]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/i2c/chips/adm1031.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / i2c / chips / adm1031.c
1 /*
2 adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Based on lm75.c and lm85.c
5 Supports adm1030 / adm1031
6 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 Reworked by Jean Delvare <khali@linux-fr.org>
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/i2c-sensor.h>
30
31 /* Following macros takes channel parameter starting from 0 to 2 */
32 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
33 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
34 #define ADM1031_REG_PWM (0x22)
35 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
36
37 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4*(nr))
38 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4*(nr))
39 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4*(nr))
40
41 #define ADM1031_REG_TEMP(nr) (0xa + (nr))
42 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
43
44 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
45
46 #define ADM1031_REG_CONF1 0x0
47 #define ADM1031_REG_CONF2 0x1
48 #define ADM1031_REG_EXT_TEMP 0x6
49
50 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
51 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
52 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
53
54 #define ADM1031_CONF2_PWM1_ENABLE 0x01
55 #define ADM1031_CONF2_PWM2_ENABLE 0x02
56 #define ADM1031_CONF2_TACH1_ENABLE 0x04
57 #define ADM1031_CONF2_TACH2_ENABLE 0x08
58 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
59
60 /* Addresses to scan */
61 static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
62 static unsigned int normal_isa[] = { I2C_CLIENT_ISA_END };
63
64 /* Insmod parameters */
65 SENSORS_INSMOD_2(adm1030, adm1031);
66
67 typedef u8 auto_chan_table_t[8][2];
68
69 /* Each client has this additional data */
70 struct adm1031_data {
71 struct i2c_client client;
72 struct semaphore update_lock;
73 int chip_type;
74 char valid; /* !=0 if following fields are valid */
75 unsigned long last_updated; /* In jiffies */
76 /* The chan_select_table contains the possible configurations for
77 * auto fan control.
78 */
79 auto_chan_table_t *chan_select_table;
80 u16 alarm;
81 u8 conf1;
82 u8 conf2;
83 u8 fan[2];
84 u8 fan_div[2];
85 u8 fan_min[2];
86 u8 pwm[2];
87 u8 old_pwm[2];
88 s8 temp[3];
89 u8 ext_temp[3];
90 u8 auto_temp[3];
91 u8 auto_temp_min[3];
92 u8 auto_temp_off[3];
93 u8 auto_temp_max[3];
94 s8 temp_min[3];
95 s8 temp_max[3];
96 s8 temp_crit[3];
97 };
98
99 static int adm1031_attach_adapter(struct i2c_adapter *adapter);
100 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind);
101 static void adm1031_init_client(struct i2c_client *client);
102 static int adm1031_detach_client(struct i2c_client *client);
103 static struct adm1031_data *adm1031_update_device(struct device *dev);
104
105 /* This is the driver that will be inserted */
106 static struct i2c_driver adm1031_driver = {
107 .owner = THIS_MODULE,
108 .name = "adm1031",
109 .flags = I2C_DF_NOTIFY,
110 .attach_adapter = adm1031_attach_adapter,
111 .detach_client = adm1031_detach_client,
112 };
113
114 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
115 {
116 return i2c_smbus_read_byte_data(client, reg);
117 }
118
119 static inline int
120 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
121 {
122 return i2c_smbus_write_byte_data(client, reg, value);
123 }
124
125
126 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
127 ((val + 500) / 1000)))
128
129 #define TEMP_FROM_REG(val) ((val) * 1000)
130
131 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
132
133 #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
134
135 static int FAN_TO_REG(int reg, int div)
136 {
137 int tmp;
138 tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
139 return tmp > 255 ? 255 : tmp;
140 }
141
142 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
143
144 #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
145 #define PWM_FROM_REG(val) ((val) << 4)
146
147 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
148 #define FAN_CHAN_TO_REG(val, reg) \
149 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
150
151 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
152 ((((val)/500) & 0xf8)|((reg) & 0x7))
153 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
154 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
155
156 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
157
158 #define AUTO_TEMP_OFF_FROM_REG(reg) \
159 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
160
161 #define AUTO_TEMP_MAX_FROM_REG(reg) \
162 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
163 AUTO_TEMP_MIN_FROM_REG(reg))
164
165 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
166 {
167 int ret;
168 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
169
170 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
171 ret = ((reg & 0xf8) |
172 (range < 10000 ? 0 :
173 range < 20000 ? 1 :
174 range < 40000 ? 2 : range < 80000 ? 3 : 4));
175 return ret;
176 }
177
178 /* FAN auto control */
179 #define GET_FAN_AUTO_BITFIELD(data, idx) \
180 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
181
182 /* The tables below contains the possible values for the auto fan
183 * control bitfields. the index in the table is the register value.
