]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/i2c/busses/i2c-designware-core.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / i2c / busses / i2c-designware-core.c
1 /*
2 * Synopsys DesignWare I2C adapter driver (master only).
3 *
4 * Based on the TI DAVINCI I2C adapter driver.
5 *
6 * Copyright (C) 2006 Texas Instruments.
7 * Copyright (C) 2007 MontaVista Software Inc.
8 * Copyright (C) 2009 Provigent Ltd.
9 *
10 * ----------------------------------------------------------------------------
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 * ----------------------------------------------------------------------------
22 *
23 */
24 #include <linux/export.h>
25 #include <linux/errno.h>
26 #include <linux/err.h>
27 #include <linux/i2c.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include "i2c-designware-core.h"
34
35 /*
36 * Registers offset
37 */
38 #define DW_IC_CON 0x0
39 #define DW_IC_TAR 0x4
40 #define DW_IC_DATA_CMD 0x10
41 #define DW_IC_SS_SCL_HCNT 0x14
42 #define DW_IC_SS_SCL_LCNT 0x18
43 #define DW_IC_FS_SCL_HCNT 0x1c
44 #define DW_IC_FS_SCL_LCNT 0x20
45 #define DW_IC_HS_SCL_HCNT 0x24
46 #define DW_IC_HS_SCL_LCNT 0x28
47 #define DW_IC_INTR_STAT 0x2c
48 #define DW_IC_INTR_MASK 0x30
49 #define DW_IC_RAW_INTR_STAT 0x34
50 #define DW_IC_RX_TL 0x38
51 #define DW_IC_TX_TL 0x3c
52 #define DW_IC_CLR_INTR 0x40
53 #define DW_IC_CLR_RX_UNDER 0x44
54 #define DW_IC_CLR_RX_OVER 0x48
55 #define DW_IC_CLR_TX_OVER 0x4c
56 #define DW_IC_CLR_RD_REQ 0x50
57 #define DW_IC_CLR_TX_ABRT 0x54
58 #define DW_IC_CLR_RX_DONE 0x58
59 #define DW_IC_CLR_ACTIVITY 0x5c
60 #define DW_IC_CLR_STOP_DET 0x60
61 #define DW_IC_CLR_START_DET 0x64
62 #define DW_IC_CLR_GEN_CALL 0x68
63 #define DW_IC_ENABLE 0x6c
64 #define DW_IC_STATUS 0x70
65 #define DW_IC_TXFLR 0x74
66 #define DW_IC_RXFLR 0x78
67 #define DW_IC_SDA_HOLD 0x7c
68 #define DW_IC_TX_ABRT_SOURCE 0x80
69 #define DW_IC_ENABLE_STATUS 0x9c
70 #define DW_IC_COMP_PARAM_1 0xf4
71 #define DW_IC_COMP_VERSION 0xf8
72 #define DW_IC_SDA_HOLD_MIN_VERS 0x3131312A
73 #define DW_IC_COMP_TYPE 0xfc
74 #define DW_IC_COMP_TYPE_VALUE 0x44570140
75
76 #define DW_IC_INTR_RX_UNDER 0x001
77 #define DW_IC_INTR_RX_OVER 0x002
78 #define DW_IC_INTR_RX_FULL 0x004
79 #define DW_IC_INTR_TX_OVER 0x008
80 #define DW_IC_INTR_TX_EMPTY 0x010
81 #define DW_IC_INTR_RD_REQ 0x020
82 #define DW_IC_INTR_TX_ABRT 0x040
83 #define DW_IC_INTR_RX_DONE 0x080
84 #define DW_IC_INTR_ACTIVITY 0x100
85 #define DW_IC_INTR_STOP_DET 0x200
86 #define DW_IC_INTR_START_DET 0x400
87 #define DW_IC_INTR_GEN_CALL 0x800
88
89 #define DW_IC_INTR_DEFAULT_MASK (DW_IC_INTR_RX_FULL | \
90 DW_IC_INTR_TX_EMPTY | \
91 DW_IC_INTR_TX_ABRT | \
92 DW_IC_INTR_STOP_DET)
93
94 #define DW_IC_STATUS_ACTIVITY 0x1
95
96 #define DW_IC_SDA_HOLD_RX_SHIFT 16
97 #define DW_IC_SDA_HOLD_RX_MASK GENMASK(23, DW_IC_SDA_HOLD_RX_SHIFT)
98
99 #define DW_IC_ERR_TX_ABRT 0x1
100
101 #define DW_IC_TAR_10BITADDR_MASTER BIT(12)
102
103 #define DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH (BIT(2) | BIT(3))
104 #define DW_IC_COMP_PARAM_1_SPEED_MODE_MASK GENMASK(3, 2)
105
106 /*
107 * status codes
108 */
109 #define STATUS_IDLE 0x0
110 #define STATUS_WRITE_IN_PROGRESS 0x1
111 #define STATUS_READ_IN_PROGRESS 0x2
112
113 #define TIMEOUT 20 /* ms */
