]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/i2c/i2c-core.c
Fix common misspellings
[mirror_ubuntu-bionic-kernel.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
18 /* ------------------------------------------------------------------------- */
19
20 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
21 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
22 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
23 Jean Delvare <khali@linux-fr.org>
24 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
25 Michael Lawnick <michael.lawnick.ext@nsn.com> */
26
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/i2c.h>
32 #include <linux/init.h>
33 #include <linux/idr.h>
34 #include <linux/mutex.h>
35 #include <linux/of_device.h>
36 #include <linux/completion.h>
37 #include <linux/hardirq.h>
38 #include <linux/irqflags.h>
39 #include <linux/rwsem.h>
40 #include <linux/pm_runtime.h>
41 #include <asm/uaccess.h>
42
43 #include "i2c-core.h"
44
45
46 /* core_lock protects i2c_adapter_idr, and guarantees
47 that device detection, deletion of detected devices, and attach_adapter
48 and detach_adapter calls are serialized */
49 static DEFINE_MUTEX(core_lock);
50 static DEFINE_IDR(i2c_adapter_idr);
51
52 static struct device_type i2c_client_type;
53 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
54
55 /* ------------------------------------------------------------------------- */
56
57 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
58 const struct i2c_client *client)
59 {
60 while (id->name[0]) {
61 if (strcmp(client->name, id->name) == 0)
62 return id;
63 id++;
64 }
65 return NULL;
66 }
67
68 static int i2c_device_match(struct device *dev, struct device_driver *drv)
69 {
70 struct i2c_client *client = i2c_verify_client(dev);
71 struct i2c_driver *driver;
72
73 if (!client)
74 return 0;
75
76 /* Attempt an OF style match */
77 if (of_driver_match_device(dev, drv))
78 return 1;
79
80 driver = to_i2c_driver(drv);
81 /* match on an id table if there is one */
82 if (driver->id_table)
83 return i2c_match_id(driver->id_table, client) != NULL;
84
85 return 0;
86 }
87
88 #ifdef CONFIG_HOTPLUG
89
90 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
91 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
92 {
93 struct i2c_client *client = to_i2c_client(dev);
94
95 if (add_uevent_var(env, "MODALIAS=%s%s",
96 I2C_MODULE_PREFIX, client->name))
97 return -ENOMEM;
98 dev_dbg(dev, "uevent\n");
99 return 0;
100 }
101
102 #else
103 #define i2c_device_uevent NULL
104 #endif /* CONFIG_HOTPLUG */
105
106 static int i2c_device_probe(struct device *dev)
107 {
108 struct i2c_client *client = i2c_verify_client(dev);
109 struct i2c_driver *driver;
110 int status;
111
112 if (!client)
113 return 0;
114
115 driver = to_i2c_driver(dev->driver);
116 if (!driver->probe || !driver->id_table)
117 return -ENODEV;
118 client->driver = driver;
119 if (!device_can_wakeup(&client->dev))
120 device_init_wakeup(&client->dev,
121 client->flags & I2C_CLIENT_WAKE);
122 dev_dbg(dev, "probe\n");
123
124 status = driver->probe(client, i2c_match_id(driver->id_table, client));
125 if (status) {
126 client->driver = NULL;
127 i2c_set_clientdata(client, NULL);
128 }
129 return status;
130 }
131
132 static int i2c_device_remove(struct device *dev)
133 {
134 struct i2c_client *client = i2c_verify_client(dev);
135 struct i2c_driver *driver;
136 int status;
137
138 if (!client || !dev->driver)
139 return 0;
140
141 driver = to_i2c_driver(dev->driver);
142 if (driver->remove) {
143 dev_dbg(dev, "remove\n");
144 status = driver->remove(client);
145 } else {
146 dev->driver = NULL;
147 status = 0;
148 }
149 if (status == 0) {
150 client->driver = NULL;
151 i2c_set_clientdata(client, NULL);
152 }
153 return status;
154 }
155
156 static void i2c_device_shutdown(struct device *dev)
157 {
158 struct i2c_client *client = i2c_verify_client(dev);
