]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/i2c/busses/i2c-nomadik.c
Merge branch 'imx/fixes' of git://git.pengutronix.de/git/imx/linux-2.6 into fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / i2c / busses / i2c-nomadik.c
1 /*
2 * Copyright (C) 2009 ST-Ericsson SA
3 * Copyright (C) 2009 STMicroelectronics
4 *
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
7 *
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
14 */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26
27 #include <plat/i2c.h>
28
29 #define DRIVER_NAME "nmk-i2c"
30
31 /* I2C Controller register offsets */
32 #define I2C_CR (0x000)
33 #define I2C_SCR (0x004)
34 #define I2C_HSMCR (0x008)
35 #define I2C_MCR (0x00C)
36 #define I2C_TFR (0x010)
37 #define I2C_SR (0x014)
38 #define I2C_RFR (0x018)
39 #define I2C_TFTR (0x01C)
40 #define I2C_RFTR (0x020)
41 #define I2C_DMAR (0x024)
42 #define I2C_BRCR (0x028)
43 #define I2C_IMSCR (0x02C)
44 #define I2C_RISR (0x030)
45 #define I2C_MISR (0x034)
46 #define I2C_ICR (0x038)
47
48 /* Control registers */
49 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */
50 #define I2C_CR_OM (0x3 << 1) /* Operating mode */
51 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */
52 #define I2C_CR_SM (0x3 << 4) /* Speed mode */
53 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */
54 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */
55 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */
56 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */
57 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */
58 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */
59 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */
60 #define I2C_CR_FON (0x3 << 13) /* Filtering on */
61 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */
62
63 /* Master controller (MCR) register */
64 #define I2C_MCR_OP (0x1 << 0) /* Operation */
65 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */
66 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */
67 #define I2C_MCR_SB (0x1 << 11) /* Extended address */
68 #define I2C_MCR_AM (0x3 << 12) /* Address type */
69 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */
70 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */
71
72 /* Status register (SR) */
73 #define I2C_SR_OP (0x3 << 0) /* Operation */
74 #define I2C_SR_STATUS (0x3 << 2) /* controller status */
75 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */
76 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */
77 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */
78
79 /* Interrupt mask set/clear (IMSCR) bits */
80 #define I2C_IT_TXFE (0x1 << 0)
81 #define I2C_IT_TXFNE (0x1 << 1)
82 #define I2C_IT_TXFF (0x1 << 2)
83 #define I2C_IT_TXFOVR (0x1 << 3)
84 #define I2C_IT_RXFE (0x1 << 4)
85 #define I2C_IT_RXFNF (0x1 << 5)
86 #define I2C_IT_RXFF (0x1 << 6)
87 #define I2C_IT_RFSR (0x1 << 16)
88 #define I2C_IT_RFSE (0x1 << 17)
89 #define I2C_IT_WTSR (0x1 << 18)
90 #define I2C_IT_MTD (0x1 << 19)
91 #define I2C_IT_STD (0x1 << 20)
92 #define I2C_IT_MAL (0x1 << 24)
93 #define I2C_IT_BERR (0x1 << 25)
94 #define I2C_IT_MTDWS (0x1 << 28)
95
96 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask))
97
98 /* some bits in ICR are reserved */
99 #define I2C_CLEAR_ALL_INTS 0x131f007f
100
101 /* first three msb bits are reserved */
102 #define IRQ_MASK(mask) (mask & 0x1fffffff)
103
104 /* maximum threshold value */
105 #define MAX_I2C_FIFO_THRESHOLD 15
106
107 enum i2c_status {
108 I2C_NOP,
109 I2C_ON_GOING,
110 I2C_OK,
111 I2C_ABORT
112 };
113
114 /* operation */
115 enum i2c_operation {
116 I2C_NO_OPERATION = 0xff,
117 I2C_WRITE = 0x00,
118 I2C_READ = 0x01
119 };
120
121 /**
122 * struct i2c_nmk_client - client specific data
123 * @slave_adr: 7-bit slave address
124 * @count: no. bytes to be transferred
125 * @buffer: client data buffer
126 * @xfer_bytes: bytes transferred till now
127 * @operation: current I2C operation
128 */
129 struct i2c_nmk_client {
130 unsigned short slave_adr;
131 unsigned long count;
132 unsigned char *buffer;
133 unsigned long xfer_bytes;
134 enum i2c_operation operation;
135 };
136
137 /**
138 * struct nmk_i2c_dev - private data structure of the controller.