184 * MSb is the auto fan control enable bit, so the four first entries
185 * in the table disables auto fan control when both bitfields are zero.
186 */
187 static auto_chan_table_t auto_channel_select_table_adm1031 = {
188 {0, 0}, {0, 0}, {0, 0}, {0, 0},
189 {2 /*0b010 */ , 4 /*0b100 */ },
190 {2 /*0b010 */ , 2 /*0b010 */ },
191 {4 /*0b100 */ , 4 /*0b100 */ },
192 {7 /*0b111 */ , 7 /*0b111 */ },
193 };
194
195 static auto_chan_table_t auto_channel_select_table_adm1030 = {
196 {0, 0}, {0, 0}, {0, 0}, {0, 0},
197 {2 /*0b10 */ , 0},
198 {0xff /*invalid */ , 0},
199 {0xff /*invalid */ , 0},
200 {3 /*0b11 */ , 0},
201 };
202
203 /* That function checks if a bitfield is valid and returns the other bitfield
204 * nearest match if no exact match where found.
205 */
206 static int
207 get_fan_auto_nearest(struct adm1031_data *data,
208 int chan, u8 val, u8 reg, u8 * new_reg)
209 {
210 int i;
211 int first_match = -1, exact_match = -1;
212 u8 other_reg_val =
213 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
214
215 if (val == 0) {
216 *new_reg = 0;
217 return 0;
218 }
219
220 for (i = 0; i < 8; i++) {
221 if ((val == (*data->chan_select_table)[i][chan]) &&
222 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
223 other_reg_val)) {
224 /* We found an exact match */
225 exact_match = i;
226 break;
227 } else if (val == (*data->chan_select_table)[i][chan] &&
228 first_match == -1) {
229 /* Save the first match in case of an exact match has not been
230 * found
231 */
232 first_match = i;
233 }
234 }
235
236 if (exact_match >= 0) {
237 *new_reg = exact_match;
238 } else if (first_match >= 0) {
239 *new_reg = first_match;
240 } else {
241 return -EINVAL;
242 }
243 return 0;
244 }
245
246 static ssize_t show_fan_auto_channel(struct device *dev, char *buf, int nr)
247 {
248 struct adm1031_data *data = adm1031_update_device(dev);
249 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
250 }
251
252 static ssize_t
253 set_fan_auto_channel(struct device *dev, const char *buf, size_t count, int nr)
254 {
255 struct i2c_client *client = to_i2c_client(dev);
256 struct adm1031_data *data = i2c_get_clientdata(client);
257 int val = simple_strtol(buf, NULL, 10);
258 u8 reg;
259 int ret;
260 u8 old_fan_mode;
261
262 old_fan_mode = data->conf1;
263
264 down(&data->update_lock);
265
266 if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
267 up(&data->update_lock);
268 return ret;
269 }
270 if (((data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1)) & ADM1031_CONF1_AUTO_MODE) ^
271 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
272 if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
273 /* Switch to Auto Fan Mode
274 * Save PWM registers
275 * Set PWM registers to 33% Both */
276 data->old_pwm[0] = data->pwm[0];
277 data->old_pwm[1] = data->pwm[1];
278 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
279 } else {
280 /* Switch to Manual Mode */
281 data->pwm[0] = data->old_pwm[0];
282 data->pwm[1] = data->old_pwm[1];
283 /* Restore PWM registers */
284 adm1031_write_value(client, ADM1031_REG_PWM,
285 data->pwm[0] | (data->pwm[1] << 4));
286 }
287 }
288 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
289 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
290 up(&data->update_lock);
291 return count;
292 }
293
294 #define fan_auto_channel_offset(offset) \
295 static ssize_t show_fan_auto_channel_##offset (struct device *dev, char *buf) \
