf)
962 {
963 struct i2c_client *client = to_i2c_client(dev);
964
965 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
966 }
967
968 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
969 const char *buf, size_t count)
970 {
971 struct i2c_client *client = to_i2c_client(dev);
972 long val;
973 int err;
974
975 err = kstrtol(buf, 10, &val);
976 if (err < 0)
977 return err;
978
979 switch (val) {
980 case 0:
981 client->flags &= ~I2C_CLIENT_PEC;
982 break;
983 case 1:
984 client->flags |= I2C_CLIENT_PEC;
985 break;
986 default:
987 return -EINVAL;
988 }
989
990 return count;
991 }
992
993 static DEVICE_ATTR_RW(pec);
994
995 static int lm90_get_temp11(struct lm90_data *data, int index)
996 {
997 s16 temp11 = data->temp11[index];
998 int temp;
999
1000 if (data->kind == adt7461 || data->kind == tmp451)
1001 temp = temp_from_u16_adt7461(data, temp11);
1002 else if (data->kind == max6646)
1003 temp = temp_from_u16(temp11);
1004 else
1005 temp = temp_from_s16(temp11);
1006
1007 /* +16 degrees offset for temp2 for the LM99 */
1008 if (data->kind == lm99 && index <= 2)
1009 temp += 16000;
1010
1011 return temp;
1012 }
1013
1014 static int lm90_set_temp11(struct lm90_data *data, int index, long val)
1015 {
1016 static struct reg {
1017 u8 high;
1018 u8 low;
1019 } reg[] = {
1020 [REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
1021 [REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL },
1022 [REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL },
1023 [REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
1024 [REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }
1025 };
1026 struct i2c_client *client = data->client;
1027 struct reg *regp = &reg[index];
1028 int err;
1029
1030 /* +16 degrees offset for temp2 for the LM99 */
1031 if (data->kind == lm99 && index <= 2)
1032 val -= 16000;
1033
1034 if (data->kind == adt7461 || data->kind == tmp451)
1035 data->temp11[index] = temp_to_u16_adt7461(data, val);
1036 else if (data->kind == max6646)
1037 data->temp11[index] = temp_to_u8(val) << 8;
1038 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1039 data->temp11[index] = temp_to_s16(val);
1040 else
1041 data->temp11[index] = temp_to_s8(val) << 8;
1042
1043 lm90_select_remote_channel(data, index >= 3);
1044 err = i2c_smbus_write_byte_data(client, regp->high,
1045 data->temp11[index] >> 8);
1046 if (err < 0)
1047 return err;
1048 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1049 err = i2c_smbus_write_byte_data(client, regp->low,
1050 data->temp11[index] & 0xff);
1051
1052 lm90_select_remote_channel(data, 0);
1053 return err;
1054 }
1055
1056 static int lm90_get_temp8(struct lm90_data *data, int index)
1057 {
1058 s8 temp8 = data->temp8[index];
1059 int temp;
1060
1061 if (data->kind == adt7461 || data->kind == tmp451)
1062 temp = temp_from_u8_adt7461(data, temp8);
1063 else if (data->kind == max6646)
1064 temp = temp_from_u8(temp8);
1065 else
1066 temp = temp_from_s8(temp8);
1067
1068 /* +16 degrees offset for temp2 for the LM99 */
1069 if (data->kind == lm99 && index == 3)
1070 temp += 16000;
1071
1072 return temp;
1073 }
1074
1075 static int lm90_set_temp8(struct lm90_data *data, int index, long val)
1076 {
1077 static const u8 reg[TEMP8_REG_NUM] = {
1078 LM90_REG_W_LOCAL_LOW,
1079 LM90_REG_W_LOCAL_HIGH,
1080 LM90_REG_W_LOCAL_CRIT,
1081 LM90_REG_W_REMOTE_CRIT,
1082 MAX6659_REG_W_LOCAL_EMERG,
1083 MAX6659_REG_W_REMOTE_EMERG,
1084 LM90_REG_W_REMOTE_CRIT,
1085 MAX6659_REG_W_REMOTE_EMERG,
1086 };
1087 struct i2c_client *client = data->client;
1088 int err;
1089
1090 /* +16 degrees offset for temp2 for the LM99 */