139 * @pdev: parent platform device.
140 * @adap: corresponding I2C adapter.
141 * @irq: interrupt line for the controller.
142 * @virtbase: virtual io memory area.
143 * @clk: hardware i2c block clock.
144 * @cfg: machine provided controller configuration.
145 * @cli: holder of client specific data.
146 * @stop: stop condition.
147 * @xfer_complete: acknowledge completion for a I2C message.
148 * @result: controller propogated result.
149 * @regulator: pointer to i2c regulator.
150 * @busy: Busy doing transfer.
151 */
152 struct nmk_i2c_dev {
153 struct platform_device *pdev;
154 struct i2c_adapter adap;
155 int irq;
156 void __iomem *virtbase;
157 struct clk *clk;
158 struct nmk_i2c_controller cfg;
159 struct i2c_nmk_client cli;
160 int stop;
161 struct completion xfer_complete;
162 int result;
163 struct regulator *regulator;
164 bool busy;
165 };
166
167 /* controller's abort causes */
168 static const char *abort_causes[] = {
169 "no ack received after address transmission",
170 "no ack received during data phase",
171 "ack received after xmission of master code",
172 "master lost arbitration",
173 "slave restarts",
174 "slave reset",
175 "overflow, maxsize is 2047 bytes",
176 };
177
178 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
179 {
180 writel(readl(reg) | mask, reg);
181 }
182
183 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
184 {
185 writel(readl(reg) & ~mask, reg);
186 }
187
188 /**
189 * flush_i2c_fifo() - This function flushes the I2C FIFO
190 * @dev: private data of I2C Driver
191 *
192 * This function flushes the I2C Tx and Rx FIFOs. It returns
193 * 0 on successful flushing of FIFO
194 */
195 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
196 {
197 #define LOOP_ATTEMPTS 10
198 int i;
199 unsigned long timeout;
200
201 /*
202 * flush the transmit and receive FIFO. The flushing
203 * operation takes several cycles before to be completed.
204 * On the completion, the I2C internal logic clears these
205 * bits, until then no one must access Tx, Rx FIFO and
206 * should poll on these bits waiting for the completion.
207 */
208 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
209
210 for (i = 0; i < LOOP_ATTEMPTS; i++) {
211 timeout = jiffies + dev->adap.timeout;
212
213 while (!time_after(jiffies, timeout)) {
214 if ((readl(dev->virtbase + I2C_CR) &
215 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
216 return 0;
217 }
218 }
219
220 dev_err(&dev->pdev->dev,
221 "flushing operation timed out giving up after %d attempts",
222 LOOP_ATTEMPTS);
223
224 return -ETIMEDOUT;
225 }
226
227 /**
228 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
229 * @dev: private data of I2C Driver
230 */
231 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
232 {
233 u32 mask = IRQ_MASK(0);
234 writel(mask, dev->virtbase + I2C_IMSCR);
235 }
236
237 /**
238 * clear_all_interrupts() - Clear all interrupts of I2C Controller
239 * @dev: private data of I2C Driver
240 */
241 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
242 {
243 u32 mask;
244 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
245 writel(mask, dev->virtbase + I2C_ICR);
246 }
247
248 /**
249 * init_hw() - initialize the I2C hardware
250 * @dev: private data of I2C Driver
251 */
252 static int init_hw(struct nmk_i2c_dev *dev)
253 {
254 int stat;
255
256 stat = flush_i2c_fifo(dev);
257 if (stat)
258 goto exit;
259
260 /* disable the controller */
261 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
262
263 disable_all_interrupts(dev);
264
265 clear_all_interrupts(dev);
266
267 dev->cli.operation = I2C_NO_OPERATION;
268
269 exit:
270 return stat;
271 }
272
273 /* enable peripheral, master mode operation */
274 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE)