296 { \
297 return show_fan_auto_channel(dev, buf, offset - 1); \
298 } \
299 static ssize_t set_fan_auto_channel_##offset (struct device *dev, \
300 const char *buf, size_t count) \
301 { \
302 return set_fan_auto_channel(dev, buf, count, offset - 1); \
303 } \
304 static DEVICE_ATTR(auto_fan##offset##_channel, S_IRUGO | S_IWUSR, \
305 show_fan_auto_channel_##offset, \
306 set_fan_auto_channel_##offset)
307
308 fan_auto_channel_offset(1);
309 fan_auto_channel_offset(2);
310
311 /* Auto Temps */
312 static ssize_t show_auto_temp_off(struct device *dev, char *buf, int nr)
313 {
314 struct adm1031_data *data = adm1031_update_device(dev);
315 return sprintf(buf, "%d\n",
316 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
317 }
318 static ssize_t show_auto_temp_min(struct device *dev, char *buf, int nr)
319 {
320 struct adm1031_data *data = adm1031_update_device(dev);
321 return sprintf(buf, "%d\n",
322 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
323 }
324 static ssize_t
325 set_auto_temp_min(struct device *dev, const char *buf, size_t count, int nr)
326 {
327 struct i2c_client *client = to_i2c_client(dev);
328 struct adm1031_data *data = i2c_get_clientdata(client);
329 int val = simple_strtol(buf, NULL, 10);
330
331 down(&data->update_lock);
332 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
333 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
334 data->auto_temp[nr]);
335 up(&data->update_lock);
336 return count;
337 }
338 static ssize_t show_auto_temp_max(struct device *dev, char *buf, int nr)
339 {
340 struct adm1031_data *data = adm1031_update_device(dev);
341 return sprintf(buf, "%d\n",
342 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
343 }
344 static ssize_t
345 set_auto_temp_max(struct device *dev, const char *buf, size_t count, int nr)
346 {
347 struct i2c_client *client = to_i2c_client(dev);
348 struct adm1031_data *data = i2c_get_clientdata(client);
349 int val = simple_strtol(buf, NULL, 10);
350
351 down(&data->update_lock);
352 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
353 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
354 data->temp_max[nr]);
355 up(&data->update_lock);
356 return count;
357 }
358
359 #define auto_temp_reg(offset) \
360 static ssize_t show_auto_temp_##offset##_off (struct device *dev, char *buf) \
361 { \
362 return show_auto_temp_off(dev, buf, offset - 1); \
363 } \
364 static ssize_t show_auto_temp_##offset##_min (struct device *dev, char *buf) \
365 { \
366 return show_auto_temp_min(dev, buf, offset - 1); \
367 } \
368 static ssize_t show_auto_temp_##offset##_max (struct device *dev, char *buf) \
369 { \
370 return show_auto_temp_max(dev, buf, offset - 1); \
371 } \
372 static ssize_t set_auto_temp_##offset##_min (struct device *dev, \
373 const char *buf, size_t count) \
374 { \
375 return set_auto_temp_min(dev, buf, count, offset - 1); \
376 } \
377 static ssize_t set_auto_temp_##offset##_max (struct device *dev, \
378 const char *buf, size_t count) \
379 { \
380 return set_auto_temp_max(dev, buf, count, offset - 1); \
381 } \
382 static DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
383 show_auto_temp_##offset##_off, NULL); \
384 static DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
385 show_auto_temp_##offset##_min, set_auto_temp_##offset##_min);\
