]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/i2c/busses/i2c-nomadik.c
Merge tag 'dwc3-for-v3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[mirror_ubuntu-artful-kernel.git] / drivers / i2c / busses / i2c-nomadik.c
1 /*
2 * Copyright (C) 2009 ST-Ericsson SA
3 * Copyright (C) 2009 STMicroelectronics
4 *
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
7 *
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
14 */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/atomic.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/platform_data/i2c-nomadik.h>
28
29 #define DRIVER_NAME "nmk-i2c"
30
31 /* I2C Controller register offsets */
32 #define I2C_CR (0x000)
33 #define I2C_SCR (0x004)
34 #define I2C_HSMCR (0x008)
35 #define I2C_MCR (0x00C)
36 #define I2C_TFR (0x010)
37 #define I2C_SR (0x014)
38 #define I2C_RFR (0x018)
39 #define I2C_TFTR (0x01C)
40 #define I2C_RFTR (0x020)
41 #define I2C_DMAR (0x024)
42 #define I2C_BRCR (0x028)
43 #define I2C_IMSCR (0x02C)
44 #define I2C_RISR (0x030)
45 #define I2C_MISR (0x034)
46 #define I2C_ICR (0x038)
47
48 /* Control registers */
49 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */
50 #define I2C_CR_OM (0x3 << 1) /* Operating mode */
51 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */
52 #define I2C_CR_SM (0x3 << 4) /* Speed mode */
53 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */
54 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */
55 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */
56 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */
57 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */
58 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */
59 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */
60 #define I2C_CR_FON (0x3 << 13) /* Filtering on */
61 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */
62
63 /* Master controller (MCR) register */
64 #define I2C_MCR_OP (0x1 << 0) /* Operation */
65 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */
66 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */
67 #define I2C_MCR_SB (0x1 << 11) /* Extended address */
68 #define I2C_MCR_AM (0x3 << 12) /* Address type */
69 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */
70 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */
71
72 /* Status register (SR) */
73 #define I2C_SR_OP (0x3 << 0) /* Operation */
74 #define I2C_SR_STATUS (0x3 << 2) /* controller status */
75 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */
76 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */
77 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */
78
79 /* Interrupt mask set/clear (IMSCR) bits */
80 #define I2C_IT_TXFE (0x1 << 0)
81 #define I2C_IT_TXFNE (0x1 << 1)
82 #define I2C_IT_TXFF (0x1 << 2)
83 #define I2C_IT_TXFOVR (0x1 << 3)
84 #define I2C_IT_RXFE (0x1 << 4)
85 #define I2C_IT_RXFNF (0x1 << 5)
86 #define I2C_IT_RXFF (0x1 << 6)
87 #define I2C_IT_RFSR (0x1 << 16)
88 #define I2C_IT_RFSE (0x1 << 17)
89 #define I2C_IT_WTSR (0x1 << 18)
90 #define I2C_IT_MTD (0x1 << 19)
91 #define I2C_IT_STD (0x1 << 20)
92 #define I2C_IT_MAL (0x1 << 24)
93 #define I2C_IT_BERR (0x1 << 25)
94 #define I2C_IT_MTDWS (0x1 << 28)
95
96 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask))
97
98 /* some bits in ICR are reserved */
99 #define I2C_CLEAR_ALL_INTS 0x131f007f
100
101 /* first three msb bits are reserved */
102 #define IRQ_MASK(mask) (mask & 0x1fffffff)
103
104 /* maximum threshold value */
105 #define MAX_I2C_FIFO_THRESHOLD 15
106
107 enum i2c_status {
108 I2C_NOP,
109 I2C_ON_GOING,
110 I2C_OK,
111 I2C_ABORT
112 };
113
114 /* operation */
115 enum i2c_operation {
116 I2C_NO_OPERATION = 0xff,
117 I2C_WRITE = 0x00,
118 I2C_READ = 0x01
119 };
120
121 /**
122 * struct i2c_nmk_client - client specific data
123 * @slave_adr: 7-bit slave address
124 * @count: no. bytes to be transferred
125 * @buffer: client data buffer
126 * @xfer_bytes: bytes transferred till now
127 * @operation: current I2C operation
128 */
129 struct i2c_nmk_client {
130 unsigned short slave_adr;
131 unsigned long count;
132 unsigned char *buffer;
133 unsigned long xfer_bytes;
134 enum i2c_operation operation;
135 };
136
137 /**
138 * struct nmk_i2c_dev - private data structure of the controller.