275
276 /**
277 * load_i2c_mcr_reg() - load the MCR register
278 * @dev: private data of controller
279 */
280 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev)
281 {
282 u32 mcr = 0;
283
284 /* 7-bit address transaction */
285 mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
286 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
287
288 /* start byte procedure not applied */
289 mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
290
291 /* check the operation, master read/write? */
292 if (dev->cli.operation == I2C_WRITE)
293 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
294 else
295 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
296
297 /* stop or repeated start? */
298 if (dev->stop)
299 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
300 else
301 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
302
303 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
304
305 return mcr;
306 }
307
308 /**
309 * setup_i2c_controller() - setup the controller
310 * @dev: private data of controller
311 */
312 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
313 {
314 u32 brcr1, brcr2;
315 u32 i2c_clk, div;
316
317 writel(0x0, dev->virtbase + I2C_CR);
318 writel(0x0, dev->virtbase + I2C_HSMCR);
319 writel(0x0, dev->virtbase + I2C_TFTR);
320 writel(0x0, dev->virtbase + I2C_RFTR);
321 writel(0x0, dev->virtbase + I2C_DMAR);
322
323 /*
324 * set the slsu:
325 *
326 * slsu defines the data setup time after SCL clock
327 * stretching in terms of i2c clk cycles. The
328 * needed setup time for the three modes are 250ns,
329 * 100ns, 10ns respectively thus leading to the values
330 * of 14, 6, 2 for a 48 MHz i2c clk.
331 */
332 writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
333
334 i2c_clk = clk_get_rate(dev->clk);
335
336 /* fallback to std. mode if machine has not provided it */
337 if (dev->cfg.clk_freq == 0)
338 dev->cfg.clk_freq = 100000;
339
340 /*
341 * The spec says, in case of std. mode the divider is
342 * 2 whereas it is 3 for fast and fastplus mode of
343 * operation. TODO - high speed support.
344 */
345 div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
346
347 /*
348 * generate the mask for baud rate counters. The controller
349 * has two baud rate counters. One is used for High speed
350 * operation, and the other is for std, fast mode, fast mode
351 * plus operation. Currently we do not supprt high speed mode
352 * so set brcr1 to 0.
353 */
354 brcr1 = 0 << 16;
355 brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
356
357 /* set the baud rate counter register */
358 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
359
360 /*
361 * set the speed mode. Currently we support
362 * only standard and fast mode of operation
363 * TODO - support for fast mode plus (up to 1Mb/s)
364 * and high speed (up to 3.4 Mb/s)
365 */
366 if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
367 dev_err(&dev->pdev->dev,
368 "do not support this mode defaulting to std. mode\n");
369 brcr2 = i2c_clk/(100000 * 2) & 0xffff;
370 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
371 writel(I2C_FREQ_MODE_STANDARD << 4,
372 dev->virtbase + I2C_CR);
373 }
374 writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
375
376 /* set the Tx and Rx FIFO threshold */
377 writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
378 writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
379 }
380
381 /**
382 * read_i2c() - Read from I2C client device
383 * @dev: private data of I2C Driver
384 *
385 * This function reads from i2c client device when controller is in
386 * master mode. There is a completion timeout. If there is no transfer
387 * before timeout error is returned.