114
115 /*
116 * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
117 *
118 * only expected abort codes are listed here
119 * refer to the datasheet for the full list
120 */
121 #define ABRT_7B_ADDR_NOACK 0
122 #define ABRT_10ADDR1_NOACK 1
123 #define ABRT_10ADDR2_NOACK 2
124 #define ABRT_TXDATA_NOACK 3
125 #define ABRT_GCALL_NOACK 4
126 #define ABRT_GCALL_READ 5
127 #define ABRT_SBYTE_ACKDET 7
128 #define ABRT_SBYTE_NORSTRT 9
129 #define ABRT_10B_RD_NORSTRT 10
130 #define ABRT_MASTER_DIS 11
131 #define ARB_LOST 12
132
133 #define DW_IC_TX_ABRT_7B_ADDR_NOACK (1UL << ABRT_7B_ADDR_NOACK)
134 #define DW_IC_TX_ABRT_10ADDR1_NOACK (1UL << ABRT_10ADDR1_NOACK)
135 #define DW_IC_TX_ABRT_10ADDR2_NOACK (1UL << ABRT_10ADDR2_NOACK)
136 #define DW_IC_TX_ABRT_TXDATA_NOACK (1UL << ABRT_TXDATA_NOACK)
137 #define DW_IC_TX_ABRT_GCALL_NOACK (1UL << ABRT_GCALL_NOACK)
138 #define DW_IC_TX_ABRT_GCALL_READ (1UL << ABRT_GCALL_READ)
139 #define DW_IC_TX_ABRT_SBYTE_ACKDET (1UL << ABRT_SBYTE_ACKDET)
140 #define DW_IC_TX_ABRT_SBYTE_NORSTRT (1UL << ABRT_SBYTE_NORSTRT)
141 #define DW_IC_TX_ABRT_10B_RD_NORSTRT (1UL << ABRT_10B_RD_NORSTRT)
142 #define DW_IC_TX_ABRT_MASTER_DIS (1UL << ABRT_MASTER_DIS)
143 #define DW_IC_TX_ARB_LOST (1UL << ARB_LOST)
144
145 #define DW_IC_TX_ABRT_NOACK (DW_IC_TX_ABRT_7B_ADDR_NOACK | \
146 DW_IC_TX_ABRT_10ADDR1_NOACK | \
147 DW_IC_TX_ABRT_10ADDR2_NOACK | \
148 DW_IC_TX_ABRT_TXDATA_NOACK | \
149 DW_IC_TX_ABRT_GCALL_NOACK)
150
151 static char *abort_sources[] = {
152 [ABRT_7B_ADDR_NOACK] =
153 "slave address not acknowledged (7bit mode)",
154 [ABRT_10ADDR1_NOACK] =
155 "first address byte not acknowledged (10bit mode)",
156 [ABRT_10ADDR2_NOACK] =
157 "second address byte not acknowledged (10bit mode)",
158 [ABRT_TXDATA_NOACK] =
159 "data not acknowledged",
160 [ABRT_GCALL_NOACK] =
161 "no acknowledgement for a general call",
162 [ABRT_GCALL_READ] =
163 "read after general call",
164 [ABRT_SBYTE_ACKDET] =
165 "start byte acknowledged",
166 [ABRT_SBYTE_NORSTRT] =
167 "trying to send start byte when restart is disabled",
168 [ABRT_10B_RD_NORSTRT] =
169 "trying to read when restart is disabled (10bit mode)",
170 [ABRT_MASTER_DIS] =
171 "trying to use disabled adapter",
172 [ARB_LOST] =
173 "lost arbitration",
174 };
175
176 static u32 dw_readl(struct dw_i2c_dev *dev, int offset)
177 {
178 u32 value;
179
180 if (dev->flags & ACCESS_16BIT)
181 value = readw_relaxed(dev->base + offset) |
182 (readw_relaxed(dev->base + offset + 2) << 16);
183 else
184 value = readl_relaxed(dev->base + offset);
185
186 if (dev->flags & ACCESS_SWAP)
187 return swab32(value);
188 else
189 return value;
190 }
191
192 static void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
193 {
194 if (dev->flags & ACCESS_SWAP)
195 b = swab32(b);
196
197 if (dev->flags & ACCESS_16BIT) {
198 writew_relaxed((u16)b, dev->base + offset);
199 writew_relaxed((u16)(b >> 16), dev->base + offset + 2);
200 } else {
201 writel_relaxed(b, dev->base + offset);
202 }
203 }
204
205 static u32
206 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
207 {
208 /*
209 * DesignWare I2C core doesn't seem to have solid strategy to meet
210 * the tHD;STA timing spec. Configuring _HCNT based on tHIGH spec
211 * will result in violation of the tHD;STA spec.