1091 if (data->kind == lm99 && index == 3)
1092 val -= 16000;
1093
1094 if (data->kind == adt7461 || data->kind == tmp451)
1095 data->temp8[index] = temp_to_u8_adt7461(data, val);
1096 else if (data->kind == max6646)
1097 data->temp8[index] = temp_to_u8(val);
1098 else
1099 data->temp8[index] = temp_to_s8(val);
1100
1101 lm90_select_remote_channel(data, index >= 6);
1102 err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]);
1103 lm90_select_remote_channel(data, 0);
1104
1105 return err;
1106 }
1107
1108 static int lm90_get_temphyst(struct lm90_data *data, int index)
1109 {
1110 int temp;
1111
1112 if (data->kind == adt7461 || data->kind == tmp451)
1113 temp = temp_from_u8_adt7461(data, data->temp8[index]);
1114 else if (data->kind == max6646)
1115 temp = temp_from_u8(data->temp8[index]);
1116 else
1117 temp = temp_from_s8(data->temp8[index]);
1118
1119 /* +16 degrees offset for temp2 for the LM99 */
1120 if (data->kind == lm99 && index == 3)
1121 temp += 16000;
1122
1123 return temp - temp_from_s8(data->temp_hyst);
1124 }
1125
1126 static int lm90_set_temphyst(struct lm90_data *data, long val)
1127 {
1128 struct i2c_client *client = data->client;
1129 int temp;
1130 int err;
1131
1132 if (data->kind == adt7461 || data->kind == tmp451)
1133 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
1134 else if (data->kind == max6646)
1135 temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
1136 else
1137 temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
1138
1139 data->temp_hyst = hyst_to_reg(temp - val);
1140 err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
1141 data->temp_hyst);
1142 return err;
1143 }
1144
1145 static const u8 lm90_temp_index[3] = {
1146 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1147 };
1148
1149 static const u8 lm90_temp_min_index[3] = {
1150 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1151 };
1152
1153 static const u8 lm90_temp_max_index[3] = {
1154 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1155 };
1156
1157 static const u8 lm90_temp_crit_index[3] = {
1158 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1159 };
1160
1161 static const u8 lm90_temp_emerg_index[3] = {
1162 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1163 };
1164
1165 static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 };
1166 static const u8 lm90_max_alarm_bits[3] = { 6, 4, 12 };
1167 static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 };
1168 static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 };
1169 static const u8 lm90_fault_bits[3] = { 0, 2, 10 };
1170
1171 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1172 {
1173 struct lm90_data *data = dev_get_drvdata(dev);
1174 int err;
1175
1176 mutex_lock(&data->update_lock);
1177 err = lm90_update_device(dev);
1178 mutex_unlock(&data->update_lock);
1179 if (err)
1180 return err;
1181
1182 switch (attr) {
1183 case hwmon_temp_input:
1184 *val = lm90_get_temp11(data, lm90_temp_index[channel]);
1185 break;
1186 case hwmon_temp_min_alarm:
1187 *val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1;
1188 break;
1189 case hwmon_temp_max_alarm:
1190 *val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1;
1191 break;
1192 case hwmon_temp_crit_alarm:
1193 *val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1;
1194 break;
1195 case hwmon_temp_emergency_alarm:
1196 *val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1;
1197 break;
1198 case hwmon_temp_fault:
1199 *val = (data->alarms >> lm90_fault_bits[channel]) & 1;
1200 break;
1201 case hwmon_temp_min:
1202 if (channel == 0)
1203 *val = lm90_get_temp8(data,