388 */
389 static int read_i2c(struct nmk_i2c_dev *dev)
390 {
391 u32 status = 0;
392 u32 mcr;
393 u32 irq_mask = 0;
394 int timeout;
395
396 mcr = load_i2c_mcr_reg(dev);
397 writel(mcr, dev->virtbase + I2C_MCR);
398
399 /* load the current CR value */
400 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
401 dev->virtbase + I2C_CR);
402
403 /* enable the controller */
404 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
405
406 init_completion(&dev->xfer_complete);
407
408 /* enable interrupts by setting the mask */
409 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
410 I2C_IT_MAL | I2C_IT_BERR);
411
412 if (dev->stop)
413 irq_mask |= I2C_IT_MTD;
414 else
415 irq_mask |= I2C_IT_MTDWS;
416
417 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
418
419 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
420 dev->virtbase + I2C_IMSCR);
421
422 timeout = wait_for_completion_timeout(
423 &dev->xfer_complete, dev->adap.timeout);
424
425 if (timeout < 0) {
426 dev_err(&dev->pdev->dev,
427 "wait_for_completion_timeout "
428 "returned %d waiting for event\n", timeout);
429 status = timeout;
430 }
431
432 if (timeout == 0) {
433 /* Controller timed out */
434 dev_err(&dev->pdev->dev, "read from slave 0x%x timed out\n",
435 dev->cli.slave_adr);
436 status = -ETIMEDOUT;
437 }
438 return status;
439 }
440
441 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
442 {
443 int count;
444
445 for (count = (no_bytes - 2);
446 (count > 0) &&
447 (dev->cli.count != 0);
448 count--) {
449 /* write to the Tx FIFO */
450 writeb(*dev->cli.buffer,
451 dev->virtbase + I2C_TFR);
452 dev->cli.buffer++;
453 dev->cli.count--;
454 dev->cli.xfer_bytes++;
455 }
456
457 }
458
459 /**
460 * write_i2c() - Write data to I2C client.
461 * @dev: private data of I2C Driver
462 *
463 * This function writes data to I2C client
464 */
465 static int write_i2c(struct nmk_i2c_dev *dev)
466 {
467 u32 status = 0;
468 u32 mcr;
469 u32 irq_mask = 0;
470 int timeout;
471
472 mcr = load_i2c_mcr_reg(dev);
473
474 writel(mcr, dev->virtbase + I2C_MCR);
475
476 /* load the current CR value */
477 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
478 dev->virtbase + I2C_CR);
479
480 /* enable the controller */
481 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
482
483 init_completion(&dev->xfer_complete);
484
485 /* enable interrupts by settings the masks */
486 irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
487
488 /* Fill the TX FIFO with transmit data */
489 fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
490
491 if (dev->cli.count != 0)
492 irq_mask |= I2C_IT_TXFNE;
493
494 /*
495 * check if we want to transfer a single or multiple bytes, if so
496 * set the MTDWS bit (Master Transaction Done Without Stop)
497 * to start repeated start operation
498 */
499 if (dev->stop)
500 irq_mask |= I2C_IT_MTD;
501 else
502 irq_mask |= I2C_IT_MTDWS;
503
504 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
505
506 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
507 dev->virtbase + I2C_IMSCR);
508
509 timeout = wait_for_completion_timeout(
510 &dev->xfer_complete, dev->adap.timeout);
511
512 if (timeout < 0) {
513 dev_err(&dev->pdev->dev,
514 "wait_for_completion_timeout "
515 "returned %d waiting for event\n", timeout);
516 status = timeout;
517 }
518
519 if (timeout == 0) {
520 /* Controller timed out */
521 dev_err(&dev->pdev->dev, "write to slave 0x%x timed out\n",
522 dev->cli.slave_adr);
523 status = -ETIMEDOUT;
524 }
525
526 return status;
527 }
528
529 /**
530 * nmk_i2c_xfer_one() - transmit a single I2C message
531 * @dev: device with a message encoded into it
532 * @flags: message flags
533 */
534 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
535 {
536 int status;
537
538 if (flags & I2C_M_RD) {
539 /* read operation */
540 dev->cli.operation = I2C_READ;
541 status = read_i2c(dev);
542 } else {
543 /* write operation */
544 dev->cli.operation = I2C_WRITE;
545 status = write_i2c(dev);
546 }
547
548 if (status || (dev->result)) {
549 u32 i2c_sr;
550 u32 cause;
551
552 i2c_sr = readl(dev->virtbase + I2C_SR);
553 /*
554 * Check if the controller I2C operation status
555 * is set to ABORT(11b).