386 static DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
387 show_auto_temp_##offset##_max, set_auto_temp_##offset##_max)
388
389 auto_temp_reg(1);
390 auto_temp_reg(2);
391 auto_temp_reg(3);
392
393 /* pwm */
394 static ssize_t show_pwm(struct device *dev, char *buf, int nr)
395 {
396 struct adm1031_data *data = adm1031_update_device(dev);
397 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
398 }
399 static ssize_t
400 set_pwm(struct device *dev, const char *buf, size_t count, int nr)
401 {
402 struct i2c_client *client = to_i2c_client(dev);
403 struct adm1031_data *data = i2c_get_clientdata(client);
404 int val = simple_strtol(buf, NULL, 10);
405 int reg;
406
407 down(&data->update_lock);
408 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
409 (((val>>4) & 0xf) != 5)) {
410 /* In automatic mode, the only PWM accepted is 33% */
411 up(&data->update_lock);
412 return -EINVAL;
413 }
414 data->pwm[nr] = PWM_TO_REG(val);
415 reg = adm1031_read_value(client, ADM1031_REG_PWM);
416 adm1031_write_value(client, ADM1031_REG_PWM,
417 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
418 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
419 up(&data->update_lock);
420 return count;
421 }
422
423 #define pwm_reg(offset) \
424 static ssize_t show_pwm_##offset (struct device *dev, char *buf) \
425 { \
426 return show_pwm(dev, buf, offset - 1); \
427 } \
428 static ssize_t set_pwm_##offset (struct device *dev, \
429 const char *buf, size_t count) \
430 { \
431 return set_pwm(dev, buf, count, offset - 1); \
432 } \
433 static DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
434 show_pwm_##offset, set_pwm_##offset)
435
436 pwm_reg(1);
437 pwm_reg(2);
438
439 /* Fans */
440
441 /*
442 * That function checks the cases where the fan reading is not
443 * relevent. It is used to provide 0 as fan reading when the fan is
444 * not supposed to run
445 */
446 static int trust_fan_readings(struct adm1031_data *data, int chan)
447 {
448 int res = 0;
449
450 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
451 switch (data->conf1 & 0x60) {
452 case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
453 res = data->temp[chan+1] >=
454 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
455 break;
456 case 0x20: /* remote temp1 controls both fans */
457 res =
458 data->temp[1] >=
459 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
460 break;
461 case 0x40: /* remote temp2 controls both fans */
462 res =
463 data->temp[2] >=
464 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
465 break;
466 case 0x60: /* max controls both fans */
467 res =
468 data->temp[0] >=
469 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
470 || data->temp[1] >=
471 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
472 || (data->chip_type == adm1031
473 && data->temp[2] >=
474 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
475 break;
476 }
477 } else {
478 res = data->pwm[chan] > 0;
479 }
480 return res;
481 }
482
483
484 static ssize_t show_fan(struct device *dev, char *buf, int nr)
485 {
486 struct adm1031_data *data = adm1031_update_device(dev);
487 int value;
488
489 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
490 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
491 return sprintf(buf, "%d\n", value);
492 }
493
494 static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
495 {
496 struct adm1031_data *data = adm1031_update_device(dev);