1204 lm90_temp_min_index[channel]);
1205 else
1206 *val = lm90_get_temp11(data,
1207 lm90_temp_min_index[channel]);
1208 break;
1209 case hwmon_temp_max:
1210 if (channel == 0)
1211 *val = lm90_get_temp8(data,
1212 lm90_temp_max_index[channel]);
1213 else
1214 *val = lm90_get_temp11(data,
1215 lm90_temp_max_index[channel]);
1216 break;
1217 case hwmon_temp_crit:
1218 *val = lm90_get_temp8(data, lm90_temp_crit_index[channel]);
1219 break;
1220 case hwmon_temp_crit_hyst:
1221 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]);
1222 break;
1223 case hwmon_temp_emergency:
1224 *val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]);
1225 break;
1226 case hwmon_temp_emergency_hyst:
1227 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]);
1228 break;
1229 case hwmon_temp_offset:
1230 *val = lm90_get_temp11(data, REMOTE_OFFSET);
1231 break;
1232 default:
1233 return -EOPNOTSUPP;
1234 }
1235 return 0;
1236 }
1237
1238 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1239 {
1240 struct lm90_data *data = dev_get_drvdata(dev);
1241 int err;
1242
1243 mutex_lock(&data->update_lock);
1244
1245 err = lm90_update_device(dev);
1246 if (err)
1247 goto error;
1248
1249 switch (attr) {
1250 case hwmon_temp_min:
1251 if (channel == 0)
1252 err = lm90_set_temp8(data,
1253 lm90_temp_min_index[channel],
1254 val);
1255 else
1256 err = lm90_set_temp11(data,
1257 lm90_temp_min_index[channel],
1258 val);
1259 break;
1260 case hwmon_temp_max:
1261 if (channel == 0)
1262 err = lm90_set_temp8(data,
1263 lm90_temp_max_index[channel],
1264 val);
1265 else
1266 err = lm90_set_temp11(data,
1267 lm90_temp_max_index[channel],
1268 val);
1269 break;
1270 case hwmon_temp_crit:
1271 err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val);
1272 break;
1273 case hwmon_temp_crit_hyst:
1274 err = lm90_set_temphyst(data, val);
1275 break;
1276 case hwmon_temp_emergency:
1277 err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val);
1278 break;
1279 case hwmon_temp_offset:
1280 err = lm90_set_temp11(data, REMOTE_OFFSET, val);
1281 break;
1282 default:
1283 err = -EOPNOTSUPP;
1284 break;
1285 }
1286 error:
1287 mutex_unlock(&data->update_lock);
1288
1289 return err;
1290 }
1291
1292 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1293 {
1294 switch (attr) {
1295 case hwmon_temp_input:
1296 case hwmon_temp_min_alarm:
1297 case hwmon_temp_max_alarm:
1298 case hwmon_temp_crit_alarm:
1299 case hwmon_temp_emergency_alarm:
1300 case hwmon_temp_emergency_hyst:
1301 case hwmon_temp_fault:
1302 return 0444;
1303 case hwmon_temp_min:
1304 case hwmon_temp_max:
1305 case hwmon_temp_crit:
1306 case hwmon_temp_emergency:
1307 case hwmon_temp_offset:
1308 return 0644;
1309 case hwmon_temp_crit_hyst:
1310 if (channel == 0)
1311 return 0644;
1312 return 0444;
1313 default:
1314 return 0;
1315 }
1316 }
1317
1318 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1319 {
1320 struct lm90_data *data = dev_get_drvdata(dev);
1321 int err;
1322
1323 mutex_lock(&data->update_lock);
1324 err = lm90_update_device(dev);
1325 mutex_unlock(&data->update_lock);
1326 if (err)
1327 return err;
1328
1329 switch (attr) {
1330 case hwmon_chip_update_interval:
1331 *val = data->update_interval;
1332 break;
1333 case hwmon_chip_alarms:
1334 *val = data->alarms;
1335 break;
1336 default:
1337 return -EOPNOTSUPP;
1338 }
1339
1340 return 0;
1341 }
1342
1343 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1344 {
1345 struct lm90_data *data = dev_get_drvdata(dev);
1346 struct i2c_client *client = data->client;
1347 int err;
1348
1349 mutex_lock(&data->update_lock);
1350
1351 err = lm90_update_device(dev);