212 */
213 if (cond)
214 /*
215 * Conditional expression:
216 *
217 * IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
218 *
219 * This is based on the DW manuals, and represents an ideal
220 * configuration. The resulting I2C bus speed will be
221 * faster than any of the others.
222 *
223 * If your hardware is free from tHD;STA issue, try this one.
224 */
225 return (ic_clk * tSYMBOL + 500000) / 1000000 - 8 + offset;
226 else
227 /*
228 * Conditional expression:
229 *
230 * IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
231 *
232 * This is just experimental rule; the tHD;STA period turned
233 * out to be proportinal to (_HCNT + 3). With this setting,
234 * we could meet both tHIGH and tHD;STA timing specs.
235 *
236 * If unsure, you'd better to take this alternative.
237 *
238 * The reason why we need to take into account "tf" here,
239 * is the same as described in i2c_dw_scl_lcnt().
240 */
241 return (ic_clk * (tSYMBOL + tf) + 500000) / 1000000
242 - 3 + offset;
243 }
244
245 static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
246 {
247 /*
248 * Conditional expression:
249 *
250 * IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
251 *
252 * DW I2C core starts counting the SCL CNTs for the LOW period
253 * of the SCL clock (tLOW) as soon as it pulls the SCL line.
254 * In order to meet the tLOW timing spec, we need to take into
255 * account the fall time of SCL signal (tf). Default tf value
256 * should be 0.3 us, for safety.
257 */
258 return ((ic_clk * (tLOW + tf) + 500000) / 1000000) - 1 + offset;
259 }
260
261 static void __i2c_dw_enable(struct dw_i2c_dev *dev, bool enable)
262 {
263 dw_writel(dev, enable, DW_IC_ENABLE);
264 }
265
266 static void __i2c_dw_enable_and_wait(struct dw_i2c_dev *dev, bool enable)
267 {
268 int timeout = 100;
269
270 do {
271 __i2c_dw_enable(dev, enable);
272 if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == enable)
273 return;
274
275 /*
276 * Wait 10 times the signaling period of the highest I2C
277 * transfer supported by the driver (for 400KHz this is
278 * 25us) as described in the DesignWare I2C databook.
279 */
280 usleep_range(25, 250);
281 } while (timeout--);
282
283 dev_warn(dev->dev, "timeout in %sabling adapter\n",
284 enable ? "en" : "dis");
285 }
286
287 static unsigned long i2c_dw_clk_rate(struct dw_i2c_dev *dev)
288 {
289 /*
290 * Clock is not necessary if we got LCNT/HCNT values directly from
291 * the platform code.
292 */
293 if (WARN_ON_ONCE(!dev->get_clk_rate_khz))
294 return 0;
295 return dev->get_clk_rate_khz(dev);
296 }
297
298 static int i2c_dw_acquire_lock(struct dw_i2c_dev *dev)
299 {
300 int ret;
301
302 if (!dev->acquire_lock)
303 return 0;
304
305 ret = dev->acquire_lock(dev);
306 if (!ret)
307 return 0;
308
309 dev_err(dev->dev, "couldn't acquire bus ownership\n");
310
311 return ret;
312 }
313
314 static void i2c_dw_release_lock(struct dw_i2c_dev *dev)
315 {
316 if (dev->release_lock)
317 dev->release_lock(dev);
318 }
319
320 /**
321 * i2c_dw_init() - initialize the designware i2c master hardware
322 * @dev: device private data
323 *
324 * This functions configures and enables the I2C master.
325 * This function is called during I2C init function, and in case of timeout at
326 * run time.
