]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/i2c/i2c-core.c
crypto: qat - change the adf_ctl_stop_devices to void
[mirror_ubuntu-hirsute-kernel.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details. */
14 /* ------------------------------------------------------------------------- */
15
16 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
17 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
18 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
19 Jean Delvare <jdelvare@suse.de>
20 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
21 Michael Lawnick <michael.lawnick.ext@nsn.com>
22 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
23 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
24 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
25 I2C ACPI code Copyright (C) 2014 Intel Corp
26 Author: Lan Tianyu <tianyu.lan@intel.com>
27 I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com>
28 */
29
30 #include <dt-bindings/i2c/i2c.h>
31 #include <asm/uaccess.h>
32 #include <linux/acpi.h>
33 #include <linux/clk/clk-conf.h>
34 #include <linux/completion.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/errno.h>
38 #include <linux/gpio.h>
39 #include <linux/hardirq.h>
40 #include <linux/i2c.h>
41 #include <linux/idr.h>
42 #include <linux/init.h>
43 #include <linux/irqflags.h>
44 #include <linux/jump_label.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/of_device.h>
49 #include <linux/of.h>
50 #include <linux/of_irq.h>
51 #include <linux/pm_domain.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/pm_wakeirq.h>
54 #include <linux/property.h>
55 #include <linux/rwsem.h>
56 #include <linux/slab.h>
57
58 #include "i2c-core.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/i2c.h>
62
63 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000
64 #define I2C_ADDR_OFFSET_SLAVE 0x1000
65
66 /* core_lock protects i2c_adapter_idr, and guarantees
67 that device detection, deletion of detected devices, and attach_adapter
68 calls are serialized */
69 static DEFINE_MUTEX(core_lock);
70 static DEFINE_IDR(i2c_adapter_idr);
71
72 static struct device_type i2c_client_type;
73 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
74
75 static struct static_key i2c_trace_msg = STATIC_KEY_INIT_FALSE;
76 static bool is_registered;
77
78 void i2c_transfer_trace_reg(void)
79 {
80 static_key_slow_inc(&i2c_trace_msg);
81 }
82
83 void i2c_transfer_trace_unreg(void)
84 {
85 static_key_slow_dec(&i2c_trace_msg);
86 }
87
88 #if defined(CONFIG_ACPI)
89 struct acpi_i2c_handler_data {
90 struct acpi_connection_info info;
91 struct i2c_adapter *adapter;
92 };
93
94 struct gsb_buffer {
95 u8 status;
96 u8 len;
97 union {
98 u16 wdata;
99 u8 bdata;
100 u8 data[0];
101 };
102 } __packed;
103
104 struct acpi_i2c_lookup {
105 struct i2c_board_info *info;
106 acpi_handle adapter_handle;
107 acpi_handle device_handle;
108 };
109
110 static int acpi_i2c_find_address(struct acpi_resource *ares, void *data)
111 {
112 struct acpi_i2c_lookup *lookup = data;
113 struct i2c_board_info *info = lookup->info;
114 struct acpi_resource_i2c_serialbus *sb;
115 acpi_handle adapter_handle;
116 acpi_status status;
117
118 if (info->addr || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
119 return 1;
120
121 sb = &ares->data.i2c_serial_bus;
122 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C)
123 return 1;
124
125 /*
126 * Extract the ResourceSource and make sure that the handle matches
127 * with the I2C adapter handle.
128 */
129 status = acpi_get_handle(lookup->device_handle,
130 sb->resource_source.string_ptr,
131 &adapter_handle);
132 if (ACPI_SUCCESS(status) && adapter_handle == lookup->adapter_handle) {
133 info->addr = sb->slave_address;
134 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
135 info->flags |= I2C_CLIENT_TEN;
136 }
137
138 return 1;
139 }
140
141 static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
142 void *data, void **return_value)
143 {
144 struct i2c_adapter *adapter = data;
145 struct list_head resource_list;
146 struct acpi_i2c_lookup lookup;
147 struct resource_entry *entry;
148 struct i2c_board_info info;
149 struct acpi_device *adev;
150 int ret;
151
152 if (acpi_bus_get_device(handle, &adev))
153 return AE_OK;
154 if (acpi_bus_get_status(adev) || !adev->status.present)
155 return AE_OK;
156
157 memset(&info, 0, sizeof(info));
158 info.fwnode = acpi_fwnode_handle(adev);
159
160 memset(&lookup, 0, sizeof(lookup));
161 lookup.adapter_handle = ACPI_HANDLE(&adapter->dev);
162 lookup.device_handle = handle;
163 lookup.info = &info;
164
165 /*
166 * Look up for I2cSerialBus resource with ResourceSource that
167 * matches with this adapter.
168 */
169 INIT_LIST_HEAD(&resource_list);
170 ret = acpi_dev_get_resources(adev, &resource_list,
171 acpi_i2c_find_address, &lookup);
172 acpi_dev_free_resource_list(&resource_list);
173
174 if (ret < 0 || !info.addr)
175 return AE_OK;
176
177 /* Then fill IRQ number if any */
178 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
179 if (ret < 0)
180 return AE_OK;
181
182 resource_list_for_each_entry(entry, &resource_list) {
183 if (resource_type(entry->res) == IORESOURCE_IRQ) {
184 info.irq = entry->res->start;
185 break;
186 }
187 }
188
189 acpi_dev_free_resource_list(&resource_list);
190
191 adev->power.flags.ignore_parent = true;
192 strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
193 if (!i2c_new_device(adapter, &info)) {
194 adev->power.flags.ignore_parent = false;
195 dev_err(&adapter->dev,
196 "failed to add I2C device %s from ACPI\n",
197 dev_name(&adev->dev));
198 }
199
200 return AE_OK;
201 }
202
203 #define ACPI_I2C_MAX_SCAN_DEPTH 32
204
205 /**
206 * acpi_i2c_register_devices - enumerate I2C slave devices behind adapter
207 * @adap: pointer to adapter
208 *
209 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
210 * namespace. When a device is found it will be added to the Linux device
211 * model and bound to the corresponding ACPI handle.
212 */
213 static void acpi_i2c_register_devices(struct i2c_adapter *adap)
214 {
215 acpi_status status;
216
217 if (!has_acpi_companion(&adap->dev))
218 return;
219
220 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
221 ACPI_I2C_MAX_SCAN_DEPTH,
222 acpi_i2c_add_device, NULL,
223 adap, NULL);
224 if (ACPI_FAILURE(status))
225 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
226 }
227
228 #else /* CONFIG_ACPI */
229 static inline void acpi_i2c_register_devices(struct i2c_adapter *adap) { }
230 #endif /* CONFIG_ACPI */
231
232 #ifdef CONFIG_ACPI_I2C_OPREGION
233 static int acpi_gsb_i2c_read_bytes(struct i2c_client *client,
234 u8 cmd, u8 *data, u8 data_len)
235 {
236
237 struct i2c_msg msgs[2];
238 int ret;
239 u8 *buffer;
240
241 buffer = kzalloc(data_len, GFP_KERNEL);
242 if (!buffer)
243 return AE_NO_MEMORY;
244
245 msgs[0].addr = client->addr;
246 msgs[0].flags = client->flags;
247 msgs[0].len = 1;
248 msgs[0].buf = &cmd;
249
250 msgs[1].addr = client->addr;
251 msgs[1].flags = client->flags | I2C_M_RD;
252 msgs[1].len = data_len;
253 msgs[1].buf = buffer;
254
255 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
256 if (ret < 0)
257 dev_err(&client->adapter->dev, "i2c read failed\n");
258 else
259 memcpy(data, buffer, data_len);
260
261 kfree(buffer);
262 return ret;
263 }
264
265 static int acpi_gsb_i2c_write_bytes(struct i2c_client *client,
266 u8 cmd, u8 *data, u8 data_len)
267 {
268
269 struct i2c_msg msgs[1];
270 u8 *buffer;
271 int ret = AE_OK;
272
273 buffer = kzalloc(data_len + 1, GFP_KERNEL);
274 if (!buffer)
275 return AE_NO_MEMORY;
276
277 buffer[0] = cmd;
278 memcpy(buffer + 1, data, data_len);
279
280 msgs[0].addr = client->addr;
281 msgs[0].flags = client->flags;
282 msgs[0].len = data_len + 1;
283 msgs[0].buf = buffer;
284
285 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
286 if (ret < 0)
287 dev_err(&client->adapter->dev, "i2c write failed\n");
288
289 kfree(buffer);
290 return ret;
291 }
292
293 static acpi_status
294 acpi_i2c_space_handler(u32 function, acpi_physical_address command,
295 u32 bits, u64 *value64,
296 void *handler_context, void *region_context)
297 {
298 struct gsb_buffer *gsb = (struct gsb_buffer *)value64;
299 struct acpi_i2c_handler_data *data = handler_context;
300 struct acpi_connection_info *info = &data->info;
301 struct acpi_resource_i2c_serialbus *sb;
302 struct i2c_adapter *adapter = data->adapter;
303 struct i2c_client *client;
304 struct acpi_resource *ares;
305 u32 accessor_type = function >> 16;
306 u8 action = function & ACPI_IO_MASK;
307 acpi_status ret;
308 int status;
309
310 ret = acpi_buffer_to_resource(info->connection, info->length, &ares);
311 if (ACPI_FAILURE(ret))
312 return ret;
313
314 client = kzalloc(sizeof(*client), GFP_KERNEL);
315 if (!client) {
316 ret = AE_NO_MEMORY;
317 goto err;
318 }
319
320 if (!value64 || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) {
321 ret = AE_BAD_PARAMETER;
322 goto err;
323 }
324
325 sb = &ares->data.i2c_serial_bus;
326 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C) {
327 ret = AE_BAD_PARAMETER;
328 goto err;
329 }
330
331 client->adapter = adapter;
332 client->addr = sb->slave_address;
333
334 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
335 client->flags |= I2C_CLIENT_TEN;
336
337 switch (accessor_type) {
338 case ACPI_GSB_ACCESS_ATTRIB_SEND_RCV:
339 if (action == ACPI_READ) {
340 status = i2c_smbus_read_byte(client);
341 if (status >= 0) {
342 gsb->bdata = status;
343 status = 0;
344 }
345 } else {
346 status = i2c_smbus_write_byte(client, gsb->bdata);
347 }
348 break;
349
350 case ACPI_GSB_ACCESS_ATTRIB_BYTE:
351 if (action == ACPI_READ) {
352 status = i2c_smbus_read_byte_data(client, command);
353 if (status >= 0) {
354 gsb->bdata = status;
355 status = 0;
356 }
357 } else {
358 status = i2c_smbus_write_byte_data(client, command,
359 gsb->bdata);
360 }
361 break;
362
363 case ACPI_GSB_ACCESS_ATTRIB_WORD:
364 if (action == ACPI_READ) {
365 status = i2c_smbus_read_word_data(client, command);
366 if (status >= 0) {
367 gsb->wdata = status;
368 status = 0;
369 }
370 } else {
371 status = i2c_smbus_write_word_data(client, command,
372 gsb->wdata);
373 }
374 break;
375
376 case ACPI_GSB_ACCESS_ATTRIB_BLOCK:
377 if (action == ACPI_READ) {
378 status = i2c_smbus_read_block_data(client, command,
379 gsb->data);
380 if (status >= 0) {
381 gsb->len = status;
382 status = 0;
383 }
384 } else {
385 status = i2c_smbus_write_block_data(client, command,
386 gsb->len, gsb->data);
387 }
388 break;
389
390 case ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE:
391 if (action == ACPI_READ) {
392 status = acpi_gsb_i2c_read_bytes(client, command,
393 gsb->data, info->access_length);
394 if (status > 0)
395 status = 0;
396 } else {
397 status = acpi_gsb_i2c_write_bytes(client, command,
398 gsb->data, info->access_length);
399 }
400 break;
401
402 default:
403 pr_info("protocol(0x%02x) is not supported.\n", accessor_type);
404 ret = AE_BAD_PARAMETER;
405 goto err;
406 }
407
408 gsb->status = status;
409
410 err:
411 kfree(client);
412 ACPI_FREE(ares);