556 */
557 if (((i2c_sr >> 2) & 0x3) == 0x3) {
558 /* get the abort cause */
559 cause = (i2c_sr >> 4) & 0x7;
560 dev_err(&dev->pdev->dev, "%s\n",
561 cause >= ARRAY_SIZE(abort_causes) ?
562 "unknown reason" :
563 abort_causes[cause]);
564 }
565
566 (void) init_hw(dev);
567
568 status = status ? status : dev->result;
569 }
570
571 return status;
572 }
573
574 /**
575 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
576 * @i2c_adap: Adapter pointer to the controller
577 * @msgs: Pointer to data to be written.
578 * @num_msgs: Number of messages to be executed
579 *
580 * This is the function called by the generic kernel i2c_transfer()
581 * or i2c_smbus...() API calls. Note that this code is protected by the
582 * semaphore set in the kernel i2c_transfer() function.
583 *
584 * NOTE:
585 * READ TRANSFER : We impose a restriction of the first message to be the
586 * index message for any read transaction.
587 * - a no index is coded as '0',
588 * - 2byte big endian index is coded as '3'
589 * !!! msg[0].buf holds the actual index.
590 * This is compatible with generic messages of smbus emulator
591 * that send a one byte index.
592 * eg. a I2C transation to read 2 bytes from index 0
593 * idx = 0;
594 * msg[0].addr = client->addr;
595 * msg[0].flags = 0x0;
596 * msg[0].len = 1;
597 * msg[0].buf = &idx;
598 *
599 * msg[1].addr = client->addr;
600 * msg[1].flags = I2C_M_RD;
601 * msg[1].len = 2;
602 * msg[1].buf = rd_buff
603 * i2c_transfer(adap, msg, 2);
604 *
605 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
606 * If you want to emulate an SMBUS write transaction put the
607 * index as first byte(or first and second) in the payload.
608 * eg. a I2C transation to write 2 bytes from index 1
609 * wr_buff[0] = 0x1;
610 * wr_buff[1] = 0x23;
611 * wr_buff[2] = 0x46;
612 * msg[0].flags = 0x0;
613 * msg[0].len = 3;
614 * msg[0].buf = wr_buff;
615 * i2c_transfer(adap, msg, 1);
616 *
617 * To read or write a block of data (multiple bytes) using SMBUS emulation
618 * please use the i2c_smbus_read_i2c_block_data()
619 * or i2c_smbus_write_i2c_block_data() API
620 */
621 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
622 struct i2c_msg msgs[], int num_msgs)
623 {
624 int status;
625 int i;
626 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
627 int j;
628
629 dev->busy = true;
630
631 if (dev->regulator)
632 regulator_enable(dev->regulator);
633 pm_runtime_get_sync(&dev->pdev->dev);
634
635 clk_enable(dev->clk);
636
637 status = init_hw(dev);
638 if (status)
639 goto out;
640
641 /* Attempt three times to send the message queue */
642 for (j = 0; j < 3; j++) {
643 /* setup the i2c controller */
644 setup_i2c_controller(dev);
645
646 for (i = 0; i < num_msgs; i++) {
647 if (unlikely(msgs[i].flags & I2C_M_TEN)) {
648 dev_err(&dev->pdev->dev,
649 "10 bit addressing not supported\n");
650
651 status = -EINVAL;
652 goto out;
653 }
654 dev->cli.slave_adr = msgs[i].addr;
655 dev->cli.buffer = msgs[i].buf;
656 dev->cli.count = msgs[i].len;
657 dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
658 dev->result = 0;
659
660 status = nmk_i2c_xfer_one(dev, msgs[i].flags);
661 if (status != 0)
662 break;
663 }
664 if (status == 0)
665 break;
666 }
667
668 out:
669 clk_disable(dev->clk);
670 pm_runtime_put_sync(&dev->pdev->dev);
671 if (dev->regulator)
672 regulator_disable(dev->regulator);
673
674 dev->busy = false;
675
676 /* return the no. messages processed */
677 if (status)
678 return status;
679 else
680 return num_msgs;
681 }
682
683 /**
684 * disable_interrupts() - disable the interrupts
685 * @dev: private data of controller
686 * @irq: interrupt number
687 */
688 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
689 {
690 irq = IRQ_MASK(irq);
691 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
692 dev->virtbase + I2C_IMSCR);
693 return 0;
694 }
695
696 /**
697 * i2c_irq_handler() - interrupt routine
698 * @irq: interrupt number
699 * @arg: data passed to the handler
700 *
701 * This is the interrupt handler for the i2c driver. Currently
702 * it handles the major interrupts like Rx & Tx FIFO management
703 * interrupts, master transaction interrupts, arbitration and
704 * bus error interrupts. The rest of the interrupts are treated as
705 * unhandled.