139 * @adev: parent amba device.
140 * @adap: corresponding I2C adapter.
141 * @irq: interrupt line for the controller.
142 * @virtbase: virtual io memory area.
143 * @clk: hardware i2c block clock.
144 * @cfg: machine provided controller configuration.
145 * @cli: holder of client specific data.
146 * @stop: stop condition.
147 * @xfer_complete: acknowledge completion for a I2C message.
148 * @result: controller propogated result.
149 * @regulator: pointer to i2c regulator.
150 * @busy: Busy doing transfer.
151 */
152 struct nmk_i2c_dev {
153 struct amba_device *adev;
154 struct i2c_adapter adap;
155 int irq;
156 void __iomem *virtbase;
157 struct clk *clk;
158 struct nmk_i2c_controller cfg;
159 struct i2c_nmk_client cli;
160 int stop;
161 struct completion xfer_complete;
162 int result;
163 struct regulator *regulator;
164 bool busy;
165 };
166
167 /* controller's abort causes */
168 static const char *abort_causes[] = {
169 "no ack received after address transmission",
170 "no ack received during data phase",
171 "ack received after xmission of master code",
172 "master lost arbitration",
173 "slave restarts",
174 "slave reset",
175 "overflow, maxsize is 2047 bytes",
176 };
177
178 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
179 {
180 writel(readl(reg) | mask, reg);
181 }
182
183 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
184 {
185 writel(readl(reg) & ~mask, reg);
186 }
187
188 /**
189 * flush_i2c_fifo() - This function flushes the I2C FIFO
190 * @dev: private data of I2C Driver
191 *
192 * This function flushes the I2C Tx and Rx FIFOs. It returns
193 * 0 on successful flushing of FIFO
194 */
195 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
196 {
197 #define LOOP_ATTEMPTS 10
198 int i;
199 unsigned long timeout;
200
201 /*
202 * flush the transmit and receive FIFO. The flushing
203 * operation takes several cycles before to be completed.
204 * On the completion, the I2C internal logic clears these
205 * bits, until then no one must access Tx, Rx FIFO and
206 * should poll on these bits waiting for the completion.
207 */
208 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
209
210 for (i = 0; i < LOOP_ATTEMPTS; i++) {
211 timeout = jiffies + dev->adap.timeout;
212
213 while (!time_after(jiffies, timeout)) {
214 if ((readl(dev->virtbase + I2C_CR) &
215 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
216 return 0;
217 }
218 }
219
220 dev_err(&dev->adev->dev,
221 "flushing operation timed out giving up after %d attempts",
222 LOOP_ATTEMPTS);
223
224 return -ETIMEDOUT;
225 }
226
227 /**
228 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
229 * @dev: private data of I2C Driver
230 */
231 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
232 {
233 u32 mask = IRQ_MASK(0);
234 writel(mask, dev->virtbase + I2C_IMSCR);
235 }
236
237 /**
238 * clear_all_interrupts() - Clear all interrupts of I2C Controller
239 * @dev: private data of I2C Driver
240 */
241 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
242 {
243 u32 mask;
244 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
245 writel(mask, dev->virtbase + I2C_ICR);
246 }
247
248 /**
249 * init_hw() - initialize the I2C hardware
250 * @dev: private data of I2C Driver
251 */
252 static int init_hw(struct nmk_i2c_dev *dev)
253 {
254 int stat;
255
256 stat = flush_i2c_fifo(dev);
257 if (stat)
258 goto exit;
259
260 /* disable the controller */
261 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
262
263 disable_all_interrupts(dev);
264
265 clear_all_interrupts(dev);
266
267 dev->cli.operation = I2C_NO_OPERATION;
268
269 exit:
270 return stat;
271 }
272
273 /* enable peripheral, master mode operation */
274 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE)
275
276 /**
277 * load_i2c_mcr_reg() - load the MCR register
278 * @dev: private data of controller
279 * @flags: message flags
280 */
281 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
282 {
283 u32 mcr = 0;
284 unsigned short slave_adr_3msb_bits;
285
286 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
287
288 if (unlikely(flags & I2C_M_TEN)) {
289 /* 10-bit address transaction */
290 mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
291 /*
292 * Get the top 3 bits.