413 return ret;
414 }
415
416
417 static int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
418 {
419 acpi_handle handle;
420 struct acpi_i2c_handler_data *data;
421 acpi_status status;
422
423 if (!adapter->dev.parent)
424 return -ENODEV;
425
426 handle = ACPI_HANDLE(adapter->dev.parent);
427
428 if (!handle)
429 return -ENODEV;
430
431 data = kzalloc(sizeof(struct acpi_i2c_handler_data),
432 GFP_KERNEL);
433 if (!data)
434 return -ENOMEM;
435
436 data->adapter = adapter;
437 status = acpi_bus_attach_private_data(handle, (void *)data);
438 if (ACPI_FAILURE(status)) {
439 kfree(data);
440 return -ENOMEM;
441 }
442
443 status = acpi_install_address_space_handler(handle,
444 ACPI_ADR_SPACE_GSBUS,
445 &acpi_i2c_space_handler,
446 NULL,
447 data);
448 if (ACPI_FAILURE(status)) {
449 dev_err(&adapter->dev, "Error installing i2c space handler\n");
450 acpi_bus_detach_private_data(handle);
451 kfree(data);
452 return -ENOMEM;
453 }
454
455 acpi_walk_dep_device_list(handle);
456 return 0;
457 }
458
459 static void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
460 {
461 acpi_handle handle;
462 struct acpi_i2c_handler_data *data;
463 acpi_status status;
464
465 if (!adapter->dev.parent)
466 return;
467
468 handle = ACPI_HANDLE(adapter->dev.parent);
469
470 if (!handle)
471 return;
472
473 acpi_remove_address_space_handler(handle,
474 ACPI_ADR_SPACE_GSBUS,
475 &acpi_i2c_space_handler);
476
477 status = acpi_bus_get_private_data(handle, (void **)&data);
478 if (ACPI_SUCCESS(status))
479 kfree(data);
480
481 acpi_bus_detach_private_data(handle);
482 }
483 #else /* CONFIG_ACPI_I2C_OPREGION */
484 static inline void acpi_i2c_remove_space_handler(struct i2c_adapter *adapter)
485 { }
486
487 static inline int acpi_i2c_install_space_handler(struct i2c_adapter *adapter)
488 { return 0; }
489 #endif /* CONFIG_ACPI_I2C_OPREGION */
490
491 /* ------------------------------------------------------------------------- */
492
493 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
494 const struct i2c_client *client)
495 {
496 while (id->name[0]) {
497 if (strcmp(client->name, id->name) == 0)
498 return id;
499 id++;
500 }
501 return NULL;
502 }
503
504 static int i2c_device_match(struct device *dev, struct device_driver *drv)
505 {
506 struct i2c_client *client = i2c_verify_client(dev);
507 struct i2c_driver *driver;
508
509 if (!client)
510 return 0;
511
512 /* Attempt an OF style match */
513 if (of_driver_match_device(dev, drv))
514 return 1;
515
516 /* Then ACPI style match */
517 if (acpi_driver_match_device(dev, drv))
518 return 1;
519
520 driver = to_i2c_driver(drv);
521 /* match on an id table if there is one */
522 if (driver->id_table)
523 return i2c_match_id(driver->id_table, client) != NULL;
524
525 return 0;
526 }
527
528
529 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
530 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
531 {
532 struct i2c_client *client = to_i2c_client(dev);
533 int rc;
534
535 rc = acpi_device_uevent_modalias(dev, env);
536 if (rc != -ENODEV)
537 return rc;
538
539 if (add_uevent_var(env, "MODALIAS=%s%s",
540 I2C_MODULE_PREFIX, client->name))
541 return -ENOMEM;
542 dev_dbg(dev, "uevent\n");
543 return 0;
544 }
545
546 /* i2c bus recovery routines */
547 static int get_scl_gpio_value(struct i2c_adapter *adap)
548 {
549 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
550 }
551
552 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
553 {
554 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
555 }
556
557 static int get_sda_gpio_value(struct i2c_adapter *adap)
558 {
559 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
560 }
561
562 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
563 {
564 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
565 struct device *dev = &adap->dev;
566 int ret = 0;
567
568 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
569 GPIOF_OUT_INIT_HIGH, "i2c-scl");
570 if (ret) {
571 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
572 return ret;
573 }
574
575 if (bri->get_sda) {
576 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
577 /* work without SDA polling */
578 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
579 bri->sda_gpio);
580 bri->get_sda = NULL;
581 }
582 }
583
584 return ret;
585 }
586
587 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
588 {
589 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
590
591 if (bri->get_sda)
592 gpio_free(bri->sda_gpio);
593
594 gpio_free(bri->scl_gpio);
595 }
596
597 /*
598 * We are generating clock pulses. ndelay() determines durating of clk pulses.
599 * We will generate clock with rate 100 KHz and so duration of both clock levels
600 * is: delay in ns = (10^6 / 100) / 2
601 */
602 #define RECOVERY_NDELAY 5000
603 #define RECOVERY_CLK_CNT 9
604
605 static int i2c_generic_recovery(struct i2c_adapter *adap)
606 {
607 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
608 int i = 0, val = 1, ret = 0;
609
610 if (bri->prepare_recovery)
611 bri->prepare_recovery(adap);
612
613 bri->set_scl(adap, val);
614 ndelay(RECOVERY_NDELAY);
615
616 /*
617 * By this time SCL is high, as we need to give 9 falling-rising edges
618 */
619 while (i++ < RECOVERY_CLK_CNT * 2) {
620 if (val) {
621 /* Break if SDA is high */
622 if (bri->get_sda && bri->get_sda(adap))
623 break;
624 /* SCL shouldn't be low here */
625 if (!bri->get_scl(adap)) {
626 dev_err(&adap->dev,
627 "SCL is stuck low, exit recovery\n");
628 ret = -EBUSY;
629 break;
630 }
631 }
632
633 val = !val;
634 bri->set_scl(adap, val);
635 ndelay(RECOVERY_NDELAY);
636 }
637
638 if (bri->unprepare_recovery)
639 bri->unprepare_recovery(adap);
640
641 return ret;
642 }
643
644 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
645 {
646 return i2c_generic_recovery(adap);
647 }
648 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
649
650 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
651 {
652 int ret;
653
654 ret = i2c_get_gpios_for_recovery(adap);
655 if (ret)
656 return ret;
657
658 ret = i2c_generic_recovery(adap);
659 i2c_put_gpios_for_recovery(adap);
660
661 return ret;
662 }
663 EXPORT_SYMBOL_GPL(i2c_generic_gpio_recovery);
664
665 int i2c_recover_bus(struct i2c_adapter *adap)
666 {
667 if (!adap->bus_recovery_info)
668 return -EOPNOTSUPP;
669
670 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
671 return adap->bus_recovery_info->recover_bus(adap);
672 }
673 EXPORT_SYMBOL_GPL(i2c_recover_bus);
674
675 static int i2c_device_probe(struct device *dev)
676 {
677 struct i2c_client *client = i2c_verify_client(dev);
678 struct i2c_driver *driver;
679 int status;
680
681 if (!client)
682 return 0;
683
684 if (!client->irq) {
685 int irq = -ENOENT;
686
687 if (dev->of_node) {
688 irq = of_irq_get_byname(dev->of_node, "irq");
689 if (irq == -EINVAL || irq == -ENODATA)
690 irq = of_irq_get(dev->of_node, 0);
691 } else if (ACPI_COMPANION(dev)) {
692 irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 0);
693 }
694 if (irq == -EPROBE_DEFER)
695 return irq;
696 if (irq < 0)
697 irq = 0;
698
699 client->irq = irq;
700 }
701
702 driver = to_i2c_driver(dev->driver);
703 if (!driver->probe || !driver->id_table)
704 return -ENODEV;
705
706 if (client->flags & I2C_CLIENT_WAKE) {
707 int wakeirq = -ENOENT;
708
709 if (dev->of_node) {
710 wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
711 if (wakeirq == -EPROBE_DEFER)
712 return wakeirq;
713 }
714
715 device_init_wakeup(&client->dev, true);
716
717 if (wakeirq > 0 && wakeirq != client->irq)
718 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
719 else if (client->irq > 0)
720 status = dev_pm_set_wake_irq(dev, client->irq);
721 else
722 status = 0;
723
724 if (status)
725 dev_warn(&client->dev, "failed to set up wakeup irq");
726 }
727
728 dev_dbg(dev, "probe\n");
729
730 status = of_clk_set_defaults(dev->of_node, false);
731 if (status < 0)
732 goto err_clear_wakeup_irq;
733
734 status = dev_pm_domain_attach(&client->dev, true);
735 if (status == -EPROBE_DEFER)
736 goto err_clear_wakeup_irq;
737
738 status = driver->probe(client, i2c_match_id(driver->id_table, client));
739 if (status)
740 goto err_detach_pm_domain;
741
742 return 0;
743
744 err_detach_pm_domain:
745 dev_pm_domain_detach(&client->dev, true);
746 err_clear_wakeup_irq:
747 dev_pm_clear_wake_irq(&client->dev);
748 device_init_wakeup(&client->dev, false);
749 return status;
750 }
751
752 static int i2c_device_remove(struct device *dev)
753 {
754 struct i2c_client *client = i2c_verify_client(dev);
755 struct i2c_driver *driver;
756 int status = 0;
757
758 if (!client || !dev->driver)
759 return 0;
760
761 driver = to_i2c_driver(dev->driver);
762 if (driver->remove) {
763 dev_dbg(dev, "remove\n");
764 status = driver->remove(client);
765 }
766
767 dev_pm_domain_detach(&client->dev, true);
768
769 dev_pm_clear_wake_irq(&client->dev);
770 device_init_wakeup(&client->dev, false);
771
772 return status;
773 }
774
775 static void i2c_device_shutdown(struct device *dev)
776 {
777 struct i2c_client *client = i2c_verify_client(dev);
778 struct i2c_driver *driver;
779
780 if (!client || !dev->driver)
781 return;
782 driver = to_i2c_driver(dev->driver);
783 if (driver->shutdown)
784 driver->shutdown(client);
785 }
786
787 static void i2c_client_dev_release(struct device *dev)
788 {
789 kfree(to_i2c_client(dev));
790 }
791
792 static ssize_t
793 show_name(struct device *dev, struct device_attribute *attr, char *buf)
794 {
795 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
796 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
797 }
798 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
799
800 static ssize_t
801 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
802 {
803 struct i2c_client *client = to_i2c_client(dev);
804 int len;
805
806 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
807 if (len != -ENODEV)
808 return len;
809
810 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
811 }
812 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
813
814 static struct attribute *i2c_dev_attrs[] = {
815 &dev_attr_name.attr,
816 /* modalias helps coldplug: modprobe $(cat .../modalias) */
817 &dev_attr_modalias.attr,
818 NULL
819 };
820 ATTRIBUTE_GROUPS(i2c_dev);
821
822 struct bus_type i2c_bus_type = {
823 .name = "i2c",
824 .match = i2c_device_match,
825 .probe = i2c_device_probe,
826 .remove = i2c_device_remove,
827 .shutdown = i2c_device_shutdown,
828 };
829 EXPORT_SYMBOL_GPL(i2c_bus_type);
830
831 static struct device_type i2c_client_type = {
832 .groups = i2c_dev_groups,
833 .uevent = i2c_device_uevent,
834 .release = i2c_client_dev_release,
835 };
836
837
838 /**
839 * i2c_verify_client - return parameter as i2c_client, or NULL
840 * @dev: device, probably from some driver model iterator
841 *
842 * When traversing the driver model tree, perhaps using driver model
843 * iterators like @device_for_each_child(), you can't assume very much
844 * about the nodes you find. Use this function to avoid oopses caused
845 * by wrongly treating some non-I2C device as an i2c_client.