497 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
498 }
499 static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
500 {
501 struct adm1031_data *data = adm1031_update_device(dev);
502 return sprintf(buf, "%d\n",
503 FAN_FROM_REG(data->fan_min[nr],
504 FAN_DIV_FROM_REG(data->fan_div[nr])));
505 }
506 static ssize_t
507 set_fan_min(struct device *dev, const char *buf, size_t count, int nr)
508 {
509 struct i2c_client *client = to_i2c_client(dev);
510 struct adm1031_data *data = i2c_get_clientdata(client);
511 int val = simple_strtol(buf, NULL, 10);
512
513 down(&data->update_lock);
514 if (val) {
515 data->fan_min[nr] =
516 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
517 } else {
518 data->fan_min[nr] = 0xff;
519 }
520 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
521 up(&data->update_lock);
522 return count;
523 }
524 static ssize_t
525 set_fan_div(struct device *dev, const char *buf, size_t count, int nr)
526 {
527 struct i2c_client *client = to_i2c_client(dev);
528 struct adm1031_data *data = i2c_get_clientdata(client);
529 int val = simple_strtol(buf, NULL, 10);
530 u8 tmp;
531 int old_div;
532 int new_min;
533
534 tmp = val == 8 ? 0xc0 :
535 val == 4 ? 0x80 :
536 val == 2 ? 0x40 :
537 val == 1 ? 0x00 :
538 0xff;
539 if (tmp == 0xff)
540 return -EINVAL;
541
542 down(&data->update_lock);
543 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
544 data->fan_div[nr] = (tmp & 0xC0) | (0x3f & data->fan_div[nr]);
545 new_min = data->fan_min[nr] * old_div /
546 FAN_DIV_FROM_REG(data->fan_div[nr]);
547 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
548 data->fan[nr] = data->fan[nr] * old_div /
549 FAN_DIV_FROM_REG(data->fan_div[nr]);
550
551 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
552 data->fan_div[nr]);
553 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
554 data->fan_min[nr]);
555 up(&data->update_lock);
556 return count;
557 }
558
559 #define fan_offset(offset) \
560 static ssize_t show_fan_##offset (struct device *dev, char *buf) \
561 { \
562 return show_fan(dev, buf, offset - 1); \
563 } \
564 static ssize_t show_fan_##offset##_min (struct device *dev, char *buf) \
565 { \
566 return show_fan_min(dev, buf, offset - 1); \
567 } \
568 static ssize_t show_fan_##offset##_div (struct device *dev, char *buf) \
569 { \
570 return show_fan_div(dev, buf, offset - 1); \
571 } \
572 static ssize_t set_fan_##offset##_min (struct device *dev, \
573 const char *buf, size_t count) \
574 { \
575 return set_fan_min(dev, buf, count, offset - 1); \
576 } \
577 static ssize_t set_fan_##offset##_div (struct device *dev, \
578 const char *buf, size_t count) \
579 { \
580 return set_fan_div(dev, buf, count, offset - 1); \
581 } \
582 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, \
583 NULL); \
584 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
585 show_fan_##offset##_min, set_fan_##offset##_min); \
586 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
587 show_fan_##offset##_div, set_fan_##offset##_div); \
588 static DEVICE_ATTR(auto_fan##offset##_min_pwm, S_IRUGO | S_IWUSR, \
589 show_pwm_##offset, set_pwm_##offset)
590
591 fan_offset(1);
592 fan_offset(2);
593
594
595 /* Temps */
596 static ssize_t show_temp(struct device *dev, char *buf, int nr)
597 {
598 struct adm1031_data *data = adm1031_update_device(dev);
599 int ext;
600 ext = nr == 0 ?