293 * EA10 represents extended address in MCR. This includes
294 * the extension (MSB bits) of the 7 bit address loaded
295 * in A7
296 */
297 slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
298
299 mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
300 } else {
301 /* 7-bit address transaction */
302 mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
303 }
304
305 /* start byte procedure not applied */
306 mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
307
308 /* check the operation, master read/write? */
309 if (dev->cli.operation == I2C_WRITE)
310 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
311 else
312 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
313
314 /* stop or repeated start? */
315 if (dev->stop)
316 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
317 else
318 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
319
320 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
321
322 return mcr;
323 }
324
325 /**
326 * setup_i2c_controller() - setup the controller
327 * @dev: private data of controller
328 */
329 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
330 {
331 u32 brcr1, brcr2;
332 u32 i2c_clk, div;
333
334 writel(0x0, dev->virtbase + I2C_CR);
335 writel(0x0, dev->virtbase + I2C_HSMCR);
336 writel(0x0, dev->virtbase + I2C_TFTR);
337 writel(0x0, dev->virtbase + I2C_RFTR);
338 writel(0x0, dev->virtbase + I2C_DMAR);
339
340 /*
341 * set the slsu:
342 *
343 * slsu defines the data setup time after SCL clock
344 * stretching in terms of i2c clk cycles. The
345 * needed setup time for the three modes are 250ns,
346 * 100ns, 10ns respectively thus leading to the values
347 * of 14, 6, 2 for a 48 MHz i2c clk.
348 */
349 writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
350
351 i2c_clk = clk_get_rate(dev->clk);
352
353 /*
354 * The spec says, in case of std. mode the divider is
355 * 2 whereas it is 3 for fast and fastplus mode of
356 * operation. TODO - high speed support.
357 */
358 div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
359
360 /*
361 * generate the mask for baud rate counters. The controller
362 * has two baud rate counters. One is used for High speed
363 * operation, and the other is for std, fast mode, fast mode
364 * plus operation. Currently we do not supprt high speed mode
365 * so set brcr1 to 0.
366 */
367 brcr1 = 0 << 16;
368 brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
369
370 /* set the baud rate counter register */
371 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
372
373 /*
374 * set the speed mode. Currently we support
375 * only standard and fast mode of operation
376 * TODO - support for fast mode plus (up to 1Mb/s)
377 * and high speed (up to 3.4 Mb/s)
378 */
379 if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
380 dev_err(&dev->adev->dev,
381 "do not support this mode defaulting to std. mode\n");
382 brcr2 = i2c_clk/(100000 * 2) & 0xffff;
383 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
384 writel(I2C_FREQ_MODE_STANDARD << 4,
385 dev->virtbase + I2C_CR);
386 }
387 writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
388
389 /* set the Tx and Rx FIFO threshold */
390 writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
391 writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
392 }
393
394 /**
395 * read_i2c() - Read from I2C client device
396 * @dev: private data of I2C Driver
397 * @flags: message flags
398 *
399 * This function reads from i2c client device when controller is in
400 * master mode. There is a completion timeout. If there is no transfer
401 * before timeout error is returned.