706 */
707 static irqreturn_t i2c_irq_handler(int irq, void *arg)
708 {
709 struct nmk_i2c_dev *dev = arg;
710 u32 tft, rft;
711 u32 count;
712 u32 misr;
713 u32 src = 0;
714
715 /* load Tx FIFO and Rx FIFO threshold values */
716 tft = readl(dev->virtbase + I2C_TFTR);
717 rft = readl(dev->virtbase + I2C_RFTR);
718
719 /* read interrupt status register */
720 misr = readl(dev->virtbase + I2C_MISR);
721
722 src = __ffs(misr);
723 switch ((1 << src)) {
724
725 /* Transmit FIFO nearly empty interrupt */
726 case I2C_IT_TXFNE:
727 {
728 if (dev->cli.operation == I2C_READ) {
729 /*
730 * in read operation why do we care for writing?
731 * so disable the Transmit FIFO interrupt
732 */
733 disable_interrupts(dev, I2C_IT_TXFNE);
734 } else {
735 fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
736 /*
737 * if done, close the transfer by disabling the
738 * corresponding TXFNE interrupt
739 */
740 if (dev->cli.count == 0)
741 disable_interrupts(dev, I2C_IT_TXFNE);
742 }
743 }
744 break;
745
746 /*
747 * Rx FIFO nearly full interrupt.
748 * This is set when the numer of entries in Rx FIFO is
749 * greater or equal than the threshold value programmed
750 * in RFT
751 */
752 case I2C_IT_RXFNF:
753 for (count = rft; count > 0; count--) {
754 /* Read the Rx FIFO */
755 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
756 dev->cli.buffer++;
757 }
758 dev->cli.count -= rft;
759 dev->cli.xfer_bytes += rft;
760 break;
761
762 /* Rx FIFO full */
763 case I2C_IT_RXFF:
764 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
765 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
766 dev->cli.buffer++;
767 }
768 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
769 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
770 break;
771
772 /* Master Transaction Done with/without stop */
773 case I2C_IT_MTD:
774 case I2C_IT_MTDWS:
775 if (dev->cli.operation == I2C_READ) {
776 while (!(readl(dev->virtbase + I2C_RISR)
777 & I2C_IT_RXFE)) {
778 if (dev->cli.count == 0)
779 break;
780 *dev->cli.buffer =
781 readb(dev->virtbase + I2C_RFR);
782 dev->cli.buffer++;
783 dev->cli.count--;
784 dev->cli.xfer_bytes++;
785 }
786 }
787
788 disable_all_interrupts(dev);
789 clear_all_interrupts(dev);
790
791 if (dev->cli.count) {
792 dev->result = -EIO;
793 dev_err(&dev->pdev->dev,
794 "%lu bytes still remain to be xfered\n",
795 dev->cli.count);
796 (void) init_hw(dev);
797 }
798 complete(&dev->xfer_complete);
799
800 break;
801
802 /* Master Arbitration lost interrupt */
803 case I2C_IT_MAL:
804 dev->result = -EIO;
805 (void) init_hw(dev);
806
807 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
808 complete(&dev->xfer_complete);
809
810 break;
811
812 /*
813 * Bus Error interrupt.
814 * This happens when an unexpected start/stop condition occurs
815 * during the transaction.
816 */
817 case I2C_IT_BERR:
818 dev->result = -EIO;
819 /* get the status */
820 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
821 (void) init_hw(dev);
822
823 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
824 complete(&dev->xfer_complete);
825
826 break;
827
828 /*
829 * Tx FIFO overrun interrupt.