601 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
602 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
603 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
604 }
605 static ssize_t show_temp_min(struct device *dev, char *buf, int nr)
606 {
607 struct adm1031_data *data = adm1031_update_device(dev);
608 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
609 }
610 static ssize_t show_temp_max(struct device *dev, char *buf, int nr)
611 {
612 struct adm1031_data *data = adm1031_update_device(dev);
613 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
614 }
615 static ssize_t show_temp_crit(struct device *dev, char *buf, int nr)
616 {
617 struct adm1031_data *data = adm1031_update_device(dev);
618 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
619 }
620 static ssize_t
621 set_temp_min(struct device *dev, const char *buf, size_t count, int nr)
622 {
623 struct i2c_client *client = to_i2c_client(dev);
624 struct adm1031_data *data = i2c_get_clientdata(client);
625 int val;
626
627 val = simple_strtol(buf, NULL, 10);
628 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
629 down(&data->update_lock);
630 data->temp_min[nr] = TEMP_TO_REG(val);
631 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
632 data->temp_min[nr]);
633 up(&data->update_lock);
634 return count;
635 }
636 static ssize_t
637 set_temp_max(struct device *dev, const char *buf, size_t count, int nr)
638 {
639 struct i2c_client *client = to_i2c_client(dev);
640 struct adm1031_data *data = i2c_get_clientdata(client);
641 int val;
642
643 val = simple_strtol(buf, NULL, 10);
644 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
645 down(&data->update_lock);
646 data->temp_max[nr] = TEMP_TO_REG(val);
647 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
648 data->temp_max[nr]);
649 up(&data->update_lock);
650 return count;
651 }
652 static ssize_t
653 set_temp_crit(struct device *dev, const char *buf, size_t count, int nr)
654 {
655 struct i2c_client *client = to_i2c_client(dev);
656 struct adm1031_data *data = i2c_get_clientdata(client);
657 int val;
658
659 val = simple_strtol(buf, NULL, 10);
660 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
661 down(&data->update_lock);
662 data->temp_crit[nr] = TEMP_TO_REG(val);
663 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
664 data->temp_crit[nr]);
665 up(&data->update_lock);
666 return count;
667 }
668
669 #define temp_reg(offset) \
670 static ssize_t show_temp_##offset (struct device *dev, char *buf) \
671 { \
672 return show_temp(dev, buf, offset - 1); \
673 } \
674 static ssize_t show_temp_##offset##_min (struct device *dev, char *buf) \
675 { \
676 return show_temp_min(dev, buf, offset - 1); \
677 } \
678 static ssize_t show_temp_##offset##_max (struct device *dev, char *buf) \
679 { \
680 return show_temp_max(dev, buf, offset - 1); \
681 } \
682 static ssize_t show_temp_##offset##_crit (struct device *dev, char *buf) \
683 { \
684 return show_temp_crit(dev, buf, offset - 1); \
685 } \
686 static ssize_t set_temp_##offset##_min (struct device *dev, \
687 const char *buf, size_t count) \
688 { \
689 return set_temp_min(dev, buf, count, offset - 1); \
690 } \
691 static ssize_t set_temp_##offset##_max (struct device *dev, \
692 const char *buf, size_t count) \
693 { \
694 return set_temp_max(dev, buf, count, offset - 1); \
695 } \
696 static ssize_t set_temp_##offset##_crit (struct device *dev, \
697 const char *buf, size_t count) \
698 { \
699 return set_temp_crit(dev, buf, count, offset - 1); \
700 } \
701 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, \
702 NULL); \
703 static DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
704 show_temp_##offset##_min, set_temp_##offset##_min); \
705 static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
706 show_temp_##offset##_max, set_temp_##offset##_max); \
707 static DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
708 show_temp_##offset##_crit, set_temp_##offset##_crit)
709
710 temp_reg(1);
711 temp_reg(2);
712 temp_reg(3);
713
714 /* Alarms */
715 static ssize_t show_alarms(struct device *dev, char *buf)
716 {