402 */
403 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
404 {
405 u32 status = 0;
406 u32 mcr;
407 u32 irq_mask = 0;
408 int timeout;
409
410 mcr = load_i2c_mcr_reg(dev, flags);
411 writel(mcr, dev->virtbase + I2C_MCR);
412
413 /* load the current CR value */
414 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
415 dev->virtbase + I2C_CR);
416
417 /* enable the controller */
418 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
419
420 init_completion(&dev->xfer_complete);
421
422 /* enable interrupts by setting the mask */
423 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
424 I2C_IT_MAL | I2C_IT_BERR);
425
426 if (dev->stop)
427 irq_mask |= I2C_IT_MTD;
428 else
429 irq_mask |= I2C_IT_MTDWS;
430
431 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
432
433 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
434 dev->virtbase + I2C_IMSCR);
435
436 timeout = wait_for_completion_timeout(
437 &dev->xfer_complete, dev->adap.timeout);
438
439 if (timeout < 0) {
440 dev_err(&dev->adev->dev,
441 "wait_for_completion_timeout "
442 "returned %d waiting for event\n", timeout);
443 status = timeout;
444 }
445
446 if (timeout == 0) {
447 /* Controller timed out */
448 dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
449 dev->cli.slave_adr);
450 status = -ETIMEDOUT;
451 }
452 return status;
453 }
454
455 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
456 {
457 int count;
458
459 for (count = (no_bytes - 2);
460 (count > 0) &&
461 (dev->cli.count != 0);
462 count--) {
463 /* write to the Tx FIFO */
464 writeb(*dev->cli.buffer,
465 dev->virtbase + I2C_TFR);
466 dev->cli.buffer++;
467 dev->cli.count--;
468 dev->cli.xfer_bytes++;
469 }
470
471 }
472
473 /**
474 * write_i2c() - Write data to I2C client.
475 * @dev: private data of I2C Driver
476 * @flags: message flags
477 *
478 * This function writes data to I2C client
479 */
480 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
481 {
482 u32 status = 0;
483 u32 mcr;
484 u32 irq_mask = 0;
485 int timeout;
486
487 mcr = load_i2c_mcr_reg(dev, flags);
488
489 writel(mcr, dev->virtbase + I2C_MCR);
490
491 /* load the current CR value */
492 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
493 dev->virtbase + I2C_CR);
494
495 /* enable the controller */
496 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
497
498 init_completion(&dev->xfer_complete);
499
500 /* enable interrupts by settings the masks */
501 irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
502
503 /* Fill the TX FIFO with transmit data */
504 fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
505
506 if (dev->cli.count != 0)
507 irq_mask |= I2C_IT_TXFNE;
508
509 /*
510 * check if we want to transfer a single or multiple bytes, if so
511 * set the MTDWS bit (Master Transaction Done Without Stop)
512 * to start repeated start operation
513 */
514 if (dev->stop)
515 irq_mask |= I2C_IT_MTD;
516 else
517 irq_mask |= I2C_IT_MTDWS;
518
519 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
520
521 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
522 dev->virtbase + I2C_IMSCR);
523
524 timeout = wait_for_completion_timeout(
525 &dev->xfer_complete, dev->adap.timeout);
526
527 if (timeout < 0) {
528 dev_err(&dev->adev->dev,
529 "wait_for_completion_timeout "
530 "returned %d waiting for event\n", timeout);
531 status = timeout;
532 }
533
534 if (timeout == 0) {
535 /* Controller timed out */
536 dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
537 dev->cli.slave_adr);
538 status = -ETIMEDOUT;
539 }
540
541 return status;
542 }
543
544 /**
545 * nmk_i2c_xfer_one() - transmit a single I2C message
546 * @dev: device with a message encoded into it
547 * @flags: message flags
548 */
549 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
550 {
551 int status;
552
553 if (flags & I2C_M_RD) {
554 /* read operation */
555 dev->cli.operation = I2C_READ;
556 status = read_i2c(dev, flags);
557 } else {
558 /* write operation */
559 dev->cli.operation = I2C_WRITE;
560 status = write_i2c(dev, flags);
561 }
562
563 if (status || (dev->result)) {
564 u32 i2c_sr;
565 u32 cause;
566
567 i2c_sr = readl(dev->virtbase + I2C_SR);
568 /*
569 * Check if the controller I2C operation status
570 * is set to ABORT(11b).