327 */
328 int i2c_dw_init(struct dw_i2c_dev *dev)
329 {
330 u32 hcnt, lcnt;
331 u32 reg, comp_param1;
332 u32 sda_falling_time, scl_falling_time;
333 int ret;
334
335 ret = i2c_dw_acquire_lock(dev);
336 if (ret)
337 return ret;
338
339 reg = dw_readl(dev, DW_IC_COMP_TYPE);
340 if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) {
341 /* Configure register endianess access */
342 dev->flags |= ACCESS_SWAP;
343 } else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
344 /* Configure register access mode 16bit */
345 dev->flags |= ACCESS_16BIT;
346 } else if (reg != DW_IC_COMP_TYPE_VALUE) {
347 dev_err(dev->dev, "Unknown Synopsys component type: "
348 "0x%08x\n", reg);
349 i2c_dw_release_lock(dev);
350 return -ENODEV;
351 }
352
353 comp_param1 = dw_readl(dev, DW_IC_COMP_PARAM_1);
354
355 /* Disable the adapter */
356 __i2c_dw_enable_and_wait(dev, false);
357
358 /* set standard and fast speed deviders for high/low periods */
359
360 sda_falling_time = dev->sda_falling_time ?: 300; /* ns */
361 scl_falling_time = dev->scl_falling_time ?: 300; /* ns */
362
363 /* Set SCL timing parameters for standard-mode */
364 if (dev->ss_hcnt && dev->ss_lcnt) {
365 hcnt = dev->ss_hcnt;
366 lcnt = dev->ss_lcnt;
367 } else {
368 hcnt = i2c_dw_scl_hcnt(i2c_dw_clk_rate(dev),
369 4000, /* tHD;STA = tHIGH = 4.0 us */
370 sda_falling_time,
371 0, /* 0: DW default, 1: Ideal */
372 0); /* No offset */
373 lcnt = i2c_dw_scl_lcnt(i2c_dw_clk_rate(dev),
374 4700, /* tLOW = 4.7 us */
375 scl_falling_time,
376 0); /* No offset */
377 }
378 dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
379 dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
380 dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
381
382 /* Set SCL timing parameters for fast-mode or fast-mode plus */
383 if ((dev->clk_freq == 1000000) && dev->fp_hcnt && dev->fp_lcnt) {
384 hcnt = dev->fp_hcnt;
385 lcnt = dev->fp_lcnt;
386 } else if (dev->fs_hcnt && dev->fs_lcnt) {
387 hcnt = dev->fs_hcnt;
388 lcnt = dev->fs_lcnt;
389 } else {
390 hcnt = i2c_dw_scl_hcnt(i2c_dw_clk_rate(dev),
391 600, /* tHD;STA = tHIGH = 0.6 us */
392 sda_falling_time,
393 0, /* 0: DW default, 1: Ideal */
394 0); /* No offset */
395 lcnt = i2c_dw_scl_lcnt(i2c_dw_clk_rate(dev),
396 1300, /* tLOW = 1.3 us */
397 scl_falling_time,
398 0); /* No offset */
399 }
400 dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
401 dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
402 dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
403
404 if ((dev->master_cfg & DW_IC_CON_SPEED_MASK) ==
405 DW_IC_CON_SPEED_HIGH) {
406 if ((comp_param1 & DW_IC_COMP_PARAM_1_SPEED_MODE_MASK)
407 != DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH) {
408 dev_err(dev->dev, "High Speed not supported!\n");
409 dev->master_cfg &= ~DW_IC_CON_SPEED_MASK;
410 dev->master_cfg |= DW_IC_CON_SPEED_FAST;
411 } else if (dev->hs_hcnt && dev->hs_lcnt) {
412 hcnt = dev->hs_hcnt;
413 lcnt = dev->hs_lcnt;
414 dw_writel(dev, hcnt, DW_IC_HS_SCL_HCNT);
415 dw_writel(dev, lcnt, DW_IC_HS_SCL_LCNT);
416 dev_dbg(dev->dev, "HighSpeed-mode HCNT:LCNT = %d:%d\n",
417 hcnt, lcnt);
418 }
419 }
420
421 /* Configure SDA Hold Time if required */
422 reg = dw_readl(dev, DW_IC_COMP_VERSION);
423 if (reg >= DW_IC_SDA_HOLD_MIN_VERS) {
424 if (!dev->sda_hold_time) {
425 /* Keep previous hold time setting if no one set it */
426 dev->sda_hold_time = dw_readl(dev, DW_IC_SDA_HOLD);
427 }
428 /*
429 * Workaround for avoiding TX arbitration lost in case I2C
430 * slave pulls SDA down "too quickly" after falling egde of
431 * SCL by enabling non-zero SDA RX hold. Specification says it
432 * extends incoming SDA low to high transition while SCL is
433 * high but it apprears to help also above issue.