159 struct i2c_driver *driver;
160
161 if (!client || !dev->driver)
162 return;
163 driver = to_i2c_driver(dev->driver);
164 if (driver->shutdown)
165 driver->shutdown(client);
166 }
167
168 #ifdef CONFIG_PM_SLEEP
169 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
170 {
171 struct i2c_client *client = i2c_verify_client(dev);
172 struct i2c_driver *driver;
173
174 if (!client || !dev->driver)
175 return 0;
176 driver = to_i2c_driver(dev->driver);
177 if (!driver->suspend)
178 return 0;
179 return driver->suspend(client, mesg);
180 }
181
182 static int i2c_legacy_resume(struct device *dev)
183 {
184 struct i2c_client *client = i2c_verify_client(dev);
185 struct i2c_driver *driver;
186
187 if (!client || !dev->driver)
188 return 0;
189 driver = to_i2c_driver(dev->driver);
190 if (!driver->resume)
191 return 0;
192 return driver->resume(client);
193 }
194
195 static int i2c_device_pm_suspend(struct device *dev)
196 {
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198
199 if (pm)
200 return pm_generic_suspend(dev);
201 else
202 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
203 }
204
205 static int i2c_device_pm_resume(struct device *dev)
206 {
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208
209 if (pm)
210 return pm_generic_resume(dev);
211 else
212 return i2c_legacy_resume(dev);
213 }
214
215 static int i2c_device_pm_freeze(struct device *dev)
216 {
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218
219 if (pm)
220 return pm_generic_freeze(dev);
221 else
222 return i2c_legacy_suspend(dev, PMSG_FREEZE);
223 }
224
225 static int i2c_device_pm_thaw(struct device *dev)
226 {
227 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
228
229 if (pm)
230 return pm_generic_thaw(dev);
231 else
232 return i2c_legacy_resume(dev);
233 }
234
235 static int i2c_device_pm_poweroff(struct device *dev)
236 {
237 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
238
239 if (pm)
240 return pm_generic_poweroff(dev);
241 else
242 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
243 }
244
245 static int i2c_device_pm_restore(struct device *dev)
246 {
247 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
248
249 if (pm)
250 return pm_generic_restore(dev);
251 else
252 return i2c_legacy_resume(dev);
253 }
254 #else /* !CONFIG_PM_SLEEP */
255 #define i2c_device_pm_suspend NULL
256 #define i2c_device_pm_resume NULL
257 #define i2c_device_pm_freeze NULL
258 #define i2c_device_pm_thaw NULL
259 #define i2c_device_pm_poweroff NULL
260 #define i2c_device_pm_restore NULL
261 #endif /* !CONFIG_PM_SLEEP */
262
263 static void i2c_client_dev_release(struct device *dev)
264 {
265 kfree(to_i2c_client(dev));
266 }
267
268 static ssize_t
269 show_name(struct device *dev, struct device_attribute *attr, char *buf)
270 {
271 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
272 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
273 }
274
275 static ssize_t
276 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 struct i2c_client *client = to_i2c_client(dev);
279 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
280 }
281
282 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
283 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
284
285 static struct attribute *i2c_dev_attrs[] = {
286 &dev_attr_name.attr,
287 /* modalias helps coldplug: modprobe $(cat .../modalias) */
288 &dev_attr_modalias.attr,
289 NULL
290 };
291
292 static struct attribute_group i2c_dev_attr_group = {
293 .attrs = i2c_dev_attrs,
294 };
295
296 static const struct attribute_group *i2c_dev_attr_groups[] = {
297 &i2c_dev_attr_group,
298 NULL
299 };
300
301 static const struct dev_pm_ops i2c_device_pm_ops = {
302 .suspend = i2c_device_pm_suspend,
303 .resume = i2c_device_pm_resume,
304 .freeze = i2c_device_pm_freeze,
305 .thaw = i2c_device_pm_thaw,
306 .poweroff = i2c_device_pm_poweroff,