830 * This is set when a write operation in Tx FIFO is performed and
831 * the Tx FIFO is full.
832 */
833 case I2C_IT_TXFOVR:
834 dev->result = -EIO;
835 (void) init_hw(dev);
836
837 dev_err(&dev->pdev->dev, "Tx Fifo Over run\n");
838 complete(&dev->xfer_complete);
839
840 break;
841
842 /* unhandled interrupts by this driver - TODO*/
843 case I2C_IT_TXFE:
844 case I2C_IT_TXFF:
845 case I2C_IT_RXFE:
846 case I2C_IT_RFSR:
847 case I2C_IT_RFSE:
848 case I2C_IT_WTSR:
849 case I2C_IT_STD:
850 dev_err(&dev->pdev->dev, "unhandled Interrupt\n");
851 break;
852 default:
853 dev_err(&dev->pdev->dev, "spurious Interrupt..\n");
854 break;
855 }
856
857 return IRQ_HANDLED;
858 }
859
860
861 #ifdef CONFIG_PM
862 static int nmk_i2c_suspend(struct device *dev)
863 {
864 struct platform_device *pdev = to_platform_device(dev);
865 struct nmk_i2c_dev *nmk_i2c = platform_get_drvdata(pdev);
866
867 if (nmk_i2c->busy)
868 return -EBUSY;
869
870 return 0;
871 }
872
873 static int nmk_i2c_resume(struct device *dev)
874 {
875 return 0;
876 }
877 #else
878 #define nmk_i2c_suspend NULL
879 #define nmk_i2c_resume NULL
880 #endif
881
882 /*
883 * We use noirq so that we suspend late and resume before the wakeup interrupt
884 * to ensure that we do the !pm_runtime_suspended() check in resume before
885 * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
886 */
887 static const struct dev_pm_ops nmk_i2c_pm = {
888 .suspend_noirq = nmk_i2c_suspend,
889 .resume_noirq = nmk_i2c_resume,
890 };
891
892 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
893 {
894 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
895 }
896
897 static const struct i2c_algorithm nmk_i2c_algo = {
898 .master_xfer = nmk_i2c_xfer,
899 .functionality = nmk_i2c_functionality
900 };
901
902 static int __devinit nmk_i2c_probe(struct platform_device *pdev)
903 {
904 int ret = 0;
905 struct resource *res;
906 struct nmk_i2c_controller *pdata =
907 pdev->dev.platform_data;
908 struct nmk_i2c_dev *dev;
909 struct i2c_adapter *adap;
910
911 dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
912 if (!dev) {
913 dev_err(&pdev->dev, "cannot allocate memory\n");
914 ret = -ENOMEM;
915 goto err_no_mem;
916 }
917 dev->busy = false;
918 dev->pdev = pdev;
919 platform_set_drvdata(pdev, dev);
920
921 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
922 if (!res) {
923 ret = -ENOENT;
924 goto err_no_resource;
925 }
926
927 if (request_mem_region(res->start, resource_size(res),
928 DRIVER_NAME "I/O region") == NULL) {
929 ret = -EBUSY;
930 goto err_no_region;
931 }
932
933 dev->virtbase = ioremap(res->start, resource_size(res));
934 if (!dev->virtbase) {
935 ret = -ENOMEM;
936 goto err_no_ioremap;
937 }
938
939 dev->irq = platform_get_irq(pdev, 0);
940 ret = request_irq(dev->irq, i2c_irq_handler, 0,
941 DRIVER_NAME, dev);
942 if (ret) {
943 dev_err(&pdev->dev, "cannot claim the irq %d\n", dev->irq);
944 goto err_irq;
945 }
946
947 dev->regulator = regulator_get(&pdev->dev, "v-i2c");
948 if (IS_ERR(dev->regulator)) {
949 dev_warn(&pdev->dev, "could not get i2c regulator\n");
950 dev->regulator = NULL;
951 }
952
953 pm_suspend_ignore_children(&pdev->dev, true);