846 */
847 struct i2c_client *i2c_verify_client(struct device *dev)
848 {
849 return (dev->type == &i2c_client_type)
850 ? to_i2c_client(dev)
851 : NULL;
852 }
853 EXPORT_SYMBOL(i2c_verify_client);
854
855
856 /* Return a unique address which takes the flags of the client into account */
857 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
858 {
859 unsigned short addr = client->addr;
860
861 /* For some client flags, add an arbitrary offset to avoid collisions */
862 if (client->flags & I2C_CLIENT_TEN)
863 addr |= I2C_ADDR_OFFSET_TEN_BIT;
864
865 if (client->flags & I2C_CLIENT_SLAVE)
866 addr |= I2C_ADDR_OFFSET_SLAVE;
867
868 return addr;
869 }
870
871 /* This is a permissive address validity check, I2C address map constraints
872 * are purposely not enforced, except for the general call address. */
873 static int i2c_check_addr_validity(unsigned addr, unsigned short flags)
874 {
875 if (flags & I2C_CLIENT_TEN) {
876 /* 10-bit address, all values are valid */
877 if (addr > 0x3ff)
878 return -EINVAL;
879 } else {
880 /* 7-bit address, reject the general call address */
881 if (addr == 0x00 || addr > 0x7f)
882 return -EINVAL;
883 }
884 return 0;
885 }
886
887 /* And this is a strict address validity check, used when probing. If a
888 * device uses a reserved address, then it shouldn't be probed. 7-bit
889 * addressing is assumed, 10-bit address devices are rare and should be
890 * explicitly enumerated. */
891 static int i2c_check_7bit_addr_validity_strict(unsigned short addr)
892 {
893 /*
894 * Reserved addresses per I2C specification:
895 * 0x00 General call address / START byte
896 * 0x01 CBUS address
897 * 0x02 Reserved for different bus format
898 * 0x03 Reserved for future purposes
899 * 0x04-0x07 Hs-mode master code
900 * 0x78-0x7b 10-bit slave addressing
901 * 0x7c-0x7f Reserved for future purposes
902 */
903 if (addr < 0x08 || addr > 0x77)
904 return -EINVAL;
905 return 0;
906 }
907
908 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
909 {
910 struct i2c_client *client = i2c_verify_client(dev);
911 int addr = *(int *)addrp;
912
913 if (client && i2c_encode_flags_to_addr(client) == addr)
914 return -EBUSY;
915 return 0;
916 }
917
918 /* walk up mux tree */
919 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
920 {
921 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
922 int result;
923
924 result = device_for_each_child(&adapter->dev, &addr,
925 __i2c_check_addr_busy);
926
927 if (!result && parent)
928 result = i2c_check_mux_parents(parent, addr);
929
930 return result;
931 }
932
933 /* recurse down mux tree */
934 static int i2c_check_mux_children(struct device *dev, void *addrp)
935 {
936 int result;
937
938 if (dev->type == &i2c_adapter_type)
939 result = device_for_each_child(dev, addrp,
940 i2c_check_mux_children);
941 else
942 result = __i2c_check_addr_busy(dev, addrp);
943
944 return result;
945 }
946
947 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
948 {
949 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
950 int result = 0;
951
952 if (parent)
953 result = i2c_check_mux_parents(parent, addr);
954
955 if (!result)
956 result = device_for_each_child(&adapter->dev, &addr,
957 i2c_check_mux_children);
958
959 return result;
960 }
961
962 /**
963 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
964 * @adapter: Target I2C bus segment
965 */
966 void i2c_lock_adapter(struct i2c_adapter *adapter)
967 {
968 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
969
970 if (parent)
971 i2c_lock_adapter(parent);
972 else
973 rt_mutex_lock(&adapter->bus_lock);
974 }
975 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
976
977 /**
978 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
979 * @adapter: Target I2C bus segment
980 */
981 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
982 {
983 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
984
985 if (parent)
986 return i2c_trylock_adapter(parent);
987 else
988 return rt_mutex_trylock(&adapter->bus_lock);
989 }
990
991 /**
992 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
993 * @adapter: Target I2C bus segment
994 */
995 void i2c_unlock_adapter(struct i2c_adapter *adapter)
996 {
997 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
998
999 if (parent)
1000 i2c_unlock_adapter(parent);
1001 else
1002 rt_mutex_unlock(&adapter->bus_lock);
1003 }
1004 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
1005
1006 static void i2c_dev_set_name(struct i2c_adapter *adap,
1007 struct i2c_client *client)
1008 {
1009 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
1010
1011 if (adev) {
1012 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
1013 return;
1014 }
1015
1016 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
1017 i2c_encode_flags_to_addr(client));
1018 }
1019
1020 /**
1021 * i2c_new_device - instantiate an i2c device
1022 * @adap: the adapter managing the device
1023 * @info: describes one I2C device; bus_num is ignored
1024 * Context: can sleep
1025 *
1026 * Create an i2c device. Binding is handled through driver model
1027 * probe()/remove() methods. A driver may be bound to this device when we
1028 * return from this function, or any later moment (e.g. maybe hotplugging will
1029 * load the driver module). This call is not appropriate for use by mainboard
1030 * initialization logic, which usually runs during an arch_initcall() long
1031 * before any i2c_adapter could exist.
1032 *
1033 * This returns the new i2c client, which may be saved for later use with
1034 * i2c_unregister_device(); or NULL to indicate an error.
1035 */
1036 struct i2c_client *
1037 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
1038 {
1039 struct i2c_client *client;
1040 int status;
1041
1042 client = kzalloc(sizeof *client, GFP_KERNEL);
1043 if (!client)
1044 return NULL;
1045
1046 client->adapter = adap;
1047
1048 client->dev.platform_data = info->platform_data;
1049
1050 if (info->archdata)
1051 client->dev.archdata = *info->archdata;
1052
1053 client->flags = info->flags;
1054 client->addr = info->addr;
1055 client->irq = info->irq;
1056
1057 strlcpy(client->name, info->type, sizeof(client->name));
1058
1059 status = i2c_check_addr_validity(client->addr, client->flags);
1060 if (status) {
1061 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
1062 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
1063 goto out_err_silent;
1064 }
1065
1066 /* Check for address business */
1067 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
1068 if (status)
1069 goto out_err;
1070
1071 client->dev.parent = &client->adapter->dev;
1072 client->dev.bus = &i2c_bus_type;
1073 client->dev.type = &i2c_client_type;
1074 client->dev.of_node = info->of_node;
1075 client->dev.fwnode = info->fwnode;
1076
1077 i2c_dev_set_name(adap, client);
1078 status = device_register(&client->dev);
1079 if (status)
1080 goto out_err;
1081
1082 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
1083 client->name, dev_name(&client->dev));
1084
1085 return client;
1086
1087 out_err:
1088 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
1089 "(%d)\n", client->name, client->addr, status);
1090 out_err_silent:
1091 kfree(client);
1092 return NULL;
1093 }
1094 EXPORT_SYMBOL_GPL(i2c_new_device);
1095
1096
1097 /**
1098 * i2c_unregister_device - reverse effect of i2c_new_device()
1099 * @client: value returned from i2c_new_device()
1100 * Context: can sleep
1101 */
1102 void i2c_unregister_device(struct i2c_client *client)
1103 {
1104 if (client->dev.of_node)
1105 of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1106 device_unregister(&client->dev);
1107 }
1108 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1109
1110
1111 static const struct i2c_device_id dummy_id[] = {
1112 { "dummy", 0 },
1113 { },
1114 };
1115
1116 static int dummy_probe(struct i2c_client *client,
1117 const struct i2c_device_id *id)
1118 {
1119 return 0;
1120 }
1121
1122 static int dummy_remove(struct i2c_client *client)
1123 {
1124 return 0;
1125 }
1126
1127 static struct i2c_driver dummy_driver = {
1128 .driver.name = "dummy",
1129 .probe = dummy_probe,
1130 .remove = dummy_remove,
1131 .id_table = dummy_id,
1132 };
1133
1134 /**
1135 * i2c_new_dummy - return a new i2c device bound to a dummy driver
1136 * @adapter: the adapter managing the device
1137 * @address: seven bit address to be used
1138 * Context: can sleep
1139 *
1140 * This returns an I2C client bound to the "dummy" driver, intended for use
1141 * with devices that consume multiple addresses. Examples of such chips
1142 * include various EEPROMS (like 24c04 and 24c08 models).
1143 *
1144 * These dummy devices have two main uses. First, most I2C and SMBus calls
1145 * except i2c_transfer() need a client handle; the dummy will be that handle.
1146 * And second, this prevents the specified address from being bound to a
1147 * different driver.
1148 *
1149 * This returns the new i2c client, which should be saved for later use with
1150 * i2c_unregister_device(); or NULL to indicate an error.
1151 */
1152 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
1153 {
1154 struct i2c_board_info info = {
1155 I2C_BOARD_INFO("dummy", address),
1156 };
1157
1158 return i2c_new_device(adapter, &info);
1159 }
1160 EXPORT_SYMBOL_GPL(i2c_new_dummy);
1161
1162 /* ------------------------------------------------------------------------- */
1163
1164 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1165
1166 static void i2c_adapter_dev_release(struct device *dev)
1167 {
1168 struct i2c_adapter *adap = to_i2c_adapter(dev);
1169 complete(&adap->dev_released);
1170 }
1171
1172 /*
1173 * This function is only needed for mutex_lock_nested, so it is never
1174 * called unless locking correctness checking is enabled. Thus we
1175 * make it inline to avoid a compiler warning. That's what gcc ends up
1176 * doing anyway.
1177 */
1178 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1179 {
1180 unsigned int depth = 0;
1181
1182 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1183 depth++;
1184
1185 return depth;
1186 }
1187
1188 /*
1189 * Let users instantiate I2C devices through sysfs. This can be used when
1190 * platform initialization code doesn't contain the proper data for
1191 * whatever reason. Also useful for drivers that do device detection and
1192 * detection fails, either because the device uses an unexpected address,
1193 * or this is a compatible device with different ID register values.
1194 *
1195 * Parameter checking may look overzealous, but we really don't want
1196 * the user to provide incorrect parameters.
1197 */
1198 static ssize_t
1199 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
1200 const char *buf, size_t count)
1201 {
1202 struct i2c_adapter *adap = to_i2c_adapter(dev);
1203 struct i2c_board_info info;
1204 struct i2c_client *client;
1205 char *blank, end;
1206 int res;
1207
1208 memset(&info, 0, sizeof(struct i2c_board_info));
1209
1210 blank = strchr(buf, ' ');
1211 if (!blank) {
1212 dev_err(dev, "%s: Missing parameters\n", "new_device");
1213 return -EINVAL;
1214 }
1215 if (blank - buf > I2C_NAME_SIZE - 1) {
1216 dev_err(dev, "%s: Invalid device name\n", "new_device");
1217 return -EINVAL;
1218 }
1219 memcpy(info.type, buf, blank - buf);
1220
1221 /* Parse remaining parameters, reject extra parameters */
1222 res = sscanf(++blank, "%hi%c", &info.addr, &end);
1223 if (res < 1) {
1224 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1225 return -EINVAL;
1226 }
1227 if (res > 1 && end != '\n') {
1228 dev_err(dev, "%s: Extra parameters\n", "new_device");
1229 return -EINVAL;
1230 }
1231
1232 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1233 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1234 info.flags |= I2C_CLIENT_TEN;
1235 }
1236
1237 if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1238 info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1239 info.flags |= I2C_CLIENT_SLAVE;
1240 }
1241
1242 client = i2c_new_device(adap, &info);
1243 if (!client)
1244 return -EINVAL;
1245
1246 /* Keep track of the added device */
1247 mutex_lock(&adap->userspace_clients_lock);
1248 list_add_tail(&client->detected, &adap->userspace_clients);
1249 mutex_unlock(&adap->userspace_clients_lock);
1250 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1251 info.type, info.addr);
1252
1253 return count;
1254 }
1255 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
1256
1257 /*
1258 * And of course let the users delete the devices they instantiated, if
1259 * they got it wrong. This interface can only be used to delete devices
1260 * instantiated by i2c_sysfs_new_device above. This guarantees that we
1261 * don't delete devices to which some kernel code still has references.
1262 *
1263 * Parameter checking may look overzealous, but we really don't want
1264 * the user to delete the wrong device.