434 */
435 if (!(dev->sda_hold_time & DW_IC_SDA_HOLD_RX_MASK))
436 dev->sda_hold_time |= 1 << DW_IC_SDA_HOLD_RX_SHIFT;
437 dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD);
438 } else {
439 dev_warn(dev->dev,
440 "Hardware too old to adjust SDA hold time.\n");
441 }
442
443 /* Configure Tx/Rx FIFO threshold levels */
444 dw_writel(dev, dev->tx_fifo_depth / 2, DW_IC_TX_TL);
445 dw_writel(dev, 0, DW_IC_RX_TL);
446
447 /* configure the i2c master */
448 dw_writel(dev, dev->master_cfg , DW_IC_CON);
449
450 i2c_dw_release_lock(dev);
451
452 return 0;
453 }
454 EXPORT_SYMBOL_GPL(i2c_dw_init);
455
456 /*
457 * Waiting for bus not busy
458 */
459 static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
460 {
461 int timeout = TIMEOUT;
462
463 while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) {
464 if (timeout <= 0) {
465 dev_warn(dev->dev, "timeout waiting for bus ready\n");
466 return -ETIMEDOUT;
467 }
468 timeout--;
469 usleep_range(1000, 1100);
470 }
471
472 return 0;
473 }
474
475 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
476 {
477 struct i2c_msg *msgs = dev->msgs;
478 u32 ic_con, ic_tar = 0;
479
480 /* Disable the adapter */
481 __i2c_dw_enable_and_wait(dev, false);
482
483 /* if the slave address is ten bit address, enable 10BITADDR */
484 ic_con = dw_readl(dev, DW_IC_CON);
485 if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
486 ic_con |= DW_IC_CON_10BITADDR_MASTER;
487 /*
488 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
489 * mode has to be enabled via bit 12 of IC_TAR register.
490 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
491 * detected from registers.
492 */
493 ic_tar = DW_IC_TAR_10BITADDR_MASTER;
494 } else {
495 ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
496 }
497
498 dw_writel(dev, ic_con, DW_IC_CON);
499
500 /*
501 * Set the slave (target) address and enable 10-bit addressing mode
502 * if applicable.
503 */
504 dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR);
505
506 /* enforce disabled interrupts (due to HW issues) */
507 i2c_dw_disable_int(dev);
508
509 /* Enable the adapter */
510 __i2c_dw_enable(dev, true);
511
512 /* Clear and enable interrupts */
513 dw_readl(dev, DW_IC_CLR_INTR);
514 dw_writel(dev, DW_IC_INTR_DEFAULT_MASK, DW_IC_INTR_MASK);
515 }
516
517 /*
518 * Initiate (and continue) low level master read/write transaction.
519 * This function is only called from i2c_dw_isr, and pumping i2c_msg
520 * messages into the tx buffer. Even if the size of i2c_msg data is
521 * longer than the size of the tx buffer, it handles everything.
522 */
523 static void
524 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
525 {
526 struct i2c_msg *msgs = dev->msgs;
527 u32 intr_mask;
528 int tx_limit, rx_limit;
529 u32 addr = msgs[dev->msg_write_idx].addr;
530 u32 buf_len = dev->tx_buf_len;
531 u8 *buf = dev->tx_buf;
532 bool need_restart = false;
533
534 intr_mask = DW_IC_INTR_DEFAULT_MASK;
535
536 for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
537 u32 flags = msgs[dev->msg_write_idx].flags;
538
539 /*
540 * if target address has changed, we need to
541 * reprogram the target address in the i2c
542 * adapter when we are done with this transfer
543 */
544 if (msgs[dev->msg_write_idx].addr != addr) {
545 dev_err(dev->dev,
546 "%s: invalid target address\n", __func__);
547 dev->msg_err = -EINVAL;
548 break;
549 }
550
551 if (msgs[dev->msg_write_idx].len == 0) {
552 dev_err(dev->dev,
553 "%s: invalid message length\n", __func__);
554 dev->msg_err = -EINVAL;
555 break;
556 }
557
558 if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
559 /* new i2c_msg */
560 buf = msgs[dev->msg_write_idx].buf;
561 buf_len = msgs[dev->msg_write_idx].len;
562
563 /* If both IC_EMPTYFIFO_HOLD_MASTER_EN and
564 * IC_RESTART_EN are set, we must manually
565 * set restart bit between messages.
566 */
567 if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
568 (dev->msg_write_idx > 0))
569 need_restart = true;
570 }
571
572 tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
573 rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
574
575 while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
576 u32 cmd = 0;
577
578 /*
579 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
580 * manually set the stop bit. However, it cannot be
581 * detected from the registers so we set it always
582 * when writing/reading the last byte.
583 */
584
585 /*
586 * i2c-core.c always sets the buffer length of
587 * I2C_FUNC_SMBUS_BLOCK_DATA to 1. The length will
588 * be adjusted when receiving the first byte.
589 * Thus we can't stop the transaction here.