571 */
572 if (((i2c_sr >> 2) & 0x3) == 0x3) {
573 /* get the abort cause */
574 cause = (i2c_sr >> 4) & 0x7;
575 dev_err(&dev->adev->dev, "%s\n",
576 cause >= ARRAY_SIZE(abort_causes) ?
577 "unknown reason" :
578 abort_causes[cause]);
579 }
580
581 (void) init_hw(dev);
582
583 status = status ? status : dev->result;
584 }
585
586 return status;
587 }
588
589 /**
590 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
591 * @i2c_adap: Adapter pointer to the controller
592 * @msgs: Pointer to data to be written.
593 * @num_msgs: Number of messages to be executed
594 *
595 * This is the function called by the generic kernel i2c_transfer()
596 * or i2c_smbus...() API calls. Note that this code is protected by the
597 * semaphore set in the kernel i2c_transfer() function.
598 *
599 * NOTE:
600 * READ TRANSFER : We impose a restriction of the first message to be the
601 * index message for any read transaction.
602 * - a no index is coded as '0',
603 * - 2byte big endian index is coded as '3'
604 * !!! msg[0].buf holds the actual index.
605 * This is compatible with generic messages of smbus emulator
606 * that send a one byte index.
607 * eg. a I2C transation to read 2 bytes from index 0
608 * idx = 0;
609 * msg[0].addr = client->addr;
610 * msg[0].flags = 0x0;
611 * msg[0].len = 1;
612 * msg[0].buf = &idx;
613 *
614 * msg[1].addr = client->addr;
615 * msg[1].flags = I2C_M_RD;
616 * msg[1].len = 2;
617 * msg[1].buf = rd_buff
618 * i2c_transfer(adap, msg, 2);
619 *
620 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
621 * If you want to emulate an SMBUS write transaction put the
622 * index as first byte(or first and second) in the payload.
623 * eg. a I2C transation to write 2 bytes from index 1
624 * wr_buff[0] = 0x1;
625 * wr_buff[1] = 0x23;
626 * wr_buff[2] = 0x46;
627 * msg[0].flags = 0x0;
628 * msg[0].len = 3;
629 * msg[0].buf = wr_buff;
630 * i2c_transfer(adap, msg, 1);
631 *
632 * To read or write a block of data (multiple bytes) using SMBUS emulation
633 * please use the i2c_smbus_read_i2c_block_data()
634 * or i2c_smbus_write_i2c_block_data() API
635 */
636 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
637 struct i2c_msg msgs[], int num_msgs)
638 {
639 int status;
640 int i;
641 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
642 int j;
643
644 dev->busy = true;
645
646 if (dev->regulator)
647 regulator_enable(dev->regulator);
648 pm_runtime_get_sync(&dev->adev->dev);
649
650 clk_enable(dev->clk);
651
652 status = init_hw(dev);
653 if (status)
654 goto out;
655
656 /* Attempt three times to send the message queue */
657 for (j = 0; j < 3; j++) {
658 /* setup the i2c controller */
659 setup_i2c_controller(dev);
660
661 for (i = 0; i < num_msgs; i++) {
662 dev->cli.slave_adr = msgs[i].addr;
663 dev->cli.buffer = msgs[i].buf;
664 dev->cli.count = msgs[i].len;
665 dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
666 dev->result = 0;
667
668 status = nmk_i2c_xfer_one(dev, msgs[i].flags);
669 if (status != 0)
670 break;
671 }
672 if (status == 0)
673 break;
674 }
675
676 out:
677 clk_disable(dev->clk);
678 pm_runtime_put_sync(&dev->adev->dev);
679 if (dev->regulator)
680 regulator_disable(dev->regulator);
681
682 dev->busy = false;
683
684 /* return the no. messages processed */
685 if (status)
686 return status;
687 else
688 return num_msgs;
689 }
690
691 /**
692 * disable_interrupts() - disable the interrupts
693 * @dev: private data of controller
694 * @irq: interrupt number
695 */
696 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
697 {
698 irq = IRQ_MASK(irq);
699 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
700 dev->virtbase + I2C_IMSCR);
701 return 0;
702 }
703
704 /**
705 * i2c_irq_handler() - interrupt routine
706 * @irq: interrupt number
707 * @arg: data passed to the handler
708 *
709 * This is the interrupt handler for the i2c driver. Currently
710 * it handles the major interrupts like Rx & Tx FIFO management
711 * interrupts, master transaction interrupts, arbitration and
712 * bus error interrupts. The rest of the interrupts are treated as
713 * unhandled.