717 struct adm1031_data *data = adm1031_update_device(dev);
718 return sprintf(buf, "%d\n", data->alarm);
719 }
720
721 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
722
723
724 static int adm1031_attach_adapter(struct i2c_adapter *adapter)
725 {
726 if (!(adapter->class & I2C_CLASS_HWMON))
727 return 0;
728 return i2c_detect(adapter, &addr_data, adm1031_detect);
729 }
730
731 /* This function is called by i2c_detect */
732 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind)
733 {
734 struct i2c_client *new_client;
735 struct adm1031_data *data;
736 int err = 0;
737 const char *name = "";
738
739 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
740 goto exit;
741
742 if (!(data = kmalloc(sizeof(struct adm1031_data), GFP_KERNEL))) {
743 err = -ENOMEM;
744 goto exit;
745 }
746 memset(data, 0, sizeof(struct adm1031_data));
747
748 new_client = &data->client;
749 i2c_set_clientdata(new_client, data);
750 new_client->addr = address;
751 new_client->adapter = adapter;
752 new_client->driver = &adm1031_driver;
753 new_client->flags = 0;
754
755 if (kind < 0) {
756 int id, co;
757 id = i2c_smbus_read_byte_data(new_client, 0x3d);
758 co = i2c_smbus_read_byte_data(new_client, 0x3e);
759
760 if (!((id == 0x31 || id == 0x30) && co == 0x41))
761 goto exit_free;
762 kind = (id == 0x30) ? adm1030 : adm1031;
763 }
764
765 if (kind <= 0)
766 kind = adm1031;
767
768 /* Given the detected chip type, set the chip name and the
769 * auto fan control helper table. */
770 if (kind == adm1030) {
771 name = "adm1030";
772 data->chan_select_table = &auto_channel_select_table_adm1030;
773 } else if (kind == adm1031) {
774 name = "adm1031";
775 data->chan_select_table = &auto_channel_select_table_adm1031;
776 }
777 data->chip_type = kind;
778
779 strlcpy(new_client->name, name, I2C_NAME_SIZE);
780 data->valid = 0;
781 init_MUTEX(&data->update_lock);
782
783 /* Tell the I2C layer a new client has arrived */
784 if ((err = i2c_attach_client(new_client)))
785 goto exit_free;
786
787 /* Initialize the ADM1031 chip */
788 adm1031_init_client(new_client);
789
790 /* Register sysfs hooks */
791 device_create_file(&new_client->dev, &dev_attr_fan1_input);
792 device_create_file(&new_client->dev, &dev_attr_fan1_div);
793 device_create_file(&new_client->dev, &dev_attr_fan1_min);
794 device_create_file(&new_client->dev, &dev_attr_pwm1);
795 device_create_file(&new_client->dev, &dev_attr_auto_fan1_channel);
796 device_create_file(&new_client->dev, &dev_attr_temp1_input);
797 device_create_file(&new_client->dev, &dev_attr_temp1_min);
798 device_create_file(&new_client->dev, &dev_attr_temp1_max);
799 device_create_file(&new_client->dev, &dev_attr_temp1_crit);
800 device_create_file(&new_client->dev, &dev_attr_temp2_input);
801 device_create_file(&new_client->dev, &dev_attr_temp2_min);
802 device_create_file(&new_client->dev, &dev_attr_temp2_max);
803 device_create_file(&new_client->dev, &dev_attr_temp2_crit);
804
805 device_create_file(&new_client->dev, &dev_attr_auto_temp1_off);
806 device_create_file(&new_client->dev, &dev_attr_auto_temp1_min);
807 device_create_file(&new_client->dev, &dev_attr_auto_temp1_max);
808
809 device_create_file(&new_client->dev, &dev_attr_auto_temp2_off);
810 device_create_file(&new_client->dev, &dev_attr_auto_temp2_min);
811 device_create_file(&new_client->dev, &dev_attr_auto_temp2_max);
812
813 device_create_file(&new_client->dev, &dev_attr_auto_fan1_min_pwm);
814
815 device_create_file(&new_client->dev, &dev_attr_alarms);
816
817 if (kind == adm1031) {
818 device_create_file(&new_client->dev, &dev_attr_fan2_input);
819 device_create_file(&new_client->dev, &dev_attr_fan2_div);
820 device_create_file(&new_client->dev, &dev_attr_fan2_min);
821 device_create_file(&new_client->dev, &dev_attr_pwm2);
822 device_create_file(&new_client->dev,
823 &dev_attr_auto_fan2_channel);
824 device_create_file(&new_client->dev, &dev_attr_temp3_input);
825 device_create_file(&new_client->dev, &dev_attr_temp3_min);
826 device_create_file(&new_client->dev, &dev_attr_temp3_max);
827 device_create_file(&new_client->dev, &dev_attr_temp3_crit);
828 device_create_file(&new_client->dev, &dev_attr_auto_temp3_off);