590 */
591 if (dev->msg_write_idx == dev->msgs_num - 1 &&
592 buf_len == 1 && !(flags & I2C_M_RECV_LEN))
593 cmd |= BIT(9);
594
595 if (need_restart) {
596 cmd |= BIT(10);
597 need_restart = false;
598 }
599
600 if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
601
602 /* avoid rx buffer overrun */
603 if (dev->rx_outstanding >= dev->rx_fifo_depth)
604 break;
605
606 dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD);
607 rx_limit--;
608 dev->rx_outstanding++;
609 } else
610 dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD);
611 tx_limit--; buf_len--;
612 }
613
614 dev->tx_buf = buf;
615 dev->tx_buf_len = buf_len;
616
617 /*
618 * Because we don't know the buffer length in the
619 * I2C_FUNC_SMBUS_BLOCK_DATA case, we can't stop
620 * the transaction here.
621 */
622 if (buf_len > 0 || flags & I2C_M_RECV_LEN) {
623 /* more bytes to be written */
624 dev->status |= STATUS_WRITE_IN_PROGRESS;
625 break;
626 } else
627 dev->status &= ~STATUS_WRITE_IN_PROGRESS;
628 }
629
630 /*
631 * If i2c_msg index search is completed, we don't need TX_EMPTY
632 * interrupt any more.
633 */
634 if (dev->msg_write_idx == dev->msgs_num)
635 intr_mask &= ~DW_IC_INTR_TX_EMPTY;
636
637 if (dev->msg_err)
638 intr_mask = 0;
639
640 dw_writel(dev, intr_mask, DW_IC_INTR_MASK);
641 }
642
643 static u8
644 i2c_dw_recv_len(struct dw_i2c_dev *dev, u8 len)
645 {
646 struct i2c_msg *msgs = dev->msgs;
647 u32 flags = msgs[dev->msg_read_idx].flags;
648
649 /*
650 * Adjust the buffer length and mask the flag
651 * after receiving the first byte.
652 */
653 len += (flags & I2C_CLIENT_PEC) ? 2 : 1;
654 dev->tx_buf_len = len - min_t(u8, len, dev->rx_outstanding);
655 msgs[dev->msg_read_idx].len = len;
656 msgs[dev->msg_read_idx].flags &= ~I2C_M_RECV_LEN;
657
658 return len;
659 }
660
661 static void
662 i2c_dw_read(struct dw_i2c_dev *dev)
663 {
664 struct i2c_msg *msgs = dev->msgs;
665 int rx_valid;
666
667 for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
668 u32 len;
669 u8 *buf;
670
671 if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
672 continue;
673
674 if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
675 len = msgs[dev->msg_read_idx].len;
676 buf = msgs[dev->msg_read_idx].buf;
677 } else {
678 len = dev->rx_buf_len;
679 buf = dev->rx_buf;
680 }
681
682 rx_valid = dw_readl(dev, DW_IC_RXFLR);
683
684 for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
685 u32 flags = msgs[dev->msg_read_idx].flags;
686
687 *buf = dw_readl(dev, DW_IC_DATA_CMD);
688 /* Ensure length byte is a valid value */
689 if (flags & I2C_M_RECV_LEN &&
690 *buf <= I2C_SMBUS_BLOCK_MAX && *buf > 0) {
691 len = i2c_dw_recv_len(dev, *buf);
692 }
693 buf++;
694 dev->rx_outstanding--;
695 }
696
697 if (len > 0) {
698 dev->status |= STATUS_READ_IN_PROGRESS;
699 dev->rx_buf_len = len;
700 dev->rx_buf = buf;
701 return;
702 } else
703 dev->status &= ~STATUS_READ_IN_PROGRESS;
704 }
705 }
706
707 static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
708 {
709 unsigned long abort_source = dev->abort_source;
710 int i;
711
712 if (abort_source & DW_IC_TX_ABRT_NOACK) {
713 for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
714 dev_dbg(dev->dev,
715 "%s: %s\n", __func__, abort_sources[i]);
716 return -EREMOTEIO;
717 }
718
719 for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
720 dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);
721
722 if (abort_source & DW_IC_TX_ARB_LOST)
723 return -EAGAIN;
724 else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
725 return -EINVAL; /* wrong msgs[] data */
726 else
727 return -EIO;
728 }
729
730 /*
731 * Prepare controller for a transaction and call i2c_dw_xfer_msg
732 */
733 static int
734 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
735 {
736 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
737 int ret;
738
739 dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
740
741 pm_runtime_get_sync(dev->dev);
742
743 reinit_completion(&dev->cmd_complete);
744 dev->msgs = msgs;
745 dev->msgs_num = num;
746 dev->cmd_err = 0;
747 dev->msg_write_idx = 0;
748 dev->msg_read_idx = 0;
749 dev->msg_err = 0;
750 dev->status = STATUS_IDLE;
751 dev->abort_source = 0;
752 dev->rx_outstanding = 0;
753
754 ret = i2c_dw_acquire_lock(dev);
755 if (ret)
756 goto done_nolock;
757
758 ret = i2c_dw_wait_bus_not_busy(dev);
759 if (ret < 0)
760 goto done;
761
762 /* start the transfers */
763 i2c_dw_xfer_init(dev);
764
765 /* wait for tx to complete */
766 if (!wait_for_completion_timeout(&dev->cmd_complete, adap->timeout)) {
767 dev_err(dev->dev, "controller timed out\n");
768 /* i2c_dw_init implicitly disables the adapter */
769 i2c_dw_init(dev);
770 ret = -ETIMEDOUT;
771 goto done;
772 }
773
774 /*
775 * We must disable the adapter before returning and signaling the end
776 * of the current transfer. Otherwise the hardware might continue
777 * generating interrupts which in turn causes a race condition with
778 * the following transfer. Needs some more investigation if the
779 * additional interrupts are a hardware bug or this driver doesn't
780 * handle them correctly yet.