1352 if (err)
1353 goto error;
1354
1355 switch (attr) {
1356 case hwmon_chip_update_interval:
1357 err = lm90_set_convrate(client, data,
1358 clamp_val(val, 0, 100000));
1359 break;
1360 default:
1361 err = -EOPNOTSUPP;
1362 break;
1363 }
1364 error:
1365 mutex_unlock(&data->update_lock);
1366
1367 return err;
1368 }
1369
1370 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1371 {
1372 switch (attr) {
1373 case hwmon_chip_update_interval:
1374 return 0644;
1375 case hwmon_chip_alarms:
1376 return 0444;
1377 default:
1378 return 0;
1379 }
1380 }
1381
1382 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1383 u32 attr, int channel, long *val)
1384 {
1385 switch (type) {
1386 case hwmon_chip:
1387 return lm90_chip_read(dev, attr, channel, val);
1388 case hwmon_temp:
1389 return lm90_temp_read(dev, attr, channel, val);
1390 default:
1391 return -EOPNOTSUPP;
1392 }
1393 }
1394
1395 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1396 u32 attr, int channel, long val)
1397 {
1398 switch (type) {
1399 case hwmon_chip:
1400 return lm90_chip_write(dev, attr, channel, val);
1401 case hwmon_temp:
1402 return lm90_temp_write(dev, attr, channel, val);
1403 default:
1404 return -EOPNOTSUPP;
1405 }
1406 }
1407
1408 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1409 u32 attr, int channel)
1410 {
1411 switch (type) {
1412 case hwmon_chip:
1413 return lm90_chip_is_visible(data, attr, channel);
1414 case hwmon_temp:
1415 return lm90_temp_is_visible(data, attr, channel);
1416 default:
1417 return 0;
1418 }
1419 }
1420
1421 /* Return 0 if detection is successful, -ENODEV otherwise */
1422 static int lm90_detect(struct i2c_client *client,
1423 struct i2c_board_info *info)
1424 {
1425 struct i2c_adapter *adapter = client->adapter;
1426 int address = client->addr;
1427 const char *name = NULL;
1428 int man_id, chip_id, config1, config2, convrate;
1429
1430 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1431 return -ENODEV;
1432
1433 /* detection and identification */
1434 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1435 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1436 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1437 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1438 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1439 return -ENODEV;
1440
1441 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1442 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1443 if (config2 < 0)
1444 return -ENODEV;
1445 } else
1446 config2 = 0; /* Make compiler happy */
1447
1448 if ((address == 0x4C || address == 0x4D)
1449 && man_id == 0x01) { /* National Semiconductor */
1450 if ((config1 & 0x2A) == 0x00
1451 && (config2 & 0xF8) == 0x00
1452 && convrate <= 0x09) {
1453 if (address == 0x4C
1454 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1455 name = "lm90";
1456 } else
1457 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1458 name = "lm99";
1459 dev_info(&adapter->dev,
1460 "Assuming LM99 chip at 0x%02x\n",
1461 address);
1462 dev_info(&adapter->dev,
1463 "If it is an LM89, instantiate it "
1464 "with the new_device sysfs "
1465 "interface\n");
1466 } else
1467 if (address == 0x4C
1468 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1469 name = "lm86";
1470 }
1471 }
1472 } else
1473 if ((address == 0x4C || address == 0x4D)
1474 && man_id == 0x41) { /* Analog Devices */
1475 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1476 && (config1 & 0x3F) == 0x00
1477 && convrate <= 0x0A) {
1478 name = "adm1032";
1479 /*
1480 * The ADM1032 supports PEC, but only if combined
1481 * transactions are not used.