829 device_create_file(&new_client->dev, &dev_attr_auto_temp3_min);
830 device_create_file(&new_client->dev, &dev_attr_auto_temp3_max);
831 device_create_file(&new_client->dev, &dev_attr_auto_fan2_min_pwm);
832 }
833
834 return 0;
835
836 exit_free:
837 kfree(new_client);
838 exit:
839 return err;
840 }
841
842 static int adm1031_detach_client(struct i2c_client *client)
843 {
844 int ret;
845 if ((ret = i2c_detach_client(client)) != 0) {
846 return ret;
847 }
848 kfree(client);
849 return 0;
850 }
851
852 static void adm1031_init_client(struct i2c_client *client)
853 {
854 unsigned int read_val;
855 unsigned int mask;
856 struct adm1031_data *data = i2c_get_clientdata(client);
857
858 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
859 if (data->chip_type == adm1031) {
860 mask |= (ADM1031_CONF2_PWM2_ENABLE |
861 ADM1031_CONF2_TACH2_ENABLE);
862 }
863 /* Initialize the ADM1031 chip (enables fan speed reading ) */
864 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
865 if ((read_val | mask) != read_val) {
866 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
867 }
868
869 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
870 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
871 adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
872 ADM1031_CONF1_MONITOR_ENABLE);
873 }
874
875 }
876
877 static struct adm1031_data *adm1031_update_device(struct device *dev)
878 {
879 struct i2c_client *client = to_i2c_client(dev);
880 struct adm1031_data *data = i2c_get_clientdata(client);
881 int chan;
882
883 down(&data->update_lock);
884
885 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
886 || !data->valid) {
887
888 dev_dbg(&client->dev, "Starting adm1031 update\n");
889 for (chan = 0;
890 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
891 u8 oldh, newh;
892
893 oldh =
894 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
895 data->ext_temp[chan] =
896 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
897 newh =
898 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
899 if (newh != oldh) {
900 data->ext_temp[chan] =
901 adm1031_read_value(client,
902 ADM1031_REG_EXT_TEMP);
903 #ifdef DEBUG
904 oldh =
905 adm1031_read_value(client,
906 ADM1031_REG_TEMP(chan));
907
908 /* oldh is actually newer */
909 if (newh != oldh)
910 dev_warn(&client->dev,
911 "Remote temperature may be "
912 "wrong.\n");
913 #endif
914 }
915 data->temp[chan] = newh;
916
917 data->temp_min[chan] =
918 adm1031_read_value(client,
919 ADM1031_REG_TEMP_MIN(chan));
920 data->temp_max[chan] =
921 adm1031_read_value(client,
922 ADM1031_REG_TEMP_MAX(chan));
923 data->temp_crit[chan] =
924 adm1031_read_value(client,
925 ADM1031_REG_TEMP_CRIT(chan));
926 data->auto_temp[chan] =
927 adm1031_read_value(client,
928 ADM1031_REG_AUTO_TEMP(chan));
929
930 }
931
932 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
933 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
934
935 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
936 | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
937 << 8);
938 if (data->chip_type == adm1030) {
939 data->alarm &= 0xc0ff;
940 }
941
942 for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
943 data->fan_div[chan] =
944 adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
945 data->fan_min[chan] =
946 adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
947 data->fan[chan] =
948 adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
949 data->pwm[chan] =
950 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
951 (4*chan));
952 }
953 data->last_updated = jiffies;
954 data->valid = 1;
955 }
956
957 up(&data->update_lock);
958
959 return data;
960 }
961
962 static int __init sensors_adm1031_init(void)
963 {
964 return i2c_add_driver(&adm1031_driver);
965 }
966
967 static void __exit sensors_adm1031_exit(void)
968 {
969 i2c_del_driver(&adm1031_driver);
970 }
971
972 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
973 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
974 MODULE_LICENSE("GPL");
975
976 module_init(sensors_adm1031_init);
977 module_exit(sensors_adm1031_exit);