1265 */
1266 static ssize_t
1267 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
1268 const char *buf, size_t count)
1269 {
1270 struct i2c_adapter *adap = to_i2c_adapter(dev);
1271 struct i2c_client *client, *next;
1272 unsigned short addr;
1273 char end;
1274 int res;
1275
1276 /* Parse parameters, reject extra parameters */
1277 res = sscanf(buf, "%hi%c", &addr, &end);
1278 if (res < 1) {
1279 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1280 return -EINVAL;
1281 }
1282 if (res > 1 && end != '\n') {
1283 dev_err(dev, "%s: Extra parameters\n", "delete_device");
1284 return -EINVAL;
1285 }
1286
1287 /* Make sure the device was added through sysfs */
1288 res = -ENOENT;
1289 mutex_lock_nested(&adap->userspace_clients_lock,
1290 i2c_adapter_depth(adap));
1291 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1292 detected) {
1293 if (i2c_encode_flags_to_addr(client) == addr) {
1294 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1295 "delete_device", client->name, client->addr);
1296
1297 list_del(&client->detected);
1298 i2c_unregister_device(client);
1299 res = count;
1300 break;
1301 }
1302 }
1303 mutex_unlock(&adap->userspace_clients_lock);
1304
1305 if (res < 0)
1306 dev_err(dev, "%s: Can't find device in list\n",
1307 "delete_device");
1308 return res;
1309 }
1310 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1311 i2c_sysfs_delete_device);
1312
1313 static struct attribute *i2c_adapter_attrs[] = {
1314 &dev_attr_name.attr,
1315 &dev_attr_new_device.attr,
1316 &dev_attr_delete_device.attr,
1317 NULL
1318 };
1319 ATTRIBUTE_GROUPS(i2c_adapter);
1320
1321 struct device_type i2c_adapter_type = {
1322 .groups = i2c_adapter_groups,
1323 .release = i2c_adapter_dev_release,
1324 };
1325 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1326
1327 /**
1328 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1329 * @dev: device, probably from some driver model iterator
1330 *
1331 * When traversing the driver model tree, perhaps using driver model
1332 * iterators like @device_for_each_child(), you can't assume very much
1333 * about the nodes you find. Use this function to avoid oopses caused
1334 * by wrongly treating some non-I2C device as an i2c_adapter.
1335 */
1336 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1337 {
1338 return (dev->type == &i2c_adapter_type)
1339 ? to_i2c_adapter(dev)
1340 : NULL;
1341 }
1342 EXPORT_SYMBOL(i2c_verify_adapter);
1343
1344 #ifdef CONFIG_I2C_COMPAT
1345 static struct class_compat *i2c_adapter_compat_class;
1346 #endif
1347
1348 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1349 {
1350 struct i2c_devinfo *devinfo;
1351
1352 down_read(&__i2c_board_lock);
1353 list_for_each_entry(devinfo, &__i2c_board_list, list) {
1354 if (devinfo->busnum == adapter->nr
1355 && !i2c_new_device(adapter,
1356 &devinfo->board_info))
1357 dev_err(&adapter->dev,
1358 "Can't create device at 0x%02x\n",
1359 devinfo->board_info.addr);
1360 }
1361 up_read(&__i2c_board_lock);
1362 }
1363
1364 /* OF support code */
1365
1366 #if IS_ENABLED(CONFIG_OF)
1367 static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
1368 struct device_node *node)
1369 {
1370 struct i2c_client *result;
1371 struct i2c_board_info info = {};
1372 struct dev_archdata dev_ad = {};
1373 const __be32 *addr_be;
1374 u32 addr;
1375 int len;
1376
1377 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
1378
1379 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
1380 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
1381 node->full_name);
1382 return ERR_PTR(-EINVAL);
1383 }
1384
1385 addr_be = of_get_property(node, "reg", &len);
1386 if (!addr_be || (len < sizeof(*addr_be))) {
1387 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
1388 node->full_name);
1389 return ERR_PTR(-EINVAL);
1390 }
1391
1392 addr = be32_to_cpup(addr_be);
1393 if (addr & I2C_TEN_BIT_ADDRESS) {
1394 addr &= ~I2C_TEN_BIT_ADDRESS;
1395 info.flags |= I2C_CLIENT_TEN;
1396 }
1397
1398 if (addr & I2C_OWN_SLAVE_ADDRESS) {
1399 addr &= ~I2C_OWN_SLAVE_ADDRESS;
1400 info.flags |= I2C_CLIENT_SLAVE;
1401 }
1402
1403 if (i2c_check_addr_validity(addr, info.flags)) {
1404 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1405 info.addr, node->full_name);
1406 return ERR_PTR(-EINVAL);
1407 }
1408
1409 info.addr = addr;
1410 info.of_node = of_node_get(node);
1411 info.archdata = &dev_ad;
1412
1413 if (of_get_property(node, "wakeup-source", NULL))
1414 info.flags |= I2C_CLIENT_WAKE;
1415
1416 result = i2c_new_device(adap, &info);
1417 if (result == NULL) {
1418 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1419 node->full_name);
1420 of_node_put(node);
1421 return ERR_PTR(-EINVAL);
1422 }
1423 return result;
1424 }
1425
1426 static void of_i2c_register_devices(struct i2c_adapter *adap)
1427 {
1428 struct device_node *node;
1429
1430 /* Only register child devices if the adapter has a node pointer set */
1431 if (!adap->dev.of_node)
1432 return;
1433
1434 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
1435
1436 for_each_available_child_of_node(adap->dev.of_node, node) {
1437 if (of_node_test_and_set_flag(node, OF_POPULATED))
1438 continue;
1439 of_i2c_register_device(adap, node);
1440 }
1441 }
1442
1443 static int of_dev_node_match(struct device *dev, void *data)
1444 {
1445 return dev->of_node == data;
1446 }
1447
1448 /* must call put_device() when done with returned i2c_client device */
1449 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1450 {
1451 struct device *dev;
1452 struct i2c_client *client;
1453
1454 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1455 if (!dev)
1456 return NULL;
1457
1458 client = i2c_verify_client(dev);
1459 if (!client)
1460 put_device(dev);
1461
1462 return client;
1463 }
1464 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1465
1466 /* must call put_device() when done with returned i2c_adapter device */
1467 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1468 {
1469 struct device *dev;
1470 struct i2c_adapter *adapter;
1471
1472 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1473 if (!dev)
1474 return NULL;
1475
1476 adapter = i2c_verify_adapter(dev);
1477 if (!adapter)
1478 put_device(dev);
1479
1480 return adapter;
1481 }
1482 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1483
1484 /* must call i2c_put_adapter() when done with returned i2c_adapter device */
1485 struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node)
1486 {
1487 struct i2c_adapter *adapter;
1488
1489 adapter = of_find_i2c_adapter_by_node(node);
1490 if (!adapter)
1491 return NULL;
1492
1493 if (!try_module_get(adapter->owner)) {
1494 put_device(&adapter->dev);
1495 adapter = NULL;
1496 }
1497
1498 return adapter;
1499 }
1500 EXPORT_SYMBOL(of_get_i2c_adapter_by_node);
1501 #else
1502 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1503 #endif /* CONFIG_OF */
1504
1505 static int i2c_do_add_adapter(struct i2c_driver *driver,
1506 struct i2c_adapter *adap)
1507 {
1508 /* Detect supported devices on that bus, and instantiate them */
1509 i2c_detect(adap, driver);
1510
1511 /* Let legacy drivers scan this bus for matching devices */
1512 if (driver->attach_adapter) {
1513 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1514 driver->driver.name);
1515 dev_warn(&adap->dev, "Please use another way to instantiate "
1516 "your i2c_client\n");
1517 /* We ignore the return code; if it fails, too bad */
1518 driver->attach_adapter(adap);
1519 }
1520 return 0;
1521 }
1522
1523 static int __process_new_adapter(struct device_driver *d, void *data)
1524 {
1525 return i2c_do_add_adapter(to_i2c_driver(d), data);
1526 }
1527
1528 static int i2c_register_adapter(struct i2c_adapter *adap)
1529 {
1530 int res = 0;
1531
1532 /* Can't register until after driver model init */
1533 if (WARN_ON(!is_registered)) {
1534 res = -EAGAIN;
1535 goto out_list;
1536 }
1537
1538 /* Sanity checks */
1539 if (unlikely(adap->name[0] == '\0')) {
1540 pr_err("i2c-core: Attempt to register an adapter with "
1541 "no name!\n");
1542 return -EINVAL;
1543 }
1544 if (unlikely(!adap->algo)) {
1545 pr_err("i2c-core: Attempt to register adapter '%s' with "
1546 "no algo!\n", adap->name);
1547 return -EINVAL;
1548 }
1549
1550 rt_mutex_init(&adap->bus_lock);
1551 mutex_init(&adap->userspace_clients_lock);
1552 INIT_LIST_HEAD(&adap->userspace_clients);
1553
1554 /* Set default timeout to 1 second if not already set */
1555 if (adap->timeout == 0)
1556 adap->timeout = HZ;
1557
1558 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1559 adap->dev.bus = &i2c_bus_type;
1560 adap->dev.type = &i2c_adapter_type;
1561 res = device_register(&adap->dev);
1562 if (res)
1563 goto out_list;
1564
1565 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1566
1567 pm_runtime_no_callbacks(&adap->dev);
1568 pm_runtime_enable(&adap->dev);
1569
1570 #ifdef CONFIG_I2C_COMPAT
1571 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1572 adap->dev.parent);
1573 if (res)
1574 dev_warn(&adap->dev,
1575 "Failed to create compatibility class link\n");
1576 #endif
1577
1578 /* bus recovery specific initialization */
1579 if (adap->bus_recovery_info) {
1580 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1581
1582 if (!bri->recover_bus) {
1583 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1584 adap->bus_recovery_info = NULL;
1585 goto exit_recovery;
1586 }
1587
1588 /* Generic GPIO recovery */
1589 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1590 if (!gpio_is_valid(bri->scl_gpio)) {
1591 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1592 adap->bus_recovery_info = NULL;
1593 goto exit_recovery;
1594 }
1595
1596 if (gpio_is_valid(bri->sda_gpio))
1597 bri->get_sda = get_sda_gpio_value;
1598 else
1599 bri->get_sda = NULL;
1600
1601 bri->get_scl = get_scl_gpio_value;
1602 bri->set_scl = set_scl_gpio_value;
1603 } else if (!bri->set_scl || !bri->get_scl) {
1604 /* Generic SCL recovery */
1605 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1606 adap->bus_recovery_info = NULL;
1607 }
1608 }
1609
1610 exit_recovery:
1611 /* create pre-declared device nodes */
1612 of_i2c_register_devices(adap);
1613 acpi_i2c_register_devices(adap);
1614 acpi_i2c_install_space_handler(adap);
1615
1616 if (adap->nr < __i2c_first_dynamic_bus_num)
1617 i2c_scan_static_board_info(adap);
1618
1619 /* Notify drivers */
1620 mutex_lock(&core_lock);
1621 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1622 mutex_unlock(&core_lock);
1623
1624 return 0;
1625
1626 out_list:
1627 mutex_lock(&core_lock);
1628 idr_remove(&i2c_adapter_idr, adap->nr);
1629 mutex_unlock(&core_lock);
1630 return res;
1631 }
1632
1633 /**
1634 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1635 * @adap: the adapter to register (with adap->nr initialized)
1636 * Context: can sleep
1637 *
1638 * See i2c_add_numbered_adapter() for details.
1639 */
1640 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1641 {
1642 int id;
1643
1644 mutex_lock(&core_lock);
1645 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1646 GFP_KERNEL);
1647 mutex_unlock(&core_lock);
1648 if (id < 0)
1649 return id == -ENOSPC ? -EBUSY : id;
1650
1651 return i2c_register_adapter(adap);
1652 }
1653
1654 /**
1655 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1656 * @adapter: the adapter to add
1657 * Context: can sleep
1658 *
1659 * This routine is used to declare an I2C adapter when its bus number
1660 * doesn't matter or when its bus number is specified by an dt alias.
1661 * Examples of bases when the bus number doesn't matter: I2C adapters
1662 * dynamically added by USB links or PCI plugin cards.
1663 *
1664 * When this returns zero, a new bus number was allocated and stored
1665 * in adap->nr, and the specified adapter became available for clients.
1666 * Otherwise, a negative errno value is returned.
1667 */
1668 int i2c_add_adapter(struct i2c_adapter *adapter)
1669 {
1670 struct device *dev = &adapter->dev;
1671 int id;
1672
1673 if (dev->of_node) {
1674 id = of_alias_get_id(dev->of_node, "i2c");
1675 if (id >= 0) {
1676 adapter->nr = id;
1677 return __i2c_add_numbered_adapter(adapter);
1678 }
1679 }
1680
1681 mutex_lock(&core_lock);
1682 id = idr_alloc(&i2c_adapter_idr, adapter,
1683 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1684 mutex_unlock(&core_lock);
1685 if (id < 0)
1686 return id;
1687
1688 adapter->nr = id;
1689
1690 return i2c_register_adapter(adapter);
1691 }
1692 EXPORT_SYMBOL(i2c_add_adapter);
1693
1694 /**
1695 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1696 * @adap: the adapter to register (with adap->nr initialized)
1697 * Context: can sleep
1698 *
1699 * This routine is used to declare an I2C adapter when its bus number
1700 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1701 * or otherwise built in to the system's mainboard, and where i2c_board_info
1702 * is used to properly configure I2C devices.