307 .restore = i2c_device_pm_restore,
308 SET_RUNTIME_PM_OPS(
309 pm_generic_runtime_suspend,
310 pm_generic_runtime_resume,
311 pm_generic_runtime_idle
312 )
313 };
314
315 struct bus_type i2c_bus_type = {
316 .name = "i2c",
317 .match = i2c_device_match,
318 .probe = i2c_device_probe,
319 .remove = i2c_device_remove,
320 .shutdown = i2c_device_shutdown,
321 .pm = &i2c_device_pm_ops,
322 };
323 EXPORT_SYMBOL_GPL(i2c_bus_type);
324
325 static struct device_type i2c_client_type = {
326 .groups = i2c_dev_attr_groups,
327 .uevent = i2c_device_uevent,
328 .release = i2c_client_dev_release,
329 };
330
331
332 /**
333 * i2c_verify_client - return parameter as i2c_client, or NULL
334 * @dev: device, probably from some driver model iterator
335 *
336 * When traversing the driver model tree, perhaps using driver model
337 * iterators like @device_for_each_child(), you can't assume very much
338 * about the nodes you find. Use this function to avoid oopses caused
339 * by wrongly treating some non-I2C device as an i2c_client.
340 */
341 struct i2c_client *i2c_verify_client(struct device *dev)
342 {
343 return (dev->type == &i2c_client_type)
344 ? to_i2c_client(dev)
345 : NULL;
346 }
347 EXPORT_SYMBOL(i2c_verify_client);
348
349
350 /* This is a permissive address validity check, I2C address map constraints
351 * are purposely not enforced, except for the general call address. */
352 static int i2c_check_client_addr_validity(const struct i2c_client *client)
353 {
354 if (client->flags & I2C_CLIENT_TEN) {
355 /* 10-bit address, all values are valid */
356 if (client->addr > 0x3ff)
357 return -EINVAL;
358 } else {
359 /* 7-bit address, reject the general call address */
360 if (client->addr == 0x00 || client->addr > 0x7f)
361 return -EINVAL;
362 }
363 return 0;
364 }
365
366 /* And this is a strict address validity check, used when probing. If a
367 * device uses a reserved address, then it shouldn't be probed. 7-bit
368 * addressing is assumed, 10-bit address devices are rare and should be
369 * explicitly enumerated. */
370 static int i2c_check_addr_validity(unsigned short addr)
371 {
372 /*
373 * Reserved addresses per I2C specification:
374 * 0x00 General call address / START byte
375 * 0x01 CBUS address
376 * 0x02 Reserved for different bus format
377 * 0x03 Reserved for future purposes
378 * 0x04-0x07 Hs-mode master code
379 * 0x78-0x7b 10-bit slave addressing
380 * 0x7c-0x7f Reserved for future purposes
381 */
382 if (addr < 0x08 || addr > 0x77)
383 return -EINVAL;
384 return 0;
385 }
386
387 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
388 {
389 struct i2c_client *client = i2c_verify_client(dev);
390 int addr = *(int *)addrp;
391
392 if (client && client->addr == addr)
393 return -EBUSY;
394 return 0;
395 }
396
397 /* walk up mux tree */
398 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
399 {
400 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
401 int result;
402
403 result = device_for_each_child(&adapter->dev, &addr,
404 __i2c_check_addr_busy);
405
406 if (!result && parent)
407 result = i2c_check_mux_parents(parent, addr);
408
409 return result;
410 }
411
412 /* recurse down mux tree */
413 static int i2c_check_mux_children(struct device *dev, void *addrp)
414 {
415 int result;
416
417 if (dev->type == &i2c_adapter_type)
418 result = device_for_each_child(dev, addrp,
419 i2c_check_mux_children);
420 else
421 result = __i2c_check_addr_busy(dev, addrp);
422
423 return result;
424 }
425
426 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
427 {
428 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
429 int result = 0;
430
431 if (parent)
432 result = i2c_check_mux_parents(parent, addr);
433
434 if (!result)
435 result = device_for_each_child(&adapter->dev, &addr,
436 i2c_check_mux_children);
437
438 return result;
439 }
440
441 /**
442 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