714 */
715 static irqreturn_t i2c_irq_handler(int irq, void *arg)
716 {
717 struct nmk_i2c_dev *dev = arg;
718 u32 tft, rft;
719 u32 count;
720 u32 misr;
721 u32 src = 0;
722
723 /* load Tx FIFO and Rx FIFO threshold values */
724 tft = readl(dev->virtbase + I2C_TFTR);
725 rft = readl(dev->virtbase + I2C_RFTR);
726
727 /* read interrupt status register */
728 misr = readl(dev->virtbase + I2C_MISR);
729
730 src = __ffs(misr);
731 switch ((1 << src)) {
732
733 /* Transmit FIFO nearly empty interrupt */
734 case I2C_IT_TXFNE:
735 {
736 if (dev->cli.operation == I2C_READ) {
737 /*
738 * in read operation why do we care for writing?
739 * so disable the Transmit FIFO interrupt
740 */
741 disable_interrupts(dev, I2C_IT_TXFNE);
742 } else {
743 fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
744 /*
745 * if done, close the transfer by disabling the
746 * corresponding TXFNE interrupt
747 */
748 if (dev->cli.count == 0)
749 disable_interrupts(dev, I2C_IT_TXFNE);
750 }
751 }
752 break;
753
754 /*
755 * Rx FIFO nearly full interrupt.
756 * This is set when the numer of entries in Rx FIFO is
757 * greater or equal than the threshold value programmed
758 * in RFT
759 */
760 case I2C_IT_RXFNF:
761 for (count = rft; count > 0; count--) {
762 /* Read the Rx FIFO */
763 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
764 dev->cli.buffer++;
765 }
766 dev->cli.count -= rft;
767 dev->cli.xfer_bytes += rft;
768 break;
769
770 /* Rx FIFO full */
771 case I2C_IT_RXFF:
772 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
773 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
774 dev->cli.buffer++;
775 }
776 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
777 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
778 break;
779
780 /* Master Transaction Done with/without stop */
781 case I2C_IT_MTD:
782 case I2C_IT_MTDWS:
783 if (dev->cli.operation == I2C_READ) {
784 while (!(readl(dev->virtbase + I2C_RISR)
785 & I2C_IT_RXFE)) {
786 if (dev->cli.count == 0)
787 break;
788 *dev->cli.buffer =
789 readb(dev->virtbase + I2C_RFR);
790 dev->cli.buffer++;
791 dev->cli.count--;
792 dev->cli.xfer_bytes++;
793 }
794 }
795
796 disable_all_interrupts(dev);
797 clear_all_interrupts(dev);
798
799 if (dev->cli.count) {
800 dev->result = -EIO;
801 dev_err(&dev->adev->dev,
802 "%lu bytes still remain to be xfered\n",
803 dev->cli.count);
804 (void) init_hw(dev);
805 }
806 complete(&dev->xfer_complete);
807
808 break;
809
810 /* Master Arbitration lost interrupt */
811 case I2C_IT_MAL:
812 dev->result = -EIO;
813 (void) init_hw(dev);
814
815 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
816 complete(&dev->xfer_complete);
817
818 break;
819
820 /*
821 * Bus Error interrupt.
822 * This happens when an unexpected start/stop condition occurs
823 * during the transaction.
824 */
825 case I2C_IT_BERR:
826 dev->result = -EIO;
827 /* get the status */
828 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
829 (void) init_hw(dev);
830
831 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
832 complete(&dev->xfer_complete);
833
834 break;
835
836 /*
837 * Tx FIFO overrun interrupt.