954 pm_runtime_enable(&pdev->dev);
955
956 dev->clk = clk_get(&pdev->dev, NULL);
957 if (IS_ERR(dev->clk)) {
958 dev_err(&pdev->dev, "could not get i2c clock\n");
959 ret = PTR_ERR(dev->clk);
960 goto err_no_clk;
961 }
962
963 adap = &dev->adap;
964 adap->dev.parent = &pdev->dev;
965 adap->owner = THIS_MODULE;
966 adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
967 adap->algo = &nmk_i2c_algo;
968 adap->timeout = pdata->timeout ? msecs_to_jiffies(pdata->timeout) :
969 msecs_to_jiffies(20000);
970 snprintf(adap->name, sizeof(adap->name),
971 "Nomadik I2C%d at %lx", pdev->id, (unsigned long)res->start);
972
973 /* fetch the controller id */
974 adap->nr = pdev->id;
975
976 /* fetch the controller configuration from machine */
977 dev->cfg.clk_freq = pdata->clk_freq;
978 dev->cfg.slsu = pdata->slsu;
979 dev->cfg.tft = pdata->tft;
980 dev->cfg.rft = pdata->rft;
981 dev->cfg.sm = pdata->sm;
982
983 i2c_set_adapdata(adap, dev);
984
985 dev_info(&pdev->dev,
986 "initialize %s on virtual base %p\n",
987 adap->name, dev->virtbase);
988
989 ret = i2c_add_numbered_adapter(adap);
990 if (ret) {
991 dev_err(&pdev->dev, "failed to add adapter\n");
992 goto err_add_adap;
993 }
994
995 return 0;
996
997 err_add_adap:
998 clk_put(dev->clk);
999 err_no_clk:
1000 if (dev->regulator)
1001 regulator_put(dev->regulator);
1002 pm_runtime_disable(&pdev->dev);
1003 free_irq(dev->irq, dev);
1004 err_irq:
1005 iounmap(dev->virtbase);
1006 err_no_ioremap:
1007 release_mem_region(res->start, resource_size(res));
1008 err_no_region:
1009 platform_set_drvdata(pdev, NULL);
1010 err_no_resource:
1011 kfree(dev);
1012 err_no_mem:
1013
1014 return ret;
1015 }
1016
1017 static int __devexit nmk_i2c_remove(struct platform_device *pdev)
1018 {
1019 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1020 struct nmk_i2c_dev *dev = platform_get_drvdata(pdev);
1021
1022 i2c_del_adapter(&dev->adap);
1023 flush_i2c_fifo(dev);
1024 disable_all_interrupts(dev);
1025 clear_all_interrupts(dev);
1026 /* disable the controller */
1027 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1028 free_irq(dev->irq, dev);
1029 iounmap(dev->virtbase);
1030 if (res)
1031 release_mem_region(res->start, resource_size(res));
1032 clk_put(dev->clk);
1033 if (dev->regulator)
1034 regulator_put(dev->regulator);
1035 pm_runtime_disable(&pdev->dev);
1036 platform_set_drvdata(pdev, NULL);
1037 kfree(dev);
1038
1039 return 0;
1040 }
1041
1042 static struct platform_driver nmk_i2c_driver = {
1043 .driver = {
1044 .owner = THIS_MODULE,
1045 .name = DRIVER_NAME,
1046 .pm = &nmk_i2c_pm,
1047 },
1048 .probe = nmk_i2c_probe,
1049 .remove = __devexit_p(nmk_i2c_remove),
1050 };
1051
1052 static int __init nmk_i2c_init(void)
1053 {
1054 return platform_driver_register(&nmk_i2c_driver);
1055 }
1056
1057 static void __exit nmk_i2c_exit(void)
1058 {
1059 platform_driver_unregister(&nmk_i2c_driver);
1060 }
1061
1062 subsys_initcall(nmk_i2c_init);
1063 module_exit(nmk_i2c_exit);
1064
1065 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1066 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1067 MODULE_LICENSE("GPL");
1068 MODULE_ALIAS("platform:" DRIVER_NAME);