1482 */
1483 if (i2c_check_functionality(adapter,
1484 I2C_FUNC_SMBUS_BYTE))
1485 info->flags |= I2C_CLIENT_PEC;
1486 } else
1487 if (chip_id == 0x51 /* ADT7461 */
1488 && (config1 & 0x1B) == 0x00
1489 && convrate <= 0x0A) {
1490 name = "adt7461";
1491 } else
1492 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1493 && (config1 & 0x1B) == 0x00
1494 && convrate <= 0x0A) {
1495 name = "adt7461a";
1496 }
1497 } else
1498 if (man_id == 0x4D) { /* Maxim */
1499 int emerg, emerg2, status2;
1500
1501 /*
1502 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1503 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1504 * exists, both readings will reflect the same value. Otherwise,
1505 * the readings will be different.
1506 */
1507 emerg = i2c_smbus_read_byte_data(client,
1508 MAX6659_REG_R_REMOTE_EMERG);
1509 man_id = i2c_smbus_read_byte_data(client,
1510 LM90_REG_R_MAN_ID);
1511 emerg2 = i2c_smbus_read_byte_data(client,
1512 MAX6659_REG_R_REMOTE_EMERG);
1513 status2 = i2c_smbus_read_byte_data(client,
1514 MAX6696_REG_R_STATUS2);
1515 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1516 return -ENODEV;
1517
1518 /*
1519 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1520 * register. Reading from that address will return the last
1521 * read value, which in our case is those of the man_id
1522 * register. Likewise, the config1 register seems to lack a
1523 * low nibble, so the value will be those of the previous
1524 * read, so in our case those of the man_id register.
1525 * MAX6659 has a third set of upper temperature limit registers.
1526 * Those registers also return values on MAX6657 and MAX6658,
1527 * thus the only way to detect MAX6659 is by its address.
1528 * For this reason it will be mis-detected as MAX6657 if its
1529 * address is 0x4C.
1530 */
1531 if (chip_id == man_id
1532 && (address == 0x4C || address == 0x4D || address == 0x4E)
1533 && (config1 & 0x1F) == (man_id & 0x0F)
1534 && convrate <= 0x09) {
1535 if (address == 0x4C)
1536 name = "max6657";
1537 else
1538 name = "max6659";
1539 } else
1540 /*
1541 * Even though MAX6695 and MAX6696 do not have a chip ID
1542 * register, reading it returns 0x01. Bit 4 of the config1
1543 * register is unused and should return zero when read. Bit 0 of
1544 * the status2 register is unused and should return zero when
1545 * read.
1546 *
1547 * MAX6695 and MAX6696 have an additional set of temperature
1548 * limit registers. We can detect those chips by checking if
1549 * one of those registers exists.
1550 */
1551 if (chip_id == 0x01
1552 && (config1 & 0x10) == 0x00
1553 && (status2 & 0x01) == 0x00
1554 && emerg == emerg2
1555 && convrate <= 0x07) {
1556 name = "max6696";
1557 } else
1558 /*
1559 * The chip_id register of the MAX6680 and MAX6681 holds the
1560 * revision of the chip. The lowest bit of the config1 register
1561 * is unused and should return zero when read, so should the
1562 * second to last bit of config1 (software reset).
1563 */
1564 if (chip_id == 0x01
1565 && (config1 & 0x03) == 0x00
1566 && convrate <= 0x07) {
1567 name = "max6680";
1568 } else
1569 /*
1570 * The chip_id register of the MAX6646/6647/6649 holds the
1571 * revision of the chip. The lowest 6 bits of the config1
1572 * register are unused and should return zero when read.
1573 */
1574 if (chip_id == 0x59
1575 && (config1 & 0x3f) == 0x00
1576 && convrate <= 0x07) {
1577 name = "max6646";
1578 } else
1579 /*
1580 * The chip_id of the MAX6654 holds the revision of the chip.