781 */
782 __i2c_dw_enable(dev, false);
783
784 if (dev->msg_err) {
785 ret = dev->msg_err;
786 goto done;
787 }
788
789 /* no error */
790 if (likely(!dev->cmd_err && !dev->status)) {
791 ret = num;
792 goto done;
793 }
794
795 /* We have an error */
796 if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
797 ret = i2c_dw_handle_tx_abort(dev);
798 goto done;
799 }
800
801 if (dev->status)
802 dev_err(dev->dev,
803 "transfer terminated early - interrupt latency too high?\n");
804
805 ret = -EIO;
806
807 done:
808 i2c_dw_release_lock(dev);
809
810 done_nolock:
811 pm_runtime_mark_last_busy(dev->dev);
812 pm_runtime_put_autosuspend(dev->dev);
813
814 return ret;
815 }
816
817 static u32 i2c_dw_func(struct i2c_adapter *adap)
818 {
819 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
820 return dev->functionality;
821 }
822
823 static const struct i2c_algorithm i2c_dw_algo = {
824 .master_xfer = i2c_dw_xfer,
825 .functionality = i2c_dw_func,
826 };
827
828 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
829 {
830 u32 stat;
831
832 /*
833 * The IC_INTR_STAT register just indicates "enabled" interrupts.
834 * Ths unmasked raw version of interrupt status bits are available
835 * in the IC_RAW_INTR_STAT register.
836 *
837 * That is,
838 * stat = dw_readl(IC_INTR_STAT);
839 * equals to,
840 * stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
841 *
842 * The raw version might be useful for debugging purposes.
843 */
844 stat = dw_readl(dev, DW_IC_INTR_STAT);
845
846 /*
847 * Do not use the IC_CLR_INTR register to clear interrupts, or
848 * you'll miss some interrupts, triggered during the period from
849 * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
850 *
851 * Instead, use the separately-prepared IC_CLR_* registers.
852 */
853 if (stat & DW_IC_INTR_RX_UNDER)
854 dw_readl(dev, DW_IC_CLR_RX_UNDER);
855 if (stat & DW_IC_INTR_RX_OVER)
856 dw_readl(dev, DW_IC_CLR_RX_OVER);
857 if (stat & DW_IC_INTR_TX_OVER)
858 dw_readl(dev, DW_IC_CLR_TX_OVER);
859 if (stat & DW_IC_INTR_RD_REQ)
860 dw_readl(dev, DW_IC_CLR_RD_REQ);
861 if (stat & DW_IC_INTR_TX_ABRT) {
862 /*
863 * The IC_TX_ABRT_SOURCE register is cleared whenever
864 * the IC_CLR_TX_ABRT is read. Preserve it beforehand.
865 */
866 dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE);
867 dw_readl(dev, DW_IC_CLR_TX_ABRT);
868 }
869 if (stat & DW_IC_INTR_RX_DONE)
870 dw_readl(dev, DW_IC_CLR_RX_DONE);
871 if (stat & DW_IC_INTR_ACTIVITY)
872 dw_readl(dev, DW_IC_CLR_ACTIVITY);
873 if (stat & DW_IC_INTR_STOP_DET)
874 dw_readl(dev, DW_IC_CLR_STOP_DET);
875 if (stat & DW_IC_INTR_START_DET)
876 dw_readl(dev, DW_IC_CLR_START_DET);
877 if (stat & DW_IC_INTR_GEN_CALL)
878 dw_readl(dev, DW_IC_CLR_GEN_CALL);
879
880 return stat;
881 }
882
883 /*
884 * Interrupt service routine. This gets called whenever an I2C interrupt
885 * occurs.