1703 *
1704 * If the requested bus number is set to -1, then this function will behave
1705 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1706 *
1707 * If no devices have pre-been declared for this bus, then be sure to
1708 * register the adapter before any dynamically allocated ones. Otherwise
1709 * the required bus ID may not be available.
1710 *
1711 * When this returns zero, the specified adapter became available for
1712 * clients using the bus number provided in adap->nr. Also, the table
1713 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1714 * and the appropriate driver model device nodes are created. Otherwise, a
1715 * negative errno value is returned.
1716 */
1717 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1718 {
1719 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1720 return i2c_add_adapter(adap);
1721
1722 return __i2c_add_numbered_adapter(adap);
1723 }
1724 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1725
1726 static void i2c_do_del_adapter(struct i2c_driver *driver,
1727 struct i2c_adapter *adapter)
1728 {
1729 struct i2c_client *client, *_n;
1730
1731 /* Remove the devices we created ourselves as the result of hardware
1732 * probing (using a driver's detect method) */
1733 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1734 if (client->adapter == adapter) {
1735 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1736 client->name, client->addr);
1737 list_del(&client->detected);
1738 i2c_unregister_device(client);
1739 }
1740 }
1741 }
1742
1743 static int __unregister_client(struct device *dev, void *dummy)
1744 {
1745 struct i2c_client *client = i2c_verify_client(dev);
1746 if (client && strcmp(client->name, "dummy"))
1747 i2c_unregister_device(client);
1748 return 0;
1749 }
1750
1751 static int __unregister_dummy(struct device *dev, void *dummy)
1752 {
1753 struct i2c_client *client = i2c_verify_client(dev);
1754 if (client)
1755 i2c_unregister_device(client);
1756 return 0;
1757 }
1758
1759 static int __process_removed_adapter(struct device_driver *d, void *data)
1760 {
1761 i2c_do_del_adapter(to_i2c_driver(d), data);
1762 return 0;
1763 }
1764
1765 /**
1766 * i2c_del_adapter - unregister I2C adapter
1767 * @adap: the adapter being unregistered
1768 * Context: can sleep
1769 *
1770 * This unregisters an I2C adapter which was previously registered
1771 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1772 */
1773 void i2c_del_adapter(struct i2c_adapter *adap)
1774 {
1775 struct i2c_adapter *found;
1776 struct i2c_client *client, *next;
1777
1778 /* First make sure that this adapter was ever added */
1779 mutex_lock(&core_lock);
1780 found = idr_find(&i2c_adapter_idr, adap->nr);
1781 mutex_unlock(&core_lock);
1782 if (found != adap) {
1783 pr_debug("i2c-core: attempting to delete unregistered "
1784 "adapter [%s]\n", adap->name);
1785 return;
1786 }
1787
1788 acpi_i2c_remove_space_handler(adap);
1789 /* Tell drivers about this removal */
1790 mutex_lock(&core_lock);
1791 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1792 __process_removed_adapter);
1793 mutex_unlock(&core_lock);
1794
1795 /* Remove devices instantiated from sysfs */
1796 mutex_lock_nested(&adap->userspace_clients_lock,
1797 i2c_adapter_depth(adap));
1798 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1799 detected) {
1800 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1801 client->addr);
1802 list_del(&client->detected);
1803 i2c_unregister_device(client);
1804 }
1805 mutex_unlock(&adap->userspace_clients_lock);
1806
1807 /* Detach any active clients. This can't fail, thus we do not
1808 * check the returned value. This is a two-pass process, because
1809 * we can't remove the dummy devices during the first pass: they
1810 * could have been instantiated by real devices wishing to clean
1811 * them up properly, so we give them a chance to do that first. */
1812 device_for_each_child(&adap->dev, NULL, __unregister_client);
1813 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1814
1815 #ifdef CONFIG_I2C_COMPAT
1816 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1817 adap->dev.parent);
1818 #endif
1819
1820 /* device name is gone after device_unregister */
1821 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1822
1823 pm_runtime_disable(&adap->dev);
1824
1825 /* wait until all references to the device are gone
1826 *
1827 * FIXME: This is old code and should ideally be replaced by an
1828 * alternative which results in decoupling the lifetime of the struct
1829 * device from the i2c_adapter, like spi or netdev do. Any solution
1830 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1831 */
1832 init_completion(&adap->dev_released);
1833 device_unregister(&adap->dev);
1834 wait_for_completion(&adap->dev_released);
1835
1836 /* free bus id */
1837 mutex_lock(&core_lock);
1838 idr_remove(&i2c_adapter_idr, adap->nr);
1839 mutex_unlock(&core_lock);
1840
1841 /* Clear the device structure in case this adapter is ever going to be
1842 added again */
1843 memset(&adap->dev, 0, sizeof(adap->dev));
1844 }
1845 EXPORT_SYMBOL(i2c_del_adapter);
1846
1847 /**
1848 * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1849 * @dev: The device to scan for I2C timing properties
1850 * @t: the i2c_timings struct to be filled with values
1851 * @use_defaults: bool to use sane defaults derived from the I2C specification
1852 * when properties are not found, otherwise use 0
1853 *
1854 * Scan the device for the generic I2C properties describing timing parameters
1855 * for the signal and fill the given struct with the results. If a property was
1856 * not found and use_defaults was true, then maximum timings are assumed which
1857 * are derived from the I2C specification. If use_defaults is not used, the
1858 * results will be 0, so drivers can apply their own defaults later. The latter
1859 * is mainly intended for avoiding regressions of existing drivers which want
1860 * to switch to this function. New drivers almost always should use the defaults.
1861 */
1862
1863 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1864 {
1865 int ret;
1866
1867 memset(t, 0, sizeof(*t));
1868
1869 ret = device_property_read_u32(dev, "clock-frequency", &t->bus_freq_hz);
1870 if (ret && use_defaults)
1871 t->bus_freq_hz = 100000;
1872
1873 ret = device_property_read_u32(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns);
1874 if (ret && use_defaults) {
1875 if (t->bus_freq_hz <= 100000)
1876 t->scl_rise_ns = 1000;
1877 else if (t->bus_freq_hz <= 400000)
1878 t->scl_rise_ns = 300;
1879 else
1880 t->scl_rise_ns = 120;
1881 }
1882
1883 ret = device_property_read_u32(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns);
1884 if (ret && use_defaults) {
1885 if (t->bus_freq_hz <= 400000)
1886 t->scl_fall_ns = 300;
1887 else
1888 t->scl_fall_ns = 120;
1889 }
1890
1891 device_property_read_u32(dev, "i2c-scl-internal-delay-ns", &t->scl_int_delay_ns);
1892
1893 ret = device_property_read_u32(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns);
1894 if (ret && use_defaults)
1895 t->sda_fall_ns = t->scl_fall_ns;
1896 }
1897 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1898
1899 /* ------------------------------------------------------------------------- */
1900
1901 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1902 {
1903 int res;
1904
1905 mutex_lock(&core_lock);
1906 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1907 mutex_unlock(&core_lock);
1908
1909 return res;
1910 }
1911 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1912
1913 static int __process_new_driver(struct device *dev, void *data)
1914 {
1915 if (dev->type != &i2c_adapter_type)
1916 return 0;
1917 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1918 }
1919
1920 /*
1921 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1922 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1923 */
1924
1925 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1926 {
1927 int res;
1928
1929 /* Can't register until after driver model init */
1930 if (WARN_ON(!is_registered))
1931 return -EAGAIN;
1932
1933 /* add the driver to the list of i2c drivers in the driver core */
1934 driver->driver.owner = owner;
1935 driver->driver.bus = &i2c_bus_type;
1936
1937 /* When registration returns, the driver core
1938 * will have called probe() for all matching-but-unbound devices.
1939 */
1940 res = driver_register(&driver->driver);
1941 if (res)
1942 return res;
1943
1944 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1945
1946 INIT_LIST_HEAD(&driver->clients);
1947 /* Walk the adapters that are already present */
1948 i2c_for_each_dev(driver, __process_new_driver);
1949
1950 return 0;
1951 }
1952 EXPORT_SYMBOL(i2c_register_driver);
1953
1954 static int __process_removed_driver(struct device *dev, void *data)
1955 {
1956 if (dev->type == &i2c_adapter_type)
1957 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1958 return 0;
1959 }
1960
1961 /**
1962 * i2c_del_driver - unregister I2C driver
1963 * @driver: the driver being unregistered
1964 * Context: can sleep
1965 */
1966 void i2c_del_driver(struct i2c_driver *driver)
1967 {
1968 i2c_for_each_dev(driver, __process_removed_driver);
1969
1970 driver_unregister(&driver->driver);
1971 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1972 }
1973 EXPORT_SYMBOL(i2c_del_driver);
1974
1975 /* ------------------------------------------------------------------------- */
1976
1977 /**
1978 * i2c_use_client - increments the reference count of the i2c client structure
1979 * @client: the client being referenced
1980 *
1981 * Each live reference to a client should be refcounted. The driver model does
1982 * that automatically as part of driver binding, so that most drivers don't
1983 * need to do this explicitly: they hold a reference until they're unbound
1984 * from the device.
1985 *
1986 * A pointer to the client with the incremented reference counter is returned.
1987 */
1988 struct i2c_client *i2c_use_client(struct i2c_client *client)
1989 {
1990 if (client && get_device(&client->dev))
1991 return client;
1992 return NULL;
1993 }
1994 EXPORT_SYMBOL(i2c_use_client);
1995
1996 /**
1997 * i2c_release_client - release a use of the i2c client structure
1998 * @client: the client being no longer referenced
1999 *
2000 * Must be called when a user of a client is finished with it.