1581 * The lowest 3 bits of the config1 register are unused and
1582 * should return zero when read.
1583 */
1584 if (chip_id == 0x08
1585 && (config1 & 0x07) == 0x00
1586 && convrate <= 0x07) {
1587 name = "max6654";
1588 }
1589 } else
1590 if (address == 0x4C
1591 && man_id == 0x5C) { /* Winbond/Nuvoton */
1592 if ((config1 & 0x2A) == 0x00
1593 && (config2 & 0xF8) == 0x00) {
1594 if (chip_id == 0x01 /* W83L771W/G */
1595 && convrate <= 0x09) {
1596 name = "w83l771";
1597 } else
1598 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1599 && convrate <= 0x08) {
1600 name = "w83l771";
1601 }
1602 }
1603 } else
1604 if (address >= 0x48 && address <= 0x4F
1605 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1606 if (chip_id == 0x00
1607 && (config1 & 0x2A) == 0x00
1608 && (config2 & 0xFE) == 0x00
1609 && convrate <= 0x09) {
1610 name = "sa56004";
1611 }
1612 } else
1613 if ((address == 0x4C || address == 0x4D)
1614 && man_id == 0x47) { /* GMT */
1615 if (chip_id == 0x01 /* G781 */
1616 && (config1 & 0x3F) == 0x00
1617 && convrate <= 0x08)
1618 name = "g781";
1619 } else
1620 if (address == 0x4C
1621 && man_id == 0x55) { /* Texas Instruments */
1622 int local_ext;
1623
1624 local_ext = i2c_smbus_read_byte_data(client,
1625 TMP451_REG_R_LOCAL_TEMPL);
1626
1627 if (chip_id == 0x00 /* TMP451 */
1628 && (config1 & 0x1B) == 0x00
1629 && convrate <= 0x09
1630 && (local_ext & 0x0F) == 0x00)
1631 name = "tmp451";
1632 }
1633
1634 if (!name) { /* identification failed */
1635 dev_dbg(&adapter->dev,
1636 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1637 "chip_id=0x%02X)\n", address, man_id, chip_id);
1638 return -ENODEV;
1639 }
1640
1641 strlcpy(info->type, name, I2C_NAME_SIZE);
1642
1643 return 0;
1644 }
1645
1646 static void lm90_restore_conf(void *_data)
1647 {
1648 struct lm90_data *data = _data;
1649 struct i2c_client *client = data->client;
1650
1651 /* Restore initial configuration */
1652 lm90_write_convrate(data, data->convrate_orig);
1653 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1654 data->config_orig);
1655 }
1656
1657 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1658 {
1659 int config, convrate;
1660
1661 convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE);
1662 if (convrate < 0)
1663 return convrate;
1664 data->convrate_orig = convrate;
1665
1666 /*
1667 * Start the conversions.
1668 */
1669 config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1670 if (config < 0)
1671 return config;
1672 data->config_orig = config;
1673 data->config = config;
1674
1675 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1676
1677 /* Check Temperature Range Select */
1678 if (data->kind == adt7461 || data->kind == tmp451) {
1679 if (config & 0x04)
1680 data->flags |= LM90_FLAG_ADT7461_EXT;
1681 }
1682
1683 /*
1684 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1685 * 0.125 degree resolution) and range (0x08, extend range
1686 * to -64 degree) mode for the remote temperature sensor.
1687 */
1688 if (data->kind == max6680)
1689 config |= 0x18;
1690
1691 /*
1692 * Put MAX6654 into extended range (0x20, extend minimum range from
1693 * 0 degrees to -64 degrees). Note that extended resolution is not
1694 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
1695 * slower, which is intentionally not done by default.