838 * This is set when a write operation in Tx FIFO is performed and
839 * the Tx FIFO is full.
840 */
841 case I2C_IT_TXFOVR:
842 dev->result = -EIO;
843 (void) init_hw(dev);
844
845 dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
846 complete(&dev->xfer_complete);
847
848 break;
849
850 /* unhandled interrupts by this driver - TODO*/
851 case I2C_IT_TXFE:
852 case I2C_IT_TXFF:
853 case I2C_IT_RXFE:
854 case I2C_IT_RFSR:
855 case I2C_IT_RFSE:
856 case I2C_IT_WTSR:
857 case I2C_IT_STD:
858 dev_err(&dev->adev->dev, "unhandled Interrupt\n");
859 break;
860 default:
861 dev_err(&dev->adev->dev, "spurious Interrupt..\n");
862 break;
863 }
864
865 return IRQ_HANDLED;
866 }
867
868
869 #ifdef CONFIG_PM
870 static int nmk_i2c_suspend(struct device *dev)
871 {
872 struct amba_device *adev = to_amba_device(dev);
873 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
874
875 if (nmk_i2c->busy)
876 return -EBUSY;
877
878 return 0;
879 }
880
881 static int nmk_i2c_resume(struct device *dev)
882 {
883 return 0;
884 }
885 #else
886 #define nmk_i2c_suspend NULL
887 #define nmk_i2c_resume NULL
888 #endif
889
890 /*
891 * We use noirq so that we suspend late and resume before the wakeup interrupt
892 * to ensure that we do the !pm_runtime_suspended() check in resume before
893 * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
894 */
895 static const struct dev_pm_ops nmk_i2c_pm = {
896 .suspend_noirq = nmk_i2c_suspend,
897 .resume_noirq = nmk_i2c_resume,
898 };
899
900 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
901 {
902 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
903 }
904
905 static const struct i2c_algorithm nmk_i2c_algo = {
906 .master_xfer = nmk_i2c_xfer,
907 .functionality = nmk_i2c_functionality
908 };
909
910 static struct nmk_i2c_controller u8500_i2c = {
911 /*
912 * Slave data setup time; 250ns, 100ns, and 10ns, which
913 * is 14, 6 and 2 respectively for a 48Mhz i2c clock.
914 */
915 .slsu = 0xe,
916 .tft = 1, /* Tx FIFO threshold */
917 .rft = 8, /* Rx FIFO threshold */
918 .clk_freq = 400000, /* fast mode operation */
919 .timeout = 200, /* Slave response timeout(ms) */
920 .sm = I2C_FREQ_MODE_FAST,
921 };
922
923 static atomic_t adapter_id = ATOMIC_INIT(0);
924
925 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
926 {
927 int ret = 0;
928 struct nmk_i2c_controller *pdata = adev->dev.platform_data;
929 struct nmk_i2c_dev *dev;
930 struct i2c_adapter *adap;
931
932 if (!pdata)
933 /* No i2c configuration found, using the default. */
934 pdata = &u8500_i2c;
935
936 dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
937 if (!dev) {
938 dev_err(&adev->dev, "cannot allocate memory\n");
939 ret = -ENOMEM;
940 goto err_no_mem;
941 }
942 dev->busy = false;
943 dev->adev = adev;
944 amba_set_drvdata(adev, dev);
945
946 dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
947 if (!dev->virtbase) {
948 ret = -ENOMEM;
949 goto err_no_ioremap;
950 }
951
952 dev->irq = adev->irq[0];
953 ret = request_irq(dev->irq, i2c_irq_handler, 0,
954 DRIVER_NAME, dev);
955 if (ret) {
956 dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
957 goto err_irq;
958 }
959
960 dev->regulator = regulator_get(&adev->dev, "v-i2c");
961 if (IS_ERR(dev->regulator)) {
962 dev_warn(&adev->dev, "could not get i2c regulator\n");