2001 */
2002 void i2c_release_client(struct i2c_client *client)
2003 {
2004 if (client)
2005 put_device(&client->dev);
2006 }
2007 EXPORT_SYMBOL(i2c_release_client);
2008
2009 struct i2c_cmd_arg {
2010 unsigned cmd;
2011 void *arg;
2012 };
2013
2014 static int i2c_cmd(struct device *dev, void *_arg)
2015 {
2016 struct i2c_client *client = i2c_verify_client(dev);
2017 struct i2c_cmd_arg *arg = _arg;
2018 struct i2c_driver *driver;
2019
2020 if (!client || !client->dev.driver)
2021 return 0;
2022
2023 driver = to_i2c_driver(client->dev.driver);
2024 if (driver->command)
2025 driver->command(client, arg->cmd, arg->arg);
2026 return 0;
2027 }
2028
2029 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
2030 {
2031 struct i2c_cmd_arg cmd_arg;
2032
2033 cmd_arg.cmd = cmd;
2034 cmd_arg.arg = arg;
2035 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
2036 }
2037 EXPORT_SYMBOL(i2c_clients_command);
2038
2039 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2040 static int of_i2c_notify(struct notifier_block *nb, unsigned long action,
2041 void *arg)
2042 {
2043 struct of_reconfig_data *rd = arg;
2044 struct i2c_adapter *adap;
2045 struct i2c_client *client;
2046
2047 switch (of_reconfig_get_state_change(action, rd)) {
2048 case OF_RECONFIG_CHANGE_ADD:
2049 adap = of_find_i2c_adapter_by_node(rd->dn->parent);
2050 if (adap == NULL)
2051 return NOTIFY_OK; /* not for us */
2052
2053 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2054 put_device(&adap->dev);
2055 return NOTIFY_OK;
2056 }
2057
2058 client = of_i2c_register_device(adap, rd->dn);
2059 put_device(&adap->dev);
2060
2061 if (IS_ERR(client)) {
2062 pr_err("%s: failed to create for '%s'\n",
2063 __func__, rd->dn->full_name);
2064 return notifier_from_errno(PTR_ERR(client));
2065 }
2066 break;
2067 case OF_RECONFIG_CHANGE_REMOVE:
2068 /* already depopulated? */
2069 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2070 return NOTIFY_OK;
2071
2072 /* find our device by node */
2073 client = of_find_i2c_device_by_node(rd->dn);
2074 if (client == NULL)
2075 return NOTIFY_OK; /* no? not meant for us */
2076
2077 /* unregister takes one ref away */
2078 i2c_unregister_device(client);
2079
2080 /* and put the reference of the find */
2081 put_device(&client->dev);
2082 break;
2083 }
2084
2085 return NOTIFY_OK;
2086 }
2087 static struct notifier_block i2c_of_notifier = {
2088 .notifier_call = of_i2c_notify,
2089 };
2090 #else
2091 extern struct notifier_block i2c_of_notifier;
2092 #endif /* CONFIG_OF_DYNAMIC */
2093
2094 static int __init i2c_init(void)
2095 {
2096 int retval;
2097
2098 retval = of_alias_get_highest_id("i2c");
2099
2100 down_write(&__i2c_board_lock);
2101 if (retval >= __i2c_first_dynamic_bus_num)
2102 __i2c_first_dynamic_bus_num = retval + 1;
2103 up_write(&__i2c_board_lock);
2104
2105 retval = bus_register(&i2c_bus_type);
2106 if (retval)
2107 return retval;
2108
2109 is_registered = true;
2110
2111 #ifdef CONFIG_I2C_COMPAT
2112 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2113 if (!i2c_adapter_compat_class) {
2114 retval = -ENOMEM;
2115 goto bus_err;
2116 }
2117 #endif
2118 retval = i2c_add_driver(&dummy_driver);
2119 if (retval)
2120 goto class_err;
2121
2122 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2123 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2124
2125 return 0;
2126
2127 class_err:
2128 #ifdef CONFIG_I2C_COMPAT
2129 class_compat_unregister(i2c_adapter_compat_class);
2130 bus_err:
2131 #endif
2132 is_registered = false;
2133 bus_unregister(&i2c_bus_type);
2134 return retval;
2135 }
2136
2137 static void __exit i2c_exit(void)
2138 {
2139 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2140 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2141 i2c_del_driver(&dummy_driver);
2142 #ifdef CONFIG_I2C_COMPAT
2143 class_compat_unregister(i2c_adapter_compat_class);
2144 #endif
2145 bus_unregister(&i2c_bus_type);
2146 tracepoint_synchronize_unregister();
2147 }
2148
2149 /* We must initialize early, because some subsystems register i2c drivers
2150 * in subsys_initcall() code, but are linked (and initialized) before i2c.
2151 */
2152 postcore_initcall(i2c_init);
2153 module_exit(i2c_exit);
2154
2155 /* ----------------------------------------------------
2156 * the functional interface to the i2c busses.
2157 * ----------------------------------------------------
2158 */
2159
2160 /* Check if val is exceeding the quirk IFF quirk is non 0 */
2161 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
2162
2163 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2164 {
2165 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2166 err_msg, msg->addr, msg->len,
2167 msg->flags & I2C_M_RD ? "read" : "write");
2168 return -EOPNOTSUPP;
2169 }
2170
2171 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2172 {
2173 const struct i2c_adapter_quirks *q = adap->quirks;
2174 int max_num = q->max_num_msgs, i;
2175 bool do_len_check = true;
2176
2177 if (q->flags & I2C_AQ_COMB) {
2178 max_num = 2;
2179
2180 /* special checks for combined messages */
2181 if (num == 2) {
2182 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2183 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2184
2185 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2186 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2187
2188 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2189 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2190
2191 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2192 return i2c_quirk_error(adap, &msgs[0], "msg too long");
2193
2194 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2195 return i2c_quirk_error(adap, &msgs[1], "msg too long");
2196
2197 do_len_check = false;
2198 }
2199 }
2200
2201 if (i2c_quirk_exceeded(num, max_num))
2202 return i2c_quirk_error(adap, &msgs[0], "too many messages");
2203
2204 for (i = 0; i < num; i++) {
2205 u16 len = msgs[i].len;
2206
2207 if (msgs[i].flags & I2C_M_RD) {
2208 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2209 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2210 } else {
2211 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2212 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2213 }
2214 }
2215
2216 return 0;
2217 }
2218
2219 /**
2220 * __i2c_transfer - unlocked flavor of i2c_transfer
2221 * @adap: Handle to I2C bus
2222 * @msgs: One or more messages to execute before STOP is issued to
2223 * terminate the operation; each message begins with a START.
2224 * @num: Number of messages to be executed.
2225 *
2226 * Returns negative errno, else the number of messages executed.
2227 *
2228 * Adapter lock must be held when calling this function. No debug logging
2229 * takes place. adap->algo->master_xfer existence isn't checked.
2230 */
2231 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2232 {
2233 unsigned long orig_jiffies;
2234 int ret, try;
2235
2236 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2237 return -EOPNOTSUPP;
2238
2239 /* i2c_trace_msg gets enabled when tracepoint i2c_transfer gets
2240 * enabled. This is an efficient way of keeping the for-loop from
2241 * being executed when not needed.
2242 */
2243 if (static_key_false(&i2c_trace_msg)) {
2244 int i;
2245 for (i = 0; i < num; i++)
2246 if (msgs[i].flags & I2C_M_RD)
2247 trace_i2c_read(adap, &msgs[i], i);
2248 else
2249 trace_i2c_write(adap, &msgs[i], i);
2250 }
2251
2252 /* Retry automatically on arbitration loss */
2253 orig_jiffies = jiffies;
2254 for (ret = 0, try = 0; try <= adap->retries; try++) {
2255 ret = adap->algo->master_xfer(adap, msgs, num);
2256 if (ret != -EAGAIN)
2257 break;
2258 if (time_after(jiffies, orig_jiffies + adap->timeout))
2259 break;
2260 }
2261
2262 if (static_key_false(&i2c_trace_msg)) {
2263 int i;
2264 for (i = 0; i < ret; i++)
2265 if (msgs[i].flags & I2C_M_RD)
2266 trace_i2c_reply(adap, &msgs[i], i);
2267 trace_i2c_result(adap, i, ret);
2268 }
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL(__i2c_transfer);
2273
2274 /**
2275 * i2c_transfer - execute a single or combined I2C message
2276 * @adap: Handle to I2C bus
2277 * @msgs: One or more messages to execute before STOP is issued to
2278 * terminate the operation; each message begins with a START.
2279 * @num: Number of messages to be executed.
2280 *
2281 * Returns negative errno, else the number of messages executed.
2282 *
2283 * Note that there is no requirement that each message be sent to
2284 * the same slave address, although that is the most common model.
2285 */
2286 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2287 {
2288 int ret;
2289
2290 /* REVISIT the fault reporting model here is weak:
2291 *
2292 * - When we get an error after receiving N bytes from a slave,
2293 * there is no way to report "N".
2294 *
2295 * - When we get a NAK after transmitting N bytes to a slave,
2296 * there is no way to report "N" ... or to let the master
2297 * continue executing the rest of this combined message, if
2298 * that's the appropriate response.
2299 *
2300 * - When for example "num" is two and we successfully complete
2301 * the first message but get an error part way through the
2302 * second, it's unclear whether that should be reported as
2303 * one (discarding status on the second message) or errno
2304 * (discarding status on the first one).
2305 */
2306
2307 if (adap->algo->master_xfer) {
2308 #ifdef DEBUG
2309 for (ret = 0; ret < num; ret++) {
2310 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
2311 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
2312 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
2313 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
2314 }
2315 #endif
2316
2317 if (in_atomic() || irqs_disabled()) {
2318 ret = i2c_trylock_adapter(adap);
2319 if (!ret)
2320 /* I2C activity is ongoing. */
2321 return -EAGAIN;
2322 } else {
2323 i2c_lock_adapter(adap);
2324 }
2325
2326 ret = __i2c_transfer(adap, msgs, num);
2327 i2c_unlock_adapter(adap);
2328
2329 return ret;
2330 } else {
2331 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2332 return -EOPNOTSUPP;
2333 }
2334 }
2335 EXPORT_SYMBOL(i2c_transfer);
2336
2337 /**
2338 * i2c_master_send - issue a single I2C message in master transmit mode
2339 * @client: Handle to slave device
2340 * @buf: Data that will be written to the slave
2341 * @count: How many bytes to write, must be less than 64k since msg.len is u16
2342 *
2343 * Returns negative errno, or else the number of bytes written.
2344 */
2345 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
2346 {
2347 int ret;
2348 struct i2c_adapter *adap = client->adapter;
2349 struct i2c_msg msg;
2350
2351 msg.addr = client->addr;
2352 msg.flags = client->flags & I2C_M_TEN;
2353 msg.len = count;
2354 msg.buf = (char *)buf;
2355
2356 ret = i2c_transfer(adap, &msg, 1);
2357
2358 /*
2359 * If everything went ok (i.e. 1 msg transmitted), return #bytes
2360 * transmitted, else error code.
2361 */
2362 return (ret == 1) ? count : ret;
2363 }
2364 EXPORT_SYMBOL(i2c_master_send);
2365
2366 /**
2367 * i2c_master_recv - issue a single I2C message in master receive mode
2368 * @client: Handle to slave device
2369 * @buf: Where to store data read from slave
2370 * @count: How many bytes to read, must be less than 64k since msg.len is u16
2371 *
2372 * Returns negative errno, or else the number of bytes read.
2373 */
2374 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
2375 {
2376 struct i2c_adapter *adap = client->adapter;
2377 struct i2c_msg msg;
2378 int ret;
2379
2380 msg.addr = client->addr;
2381 msg.flags = client->flags & I2C_M_TEN;
2382 msg.flags |= I2C_M_RD;
2383 msg.len = count;
2384 msg.buf = buf;
2385
2386 ret = i2c_transfer(adap, &msg, 1);
2387
2388 /*
2389 * If everything went ok (i.e. 1 msg received), return #bytes received,
2390 * else error code.
2391 */
2392 return (ret == 1) ? count : ret;
2393 }
2394 EXPORT_SYMBOL(i2c_master_recv);
2395
2396 /* ----------------------------------------------------
2397 * the i2c address scanning function
2398 * Will not work for 10-bit addresses!
2399 * ----------------------------------------------------
2400 */
2401
2402 /*
2403 * Legacy default probe function, mostly relevant for SMBus. The default
2404 * probe method is a quick write, but it is known to corrupt the 24RF08
2405 * EEPROMs due to a state machine bug, and could also irreversibly
2406 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2407 * we use a short byte read instead. Also, some bus drivers don't implement
2408 * quick write, so we fallback to a byte read in that case too.
2409 * On x86, there is another special case for FSC hardware monitoring chips,
2410 * which want regular byte reads (address 0x73.) Fortunately, these are the
2411 * only known chips using this I2C address on PC hardware.
2412 * Returns 1 if probe succeeded, 0 if not.