1696 */
1697 if (data->kind == max6654)
1698 config |= 0x20;
1699
1700 /*
1701 * Select external channel 0 for max6695/96
1702 */
1703 if (data->kind == max6696)
1704 config &= ~0x08;
1705
1706 config &= 0xBF; /* run */
1707 lm90_update_confreg(data, config);
1708
1709 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
1710 }
1711
1712 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1713 {
1714 struct lm90_data *data = i2c_get_clientdata(client);
1715 int st, st2 = 0;
1716
1717 st = lm90_read_reg(client, LM90_REG_R_STATUS);
1718 if (st < 0)
1719 return false;
1720
1721 if (data->kind == max6696) {
1722 st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
1723 if (st2 < 0)
1724 return false;
1725 }
1726
1727 *status = st | (st2 << 8);
1728
1729 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1730 return false;
1731
1732 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1733 (st2 & MAX6696_STATUS2_LOT2))
1734 dev_warn(&client->dev,
1735 "temp%d out of range, please check!\n", 1);
1736 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1737 (st2 & MAX6696_STATUS2_ROT2))
1738 dev_warn(&client->dev,
1739 "temp%d out of range, please check!\n", 2);
1740 if (st & LM90_STATUS_ROPEN)
1741 dev_warn(&client->dev,
1742 "temp%d diode open, please check!\n", 2);
1743 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1744 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1745 dev_warn(&client->dev,
1746 "temp%d out of range, please check!\n", 3);
1747 if (st2 & MAX6696_STATUS2_R2OPEN)
1748 dev_warn(&client->dev,
1749 "temp%d diode open, please check!\n", 3);
1750
1751 return true;
1752 }
1753
1754 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1755 {
1756 struct i2c_client *client = dev_id;
1757 u16 status;
1758
1759 if (lm90_is_tripped(client, &status))
1760 return IRQ_HANDLED;
1761 else
1762 return IRQ_NONE;
1763 }
1764
1765 static void lm90_remove_pec(void *dev)
1766 {
1767 device_remove_file(dev, &dev_attr_pec);
1768 }
1769
1770 static void lm90_regulator_disable(void *regulator)
1771 {
1772 regulator_disable(regulator);
1773 }
1774
1775
1776 static const struct hwmon_ops lm90_ops = {
1777 .is_visible = lm90_is_visible,
1778 .read = lm90_read,
1779 .write = lm90_write,
1780 };
1781
1782 static int lm90_probe(struct i2c_client *client,
1783 const struct i2c_device_id *id)
1784 {
1785 struct device *dev = &client->dev;
1786 struct i2c_adapter *adapter = client->adapter;
1787 struct hwmon_channel_info *info;
1788 struct regulator *regulator;
1789 struct device *hwmon_dev;
1790 struct lm90_data *data;
1791 int err;
1792
1793 regulator = devm_regulator_get(dev, "vcc");
1794 if (IS_ERR(regulator))
1795 return PTR_ERR(regulator);
1796
1797 err = regulator_enable(regulator);
1798 if (err < 0) {
1799 dev_err(dev, "Failed to enable regulator: %d\n", err);
1800 return err;
1801 }
1802
1803 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
1804 if (err)
1805 return err;
1806
1807 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1808 if (!data)
1809 return -ENOMEM;
1810
1811 data->client = client;
1812 i2c_set_clientdata(client, data);
1813 mutex_init(&data->update_lock);
1814
1815 /* Set the device type */
1816 if (client->dev.of_node)
1817 data->kind = (enum chips)of_device_get_match_data(&client->dev);
1818 else
1819 data->kind = id->driver_data;
1820 if (data->kind == adm1032) {
1821 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1822 client->flags &= ~I2C_CLIENT_PEC;
1823 }
1824
1825 /*
1826 * Different devices have different alarm bits triggering the
1827 * ALERT# output
1828 */
1829 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1830
1831 /* Set chip capabilities */
1832 data->flags = lm90_params[data->kind].flags;
1833
1834 data->chip.ops = &lm90_ops;
1835 data->chip.info = data->info;
1836
1837 data->info[0] = HWMON_CHANNEL_INFO(chip,