886 */
887 static irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
888 {
889 struct dw_i2c_dev *dev = dev_id;
890 u32 stat, enabled;
891
892 enabled = dw_readl(dev, DW_IC_ENABLE);
893 stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
894 dev_dbg(dev->dev, "%s: enabled=%#x stat=%#x\n", __func__, enabled, stat);
895 if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
896 return IRQ_NONE;
897
898 stat = i2c_dw_read_clear_intrbits(dev);
899
900 if (stat & DW_IC_INTR_TX_ABRT) {
901 dev->cmd_err |= DW_IC_ERR_TX_ABRT;
902 dev->status = STATUS_IDLE;
903
904 /*
905 * Anytime TX_ABRT is set, the contents of the tx/rx
906 * buffers are flushed. Make sure to skip them.
907 */
908 dw_writel(dev, 0, DW_IC_INTR_MASK);
909 goto tx_aborted;
910 }
911
912 if (stat & DW_IC_INTR_RX_FULL)
913 i2c_dw_read(dev);
914
915 if (stat & DW_IC_INTR_TX_EMPTY)
916 i2c_dw_xfer_msg(dev);
917
918 /*
919 * No need to modify or disable the interrupt mask here.
920 * i2c_dw_xfer_msg() will take care of it according to
921 * the current transmit status.
922 */
923
924 tx_aborted:
925 if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
926 complete(&dev->cmd_complete);
927 else if (unlikely(dev->flags & ACCESS_INTR_MASK)) {
928 /* workaround to trigger pending interrupt */
929 stat = dw_readl(dev, DW_IC_INTR_MASK);
930 i2c_dw_disable_int(dev);
931 dw_writel(dev, stat, DW_IC_INTR_MASK);
932 }
933
934 return IRQ_HANDLED;
935 }
936
937 void i2c_dw_disable(struct dw_i2c_dev *dev)
938 {
939 /* Disable controller */
940 __i2c_dw_enable_and_wait(dev, false);
941
942 /* Disable all interupts */
943 dw_writel(dev, 0, DW_IC_INTR_MASK);
944 dw_readl(dev, DW_IC_CLR_INTR);
945 }
946 EXPORT_SYMBOL_GPL(i2c_dw_disable);
947
948 void i2c_dw_disable_int(struct dw_i2c_dev *dev)
949 {
950 dw_writel(dev, 0, DW_IC_INTR_MASK);
951 }
952 EXPORT_SYMBOL_GPL(i2c_dw_disable_int);
953
954 u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev)
955 {
956 return dw_readl(dev, DW_IC_COMP_PARAM_1);
957 }
958 EXPORT_SYMBOL_GPL(i2c_dw_read_comp_param);
959
960 int i2c_dw_probe(struct dw_i2c_dev *dev)
961 {
962 struct i2c_adapter *adap = &dev->adapter;
963 unsigned long irq_flags;
964 int r;
965
966 init_completion(&dev->cmd_complete);
967
968 r = i2c_dw_init(dev);
969 if (r)
970 return r;
971
972 snprintf(adap->name, sizeof(adap->name),
973 "Synopsys DesignWare I2C adapter");
974 adap->retries = 3;
975 adap->algo = &i2c_dw_algo;
976 adap->dev.parent = dev->dev;
977 i2c_set_adapdata(adap, dev);
978
979 if (dev->pm_disabled) {
980 dev_pm_syscore_device(dev->dev, true);
981 irq_flags = IRQF_NO_SUSPEND;
982 } else {
983 irq_flags = IRQF_SHARED | IRQF_COND_SUSPEND;
984 }
985
986 i2c_dw_disable_int(dev);
987 r = devm_request_irq(dev->dev, dev->irq, i2c_dw_isr, irq_flags,
988 dev_name(dev->dev), dev);
989 if (r) {
990 dev_err(dev->dev, "failure requesting irq %i: %d\n",
991 dev->irq, r);
992 return r;
993 }
994
995 /*
996 * Increment PM usage count during adapter registration in order to
997 * avoid possible spurious runtime suspend when adapter device is
998 * registered to the device core and immediate resume in case bus has
999 * registered I2C slaves that do I2C transfers in their probe.
1000 */
1001 pm_runtime_get_noresume(dev->dev);
1002 r = i2c_add_numbered_adapter(adap);
1003 if (r)
1004 dev_err(dev->dev, "failure adding adapter: %d\n", r);
1005 pm_runtime_put_noidle(dev->dev);
1006
1007 return r;
1008 }
1009 EXPORT_SYMBOL_GPL(i2c_dw_probe);
1010
1011 MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
1012 MODULE_LICENSE("GPL");