2413 */
2414 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2415 {
2416 int err;
2417 union i2c_smbus_data dummy;
2418
2419 #ifdef CONFIG_X86
2420 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2421 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2422 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2423 I2C_SMBUS_BYTE_DATA, &dummy);
2424 else
2425 #endif
2426 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2427 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2428 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2429 I2C_SMBUS_QUICK, NULL);
2430 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2431 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2432 I2C_SMBUS_BYTE, &dummy);
2433 else {
2434 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2435 addr);
2436 err = -EOPNOTSUPP;
2437 }
2438
2439 return err >= 0;
2440 }
2441
2442 static int i2c_detect_address(struct i2c_client *temp_client,
2443 struct i2c_driver *driver)
2444 {
2445 struct i2c_board_info info;
2446 struct i2c_adapter *adapter = temp_client->adapter;
2447 int addr = temp_client->addr;
2448 int err;
2449
2450 /* Make sure the address is valid */
2451 err = i2c_check_7bit_addr_validity_strict(addr);
2452 if (err) {
2453 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2454 addr);
2455 return err;
2456 }
2457
2458 /* Skip if already in use (7 bit, no need to encode flags) */
2459 if (i2c_check_addr_busy(adapter, addr))
2460 return 0;
2461
2462 /* Make sure there is something at this address */
2463 if (!i2c_default_probe(adapter, addr))
2464 return 0;
2465
2466 /* Finally call the custom detection function */
2467 memset(&info, 0, sizeof(struct i2c_board_info));
2468 info.addr = addr;
2469 err = driver->detect(temp_client, &info);
2470 if (err) {
2471 /* -ENODEV is returned if the detection fails. We catch it
2472 here as this isn't an error. */
2473 return err == -ENODEV ? 0 : err;
2474 }
2475
2476 /* Consistency check */
2477 if (info.type[0] == '\0') {
2478 dev_err(&adapter->dev, "%s detection function provided "
2479 "no name for 0x%x\n", driver->driver.name,
2480 addr);
2481 } else {
2482 struct i2c_client *client;
2483
2484 /* Detection succeeded, instantiate the device */
2485 if (adapter->class & I2C_CLASS_DEPRECATED)
2486 dev_warn(&adapter->dev,
2487 "This adapter will soon drop class based instantiation of devices. "
2488 "Please make sure client 0x%02x gets instantiated by other means. "
2489 "Check 'Documentation/i2c/instantiating-devices' for details.\n",
2490 info.addr);
2491
2492 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2493 info.type, info.addr);
2494 client = i2c_new_device(adapter, &info);
2495 if (client)
2496 list_add_tail(&client->detected, &driver->clients);
2497 else
2498 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2499 info.type, info.addr);
2500 }
2501 return 0;
2502 }
2503
2504 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2505 {
2506 const unsigned short *address_list;
2507 struct i2c_client *temp_client;
2508 int i, err = 0;
2509 int adap_id = i2c_adapter_id(adapter);
2510
2511 address_list = driver->address_list;
2512 if (!driver->detect || !address_list)
2513 return 0;
2514
2515 /* Warn that the adapter lost class based instantiation */
2516 if (adapter->class == I2C_CLASS_DEPRECATED) {
2517 dev_dbg(&adapter->dev,
2518 "This adapter dropped support for I2C classes and "
2519 "won't auto-detect %s devices anymore. If you need it, check "
2520 "'Documentation/i2c/instantiating-devices' for alternatives.\n",
2521 driver->driver.name);
2522 return 0;
2523 }
2524
2525 /* Stop here if the classes do not match */
2526 if (!(adapter->class & driver->class))
2527 return 0;
2528
2529 /* Set up a temporary client to help detect callback */
2530 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2531 if (!temp_client)
2532 return -ENOMEM;
2533 temp_client->adapter = adapter;
2534
2535 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2536 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
2537 "addr 0x%02x\n", adap_id, address_list[i]);
2538 temp_client->addr = address_list[i];
2539 err = i2c_detect_address(temp_client, driver);
2540 if (unlikely(err))
2541 break;
2542 }
2543
2544 kfree(temp_client);
2545 return err;
2546 }
2547
2548 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2549 {
2550 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2551 I2C_SMBUS_QUICK, NULL) >= 0;
2552 }
2553 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2554
2555 struct i2c_client *
2556 i2c_new_probed_device(struct i2c_adapter *adap,
2557 struct i2c_board_info *info,
2558 unsigned short const *addr_list,
2559 int (*probe)(struct i2c_adapter *, unsigned short addr))
2560 {
2561 int i;
2562
2563 if (!probe)
2564 probe = i2c_default_probe;
2565
2566 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2567 /* Check address validity */
2568 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2569 dev_warn(&adap->dev, "Invalid 7-bit address "
2570 "0x%02x\n", addr_list[i]);
2571 continue;
2572 }
2573
2574 /* Check address availability (7 bit, no need to encode flags) */
2575 if (i2c_check_addr_busy(adap, addr_list[i])) {
2576 dev_dbg(&adap->dev, "Address 0x%02x already in "
2577 "use, not probing\n", addr_list[i]);
2578 continue;
2579 }
2580
2581 /* Test address responsiveness */
2582 if (probe(adap, addr_list[i]))
2583 break;
2584 }
2585
2586 if (addr_list[i] == I2C_CLIENT_END) {
2587 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2588 return NULL;
2589 }
2590
2591 info->addr = addr_list[i];
2592 return i2c_new_device(adap, info);
2593 }
2594 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2595
2596 struct i2c_adapter *i2c_get_adapter(int nr)
2597 {
2598 struct i2c_adapter *adapter;
2599
2600 mutex_lock(&core_lock);
2601 adapter = idr_find(&i2c_adapter_idr, nr);
2602 if (!adapter)
2603 goto exit;
2604
2605 if (try_module_get(adapter->owner))
2606 get_device(&adapter->dev);
2607 else
2608 adapter = NULL;
2609
2610 exit:
2611 mutex_unlock(&core_lock);
2612 return adapter;
2613 }
2614 EXPORT_SYMBOL(i2c_get_adapter);
2615
2616 void i2c_put_adapter(struct i2c_adapter *adap)
2617 {
2618 if (!adap)
2619 return;
2620
2621 put_device(&adap->dev);
2622 module_put(adap->owner);
2623 }
2624 EXPORT_SYMBOL(i2c_put_adapter);
2625
2626 /* The SMBus parts */
2627
2628 #define POLY (0x1070U << 3)
2629 static u8 crc8(u16 data)
2630 {
2631 int i;
2632
2633 for (i = 0; i < 8; i++) {
2634 if (data & 0x8000)
2635 data = data ^ POLY;
2636 data = data << 1;
2637 }
2638 return (u8)(data >> 8);
2639 }
2640
2641 /* Incremental CRC8 over count bytes in the array pointed to by p */
2642 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2643 {
2644 int i;
2645
2646 for (i = 0; i < count; i++)
2647 crc = crc8((crc ^ p[i]) << 8);
2648 return crc;
2649 }
2650
2651 /* Assume a 7-bit address, which is reasonable for SMBus */
2652 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2653 {
2654 /* The address will be sent first */
2655 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
2656 pec = i2c_smbus_pec(pec, &addr, 1);
2657
2658 /* The data buffer follows */
2659 return i2c_smbus_pec(pec, msg->buf, msg->len);
2660 }
2661
2662 /* Used for write only transactions */
2663 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2664 {
2665 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2666 msg->len++;
2667 }
2668
2669 /* Return <0 on CRC error
2670 If there was a write before this read (most cases) we need to take the
2671 partial CRC from the write part into account.
2672 Note that this function does modify the message (we need to decrease the
2673 message length to hide the CRC byte from the caller). */
2674 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2675 {
2676 u8 rpec = msg->buf[--msg->len];
2677 cpec = i2c_smbus_msg_pec(cpec, msg);
2678
2679 if (rpec != cpec) {
2680 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
2681 rpec, cpec);
2682 return -EBADMSG;
2683 }
2684 return 0;
2685 }
2686
2687 /**
2688 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2689 * @client: Handle to slave device
2690 *
2691 * This executes the SMBus "receive byte" protocol, returning negative errno
2692 * else the byte received from the device.
2693 */
2694 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2695 {
2696 union i2c_smbus_data data;
2697 int status;
2698
2699 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2700 I2C_SMBUS_READ, 0,
2701 I2C_SMBUS_BYTE, &data);
2702 return (status < 0) ? status : data.byte;
2703 }
2704 EXPORT_SYMBOL(i2c_smbus_read_byte);
2705
2706 /**
2707 * i2c_smbus_write_byte - SMBus "send byte" protocol
2708 * @client: Handle to slave device
2709 * @value: Byte to be sent
2710 *
2711 * This executes the SMBus "send byte" protocol, returning negative errno
2712 * else zero on success.
2713 */
2714 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2715 {
2716 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2717 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2718 }
2719 EXPORT_SYMBOL(i2c_smbus_write_byte);
2720
2721 /**
2722 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2723 * @client: Handle to slave device
2724 * @command: Byte interpreted by slave
2725 *
2726 * This executes the SMBus "read byte" protocol, returning negative errno
2727 * else a data byte received from the device.
2728 */
2729 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2730 {
2731 union i2c_smbus_data data;
2732 int status;
2733
2734 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2735 I2C_SMBUS_READ, command,
2736 I2C_SMBUS_BYTE_DATA, &data);
2737 return (status < 0) ? status : data.byte;
2738 }
2739 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2740
2741 /**
2742 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2743 * @client: Handle to slave device
2744 * @command: Byte interpreted by slave
2745 * @value: Byte being written
2746 *
2747 * This executes the SMBus "write byte" protocol, returning negative errno
2748 * else zero on success.
2749 */
2750 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2751 u8 value)
2752 {
2753 union i2c_smbus_data data;
2754 data.byte = value;
2755 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2756 I2C_SMBUS_WRITE, command,
2757 I2C_SMBUS_BYTE_DATA, &data);
2758 }
2759 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2760
2761 /**
2762 * i2c_smbus_read_word_data - SMBus "read word" protocol
2763 * @client: Handle to slave device
2764 * @command: Byte interpreted by slave
2765 *
2766 * This executes the SMBus "read word" protocol, returning negative errno
2767 * else a 16-bit unsigned "word" received from the device.
2768 */
2769 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2770 {
2771 union i2c_smbus_data data;
2772 int status;
2773
2774 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2775 I2C_SMBUS_READ, command,
2776 I2C_SMBUS_WORD_DATA, &data);
2777 return (status < 0) ? status : data.word;
2778 }
2779 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2780
2781 /**
2782 * i2c_smbus_write_word_data - SMBus "write word" protocol
2783 * @client: Handle to slave device
2784 * @command: Byte interpreted by slave
2785 * @value: 16-bit "word" being written
2786 *
2787 * This executes the SMBus "write word" protocol, returning negative errno
2788 * else zero on success.
2789 */
2790 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2791 u16 value)
2792 {
2793 union i2c_smbus_data data;
2794 data.word = value;
2795 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2796 I2C_SMBUS_WRITE, command,
2797 I2C_SMBUS_WORD_DATA, &data);
2798 }
2799 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2800
2801 /**
2802 * i2c_smbus_read_block_data - SMBus "block read" protocol
2803 * @client: Handle to slave device
2804 * @command: Byte interpreted by slave
2805 * @values: Byte array into which data will be read; big enough to hold
2806 * the data returned by the slave. SMBus allows at most 32 bytes.
2807 *
2808 * This executes the SMBus "block read" protocol, returning negative errno
2809 * else the number of data bytes in the slave's response.
2810 *
2811 * Note that using this function requires that the client's adapter support
2812 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2813 * support this; its emulation through I2C messaging relies on a specific
2814 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2815 */
2816 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2817 u8 *values)
2818 {
2819 union i2c_smbus_data data;
2820 int status;
2821
2822 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2823 I2C_SMBUS_READ, command,
2824 I2C_SMBUS_BLOCK_DATA, &data);
2825 if (status)
2826 return status;
2827
2828 memcpy(values, &data.block[1], data.block[0]);
2829 return data.block[0];
2830 }
2831 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2832
2833 /**
2834 * i2c_smbus_write_block_data - SMBus "block write" protocol
2835 * @client: Handle to slave device
2836 * @command: Byte interpreted by slave
2837 * @length: Size of data block; SMBus allows at most 32 bytes
2838 * @values: Byte array which will be written.
2839 *
2840 * This executes the SMBus "block write" protocol, returning negative errno
2841 * else zero on success.