1838 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS);
1839 data->info[1] = &data->temp_info;
1840
1841 info = &data->temp_info;
1842 info->type = hwmon_temp;
1843 info->config = data->channel_config;
1844
1845 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1846 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1847 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM;
1848 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1849 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1850 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
1851
1852 if (data->flags & LM90_HAVE_OFFSET)
1853 data->channel_config[1] |= HWMON_T_OFFSET;
1854
1855 if (data->flags & LM90_HAVE_EMERGENCY) {
1856 data->channel_config[0] |= HWMON_T_EMERGENCY |
1857 HWMON_T_EMERGENCY_HYST;
1858 data->channel_config[1] |= HWMON_T_EMERGENCY |
1859 HWMON_T_EMERGENCY_HYST;
1860 }
1861
1862 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1863 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
1864 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
1865 }
1866
1867 if (data->flags & LM90_HAVE_TEMP3) {
1868 data->channel_config[2] = HWMON_T_INPUT |
1869 HWMON_T_MIN | HWMON_T_MAX |
1870 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
1871 HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST |
1872 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
1873 HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM |
1874 HWMON_T_FAULT;
1875 }
1876
1877 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1878
1879 /* Set maximum conversion rate */
1880 data->max_convrate = lm90_params[data->kind].max_convrate;
1881
1882 /* Initialize the LM90 chip */
1883 err = lm90_init_client(client, data);
1884 if (err < 0) {
1885 dev_err(dev, "Failed to initialize device\n");
1886 return err;
1887 }
1888
1889 /*
1890 * The 'pec' attribute is attached to the i2c device and thus created
1891 * separately.
1892 */
1893 if (client->flags & I2C_CLIENT_PEC) {
1894 err = device_create_file(dev, &dev_attr_pec);
1895 if (err)
1896 return err;
1897 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
1898 if (err)
1899 return err;
1900 }
1901
1902 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
1903 data, &data->chip,
1904 NULL);
1905 if (IS_ERR(hwmon_dev))
1906 return PTR_ERR(hwmon_dev);
1907
1908 if (client->irq) {
1909 dev_dbg(dev, "IRQ: %d\n", client->irq);
1910 err = devm_request_threaded_irq(dev, client->irq,
1911 NULL, lm90_irq_thread,
1912 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1913 "lm90", client);
1914 if (err < 0) {
1915 dev_err(dev, "cannot request IRQ %d\n", client->irq);
1916 return err;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
1924 unsigned int flag)
1925 {
1926 u16 alarms;
1927
1928 if (type != I2C_PROTOCOL_SMBUS_ALERT)
1929 return;
1930
1931 if (lm90_is_tripped(client, &alarms)) {
1932 /*
1933 * Disable ALERT# output, because these chips don't implement
1934 * SMBus alert correctly; they should only hold the alert line
1935 * low briefly.
1936 */
1937 struct lm90_data *data = i2c_get_clientdata(client);
1938
1939 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
1940 (alarms & data->alert_alarms)) {
1941 dev_dbg(&client->dev, "Disabling ALERT#\n");
1942 lm90_update_confreg(data, data->config | 0x80);
1943 }
1944 } else {
1945 dev_info(&client->dev, "Everything OK\n");
1946 }
1947 }
1948
1949 static struct i2c_driver lm90_driver = {
1950 .class = I2C_CLASS_HWMON,
1951 .driver = {
1952 .name = "lm90",
1953 .of_match_table = of_match_ptr(lm90_of_match),
1954 },
1955 .probe = lm90_probe,
1956 .alert = lm90_alert,
1957 .id_table = lm90_id,
1958 .detect = lm90_detect,
1959 .address_list = normal_i2c,
1960 };
1961
1962 module_i2c_driver(lm90_driver);
1963
1964 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1965 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1966 MODULE_LICENSE("GPL");