963 dev->regulator = NULL;
964 }
965
966 pm_suspend_ignore_children(&adev->dev, true);
967
968 dev->clk = clk_get(&adev->dev, NULL);
969 if (IS_ERR(dev->clk)) {
970 dev_err(&adev->dev, "could not get i2c clock\n");
971 ret = PTR_ERR(dev->clk);
972 goto err_no_clk;
973 }
974
975 adap = &dev->adap;
976 adap->dev.parent = &adev->dev;
977 adap->owner = THIS_MODULE;
978 adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
979 adap->algo = &nmk_i2c_algo;
980 adap->timeout = msecs_to_jiffies(pdata->timeout);
981 adap->nr = atomic_read(&adapter_id);
982 snprintf(adap->name, sizeof(adap->name),
983 "Nomadik I2C%d at %pR", adap->nr, &adev->res);
984 atomic_inc(&adapter_id);
985
986 /* fetch the controller configuration from machine */
987 dev->cfg.clk_freq = pdata->clk_freq;
988 dev->cfg.slsu = pdata->slsu;
989 dev->cfg.tft = pdata->tft;
990 dev->cfg.rft = pdata->rft;
991 dev->cfg.sm = pdata->sm;
992
993 i2c_set_adapdata(adap, dev);
994
995 dev_info(&adev->dev,
996 "initialize %s on virtual base %p\n",
997 adap->name, dev->virtbase);
998
999 ret = i2c_add_numbered_adapter(adap);
1000 if (ret) {
1001 dev_err(&adev->dev, "failed to add adapter\n");
1002 goto err_add_adap;
1003 }
1004
1005 pm_runtime_put(&adev->dev);
1006
1007 return 0;
1008
1009 err_add_adap:
1010 clk_put(dev->clk);
1011 err_no_clk:
1012 if (dev->regulator)
1013 regulator_put(dev->regulator);
1014 free_irq(dev->irq, dev);
1015 err_irq:
1016 iounmap(dev->virtbase);
1017 err_no_ioremap:
1018 amba_set_drvdata(adev, NULL);
1019 kfree(dev);
1020 err_no_mem:
1021
1022 return ret;
1023 }
1024
1025 static int nmk_i2c_remove(struct amba_device *adev)
1026 {
1027 struct resource *res = &adev->res;
1028 struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1029
1030 i2c_del_adapter(&dev->adap);
1031 flush_i2c_fifo(dev);
1032 disable_all_interrupts(dev);
1033 clear_all_interrupts(dev);
1034 /* disable the controller */
1035 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1036 free_irq(dev->irq, dev);
1037 iounmap(dev->virtbase);
1038 if (res)
1039 release_mem_region(res->start, resource_size(res));
1040 clk_put(dev->clk);
1041 if (dev->regulator)
1042 regulator_put(dev->regulator);
1043 pm_runtime_disable(&adev->dev);
1044 amba_set_drvdata(adev, NULL);
1045 kfree(dev);
1046
1047 return 0;
1048 }
1049
1050 static struct amba_id nmk_i2c_ids[] = {
1051 {
1052 .id = 0x00180024,
1053 .mask = 0x00ffffff,
1054 },
1055 {
1056 .id = 0x00380024,
1057 .mask = 0x00ffffff,
1058 },
1059 {},
1060 };
1061
1062 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1063
1064 static struct amba_driver nmk_i2c_driver = {
1065 .drv = {
1066 .owner = THIS_MODULE,
1067 .name = DRIVER_NAME,
1068 .pm = &nmk_i2c_pm,
1069 },
1070 .id_table = nmk_i2c_ids,
1071 .probe = nmk_i2c_probe,
1072 .remove = nmk_i2c_remove,
1073 };
1074
1075 static int __init nmk_i2c_init(void)
1076 {
1077 return amba_driver_register(&nmk_i2c_driver);
1078 }
1079
1080 static void __exit nmk_i2c_exit(void)
1081 {
1082 amba_driver_unregister(&nmk_i2c_driver);
1083 }
1084
1085 subsys_initcall(nmk_i2c_init);
1086 module_exit(nmk_i2c_exit);
1087
1088 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1089 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1090 MODULE_LICENSE("GPL");