2842 */
2843 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2844 u8 length, const u8 *values)
2845 {
2846 union i2c_smbus_data data;
2847
2848 if (length > I2C_SMBUS_BLOCK_MAX)
2849 length = I2C_SMBUS_BLOCK_MAX;
2850 data.block[0] = length;
2851 memcpy(&data.block[1], values, length);
2852 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2853 I2C_SMBUS_WRITE, command,
2854 I2C_SMBUS_BLOCK_DATA, &data);
2855 }
2856 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2857
2858 /* Returns the number of read bytes */
2859 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2860 u8 length, u8 *values)
2861 {
2862 union i2c_smbus_data data;
2863 int status;
2864
2865 if (length > I2C_SMBUS_BLOCK_MAX)
2866 length = I2C_SMBUS_BLOCK_MAX;
2867 data.block[0] = length;
2868 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2869 I2C_SMBUS_READ, command,
2870 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2871 if (status < 0)
2872 return status;
2873
2874 memcpy(values, &data.block[1], data.block[0]);
2875 return data.block[0];
2876 }
2877 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2878
2879 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2880 u8 length, const u8 *values)
2881 {
2882 union i2c_smbus_data data;
2883
2884 if (length > I2C_SMBUS_BLOCK_MAX)
2885 length = I2C_SMBUS_BLOCK_MAX;
2886 data.block[0] = length;
2887 memcpy(data.block + 1, values, length);
2888 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2889 I2C_SMBUS_WRITE, command,
2890 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2891 }
2892 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2893
2894 /* Simulate a SMBus command using the i2c protocol
2895 No checking of parameters is done! */
2896 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2897 unsigned short flags,
2898 char read_write, u8 command, int size,
2899 union i2c_smbus_data *data)
2900 {
2901 /* So we need to generate a series of msgs. In the case of writing, we
2902 need to use only one message; when reading, we need two. We initialize
2903 most things with sane defaults, to keep the code below somewhat
2904 simpler. */
2905 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2906 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2907 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2908 int i;
2909 u8 partial_pec = 0;
2910 int status;
2911 struct i2c_msg msg[2] = {
2912 {
2913 .addr = addr,
2914 .flags = flags,
2915 .len = 1,
2916 .buf = msgbuf0,
2917 }, {
2918 .addr = addr,
2919 .flags = flags | I2C_M_RD,
2920 .len = 0,
2921 .buf = msgbuf1,
2922 },
2923 };
2924
2925 msgbuf0[0] = command;
2926 switch (size) {
2927 case I2C_SMBUS_QUICK:
2928 msg[0].len = 0;
2929 /* Special case: The read/write field is used as data */
2930 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2931 I2C_M_RD : 0);
2932 num = 1;
2933 break;
2934 case I2C_SMBUS_BYTE:
2935 if (read_write == I2C_SMBUS_READ) {
2936 /* Special case: only a read! */
2937 msg[0].flags = I2C_M_RD | flags;
2938 num = 1;
2939 }
2940 break;
2941 case I2C_SMBUS_BYTE_DATA:
2942 if (read_write == I2C_SMBUS_READ)
2943 msg[1].len = 1;
2944 else {
2945 msg[0].len = 2;
2946 msgbuf0[1] = data->byte;
2947 }
2948 break;
2949 case I2C_SMBUS_WORD_DATA:
2950 if (read_write == I2C_SMBUS_READ)
2951 msg[1].len = 2;
2952 else {
2953 msg[0].len = 3;
2954 msgbuf0[1] = data->word & 0xff;
2955 msgbuf0[2] = data->word >> 8;
2956 }
2957 break;
2958 case I2C_SMBUS_PROC_CALL:
2959 num = 2; /* Special case */
2960 read_write = I2C_SMBUS_READ;
2961 msg[0].len = 3;
2962 msg[1].len = 2;
2963 msgbuf0[1] = data->word & 0xff;
2964 msgbuf0[2] = data->word >> 8;
2965 break;
2966 case I2C_SMBUS_BLOCK_DATA:
2967 if (read_write == I2C_SMBUS_READ) {
2968 msg[1].flags |= I2C_M_RECV_LEN;
2969 msg[1].len = 1; /* block length will be added by
2970 the underlying bus driver */
2971 } else {
2972 msg[0].len = data->block[0] + 2;
2973 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2974 dev_err(&adapter->dev,
2975 "Invalid block write size %d\n",
2976 data->block[0]);
2977 return -EINVAL;
2978 }
2979 for (i = 1; i < msg[0].len; i++)
2980 msgbuf0[i] = data->block[i-1];
2981 }
2982 break;
2983 case I2C_SMBUS_BLOCK_PROC_CALL:
2984 num = 2; /* Another special case */
2985 read_write = I2C_SMBUS_READ;
2986 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2987 dev_err(&adapter->dev,
2988 "Invalid block write size %d\n",
2989 data->block[0]);
2990 return -EINVAL;
2991 }
2992 msg[0].len = data->block[0] + 2;
2993 for (i = 1; i < msg[0].len; i++)
2994 msgbuf0[i] = data->block[i-1];
2995 msg[1].flags |= I2C_M_RECV_LEN;
2996 msg[1].len = 1; /* block length will be added by
2997 the underlying bus driver */
2998 break;
2999 case I2C_SMBUS_I2C_BLOCK_DATA:
3000 if (read_write == I2C_SMBUS_READ) {
3001 msg[1].len = data->block[0];
3002 } else {
3003 msg[0].len = data->block[0] + 1;
3004 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
3005 dev_err(&adapter->dev,
3006 "Invalid block write size %d\n",
3007 data->block[0]);
3008 return -EINVAL;
3009 }
3010 for (i = 1; i <= data->block[0]; i++)
3011 msgbuf0[i] = data->block[i];
3012 }
3013 break;
3014 default:
3015 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
3016 return -EOPNOTSUPP;
3017 }
3018
3019 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
3020 && size != I2C_SMBUS_I2C_BLOCK_DATA);
3021 if (i) {
3022 /* Compute PEC if first message is a write */
3023 if (!(msg[0].flags & I2C_M_RD)) {
3024 if (num == 1) /* Write only */
3025 i2c_smbus_add_pec(&msg[0]);
3026 else /* Write followed by read */
3027 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
3028 }
3029 /* Ask for PEC if last message is a read */
3030 if (msg[num-1].flags & I2C_M_RD)
3031 msg[num-1].len++;
3032 }
3033
3034 status = i2c_transfer(adapter, msg, num);
3035 if (status < 0)
3036 return status;
3037
3038 /* Check PEC if last message is a read */
3039 if (i && (msg[num-1].flags & I2C_M_RD)) {
3040 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
3041 if (status < 0)
3042 return status;
3043 }
3044
3045 if (read_write == I2C_SMBUS_READ)
3046 switch (size) {
3047 case I2C_SMBUS_BYTE:
3048 data->byte = msgbuf0[0];
3049 break;
3050 case I2C_SMBUS_BYTE_DATA:
3051 data->byte = msgbuf1[0];
3052 break;
3053 case I2C_SMBUS_WORD_DATA:
3054 case I2C_SMBUS_PROC_CALL:
3055 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
3056 break;
3057 case I2C_SMBUS_I2C_BLOCK_DATA:
3058 for (i = 0; i < data->block[0]; i++)
3059 data->block[i+1] = msgbuf1[i];
3060 break;
3061 case I2C_SMBUS_BLOCK_DATA:
3062 case I2C_SMBUS_BLOCK_PROC_CALL:
3063 for (i = 0; i < msgbuf1[0] + 1; i++)
3064 data->block[i] = msgbuf1[i];
3065 break;
3066 }
3067 return 0;
3068 }
3069
3070 /**
3071 * i2c_smbus_xfer - execute SMBus protocol operations
3072 * @adapter: Handle to I2C bus
3073 * @addr: Address of SMBus slave on that bus
3074 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
3075 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
3076 * @command: Byte interpreted by slave, for protocols which use such bytes
3077 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
3078 * @data: Data to be read or written
3079 *
3080 * This executes an SMBus protocol operation, and returns a negative
3081 * errno code else zero on success.
3082 */
3083 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
3084 char read_write, u8 command, int protocol,
3085 union i2c_smbus_data *data)
3086 {
3087 unsigned long orig_jiffies;
3088 int try;
3089 s32 res;
3090
3091 /* If enabled, the following two tracepoints are conditional on
3092 * read_write and protocol.
3093 */
3094 trace_smbus_write(adapter, addr, flags, read_write,
3095 command, protocol, data);
3096 trace_smbus_read(adapter, addr, flags, read_write,
3097 command, protocol);
3098
3099 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
3100
3101 if (adapter->algo->smbus_xfer) {
3102 i2c_lock_adapter(adapter);
3103
3104 /* Retry automatically on arbitration loss */
3105 orig_jiffies = jiffies;
3106 for (res = 0, try = 0; try <= adapter->retries; try++) {
3107 res = adapter->algo->smbus_xfer(adapter, addr, flags,
3108 read_write, command,
3109 protocol, data);
3110 if (res != -EAGAIN)
3111 break;
3112 if (time_after(jiffies,
3113 orig_jiffies + adapter->timeout))
3114 break;
3115 }
3116 i2c_unlock_adapter(adapter);
3117
3118 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
3119 goto trace;
3120 /*
3121 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
3122 * implement native support for the SMBus operation.
3123 */
3124 }
3125
3126 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
3127 command, protocol, data);
3128
3129 trace:
3130 /* If enabled, the reply tracepoint is conditional on read_write. */
3131 trace_smbus_reply(adapter, addr, flags, read_write,
3132 command, protocol, data);
3133 trace_smbus_result(adapter, addr, flags, read_write,
3134 command, protocol, res);
3135
3136 return res;
3137 }
3138 EXPORT_SYMBOL(i2c_smbus_xfer);
3139
3140 /**
3141 * i2c_smbus_read_i2c_block_data_or_emulated - read block or emulate
3142 * @client: Handle to slave device
3143 * @command: Byte interpreted by slave
3144 * @length: Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes
3145 * @values: Byte array into which data will be read; big enough to hold
3146 * the data returned by the slave. SMBus allows at most
3147 * I2C_SMBUS_BLOCK_MAX bytes.
3148 *
3149 * This executes the SMBus "block read" protocol if supported by the adapter.
3150 * If block read is not supported, it emulates it using either word or byte
3151 * read protocols depending on availability.
3152 *
3153 * The addresses of the I2C slave device that are accessed with this function
3154 * must be mapped to a linear region, so that a block read will have the same
3155 * effect as a byte read. Before using this function you must double-check
3156 * if the I2C slave does support exchanging a block transfer with a byte
3157 * transfer.
3158 */
3159 s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client *client,
3160 u8 command, u8 length, u8 *values)
3161 {
3162 u8 i = 0;
3163 int status;
3164
3165 if (length > I2C_SMBUS_BLOCK_MAX)
3166 length = I2C_SMBUS_BLOCK_MAX;
3167
3168 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
3169 return i2c_smbus_read_i2c_block_data(client, command, length, values);
3170
3171 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA))
3172 return -EOPNOTSUPP;
3173
3174 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA)) {
3175 while ((i + 2) <= length) {
3176 status = i2c_smbus_read_word_data(client, command + i);
3177 if (status < 0)
3178 return status;
3179 values[i] = status & 0xff;
3180 values[i + 1] = status >> 8;
3181 i += 2;
3182 }
3183 }
3184
3185 while (i < length) {
3186 status = i2c_smbus_read_byte_data(client, command + i);
3187 if (status < 0)
3188 return status;
3189 values[i] = status;
3190 i++;
3191 }
3192
3193 return i;
3194 }
3195 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data_or_emulated);
3196
3197 #if IS_ENABLED(CONFIG_I2C_SLAVE)
3198 int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
3199 {
3200 int ret;
3201
3202 if (!client || !slave_cb) {
3203 WARN(1, "insufficent data\n");
3204 return -EINVAL;
3205 }
3206
3207 if (!(client->flags & I2C_CLIENT_SLAVE))
3208 dev_warn(&client->dev, "%s: client slave flag not set. You might see address collisions\n",
3209 __func__);
3210
3211 if (!(client->flags & I2C_CLIENT_TEN)) {
3212 /* Enforce stricter address checking */
3213 ret = i2c_check_7bit_addr_validity_strict(client->addr);
3214 if (ret) {
3215 dev_err(&client->dev, "%s: invalid address\n", __func__);
3216 return ret;
3217 }
3218 }
3219
3220 if (!client->adapter->algo->reg_slave) {
3221 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3222 return -EOPNOTSUPP;
3223 }
3224
3225 client->slave_cb = slave_cb;
3226
3227 i2c_lock_adapter(client->adapter);
3228 ret = client->adapter->algo->reg_slave(client);
3229 i2c_unlock_adapter(client->adapter);
3230
3231 if (ret) {
3232 client->slave_cb = NULL;
3233 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3234 }
3235
3236 return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(i2c_slave_register);
3239
3240 int i2c_slave_unregister(struct i2c_client *client)
3241 {
3242 int ret;
3243
3244 if (!client->adapter->algo->unreg_slave) {
3245 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3246 return -EOPNOTSUPP;
3247 }
3248
3249 i2c_lock_adapter(client->adapter);
3250 ret = client->adapter->algo->unreg_slave(client);
3251 i2c_unlock_adapter(client->adapter);
3252
3253 if (ret == 0)
3254 client->slave_cb = NULL;
3255 else
3256 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3257
3258 return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(i2c_slave_unregister);
3261 #endif
3262
3263 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
3264 MODULE_DESCRIPTION("I2C-Bus main module");
3265 MODULE_LICENSE("GPL");