443 * @adapter: Target I2C bus segment
444 */
445 void i2c_lock_adapter(struct i2c_adapter *adapter)
446 {
447 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
448
449 if (parent)
450 i2c_lock_adapter(parent);
451 else
452 rt_mutex_lock(&adapter->bus_lock);
453 }
454 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
455
456 /**
457 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
458 * @adapter: Target I2C bus segment
459 */
460 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
461 {
462 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
463
464 if (parent)
465 return i2c_trylock_adapter(parent);
466 else
467 return rt_mutex_trylock(&adapter->bus_lock);
468 }
469
470 /**
471 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
472 * @adapter: Target I2C bus segment
473 */
474 void i2c_unlock_adapter(struct i2c_adapter *adapter)
475 {
476 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
477
478 if (parent)
479 i2c_unlock_adapter(parent);
480 else
481 rt_mutex_unlock(&adapter->bus_lock);
482 }
483 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
484
485 /**
486 * i2c_new_device - instantiate an i2c device
487 * @adap: the adapter managing the device
488 * @info: describes one I2C device; bus_num is ignored
489 * Context: can sleep
490 *
491 * Create an i2c device. Binding is handled through driver model
492 * probe()/remove() methods. A driver may be bound to this device when we
493 * return from this function, or any later moment (e.g. maybe hotplugging will
494 * load the driver module). This call is not appropriate for use by mainboard
495 * initialization logic, which usually runs during an arch_initcall() long
496 * before any i2c_adapter could exist.
497 *
498 * This returns the new i2c client, which may be saved for later use with
499 * i2c_unregister_device(); or NULL to indicate an error.
500 */
501 struct i2c_client *
502 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
503 {
504 struct i2c_client *client;
505 int status;
506
507 client = kzalloc(sizeof *client, GFP_KERNEL);
508 if (!client)
509 return NULL;
510
511 client->adapter = adap;
512
513 client->dev.platform_data = info->platform_data;
514
515 if (info->archdata)
516 client->dev.archdata = *info->archdata;
517
518 client->flags = info->flags;
519 client->addr = info->addr;
520 client->irq = info->irq;
521
522 strlcpy(client->name, info->type, sizeof(client->name));
523
524 /* Check for address validity */
525 status = i2c_check_client_addr_validity(client);
526 if (status) {
527 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
528 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
529 goto out_err_silent;
530 }
531
532 /* Check for address business */
533 status = i2c_check_addr_busy(adap, client->addr);
534 if (status)
535 goto out_err;
536
537 client->dev.parent = &client->adapter->dev;
538 client->dev.bus = &i2c_bus_type;
539 client->dev.type = &i2c_client_type;
540 client->dev.of_node = info->of_node;
541
542 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
543 client->addr);
544 status = device_register(&client->dev);
545 if (status)
546 goto out_err;
547
548 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
549 client->name, dev_name(&client->dev));
550
551 return client;
552
553 out_err:
554 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
555 "(%d)\n", client->name, client->addr, status);
556 out_err_silent:
557 kfree(client);
558 return NULL;
559 }
560 EXPORT_SYMBOL_GPL(i2c_new_device);
561
562
563 /**
564 * i2c_unregister_device - reverse effect of i2c_new_device()
565 * @client: value returned from i2c_new_device()
566 * Context: can sleep
567 */
568 void i2c_unregister_device(struct i2c_client *client)
569 {
570 device_unregister(&client->dev);
571 }
572 EXPORT_SYMBOL_GPL(i2c_unregister_device);
573
574
575 static const struct i2c_device_id dummy_id[] = {
576 { "dummy", 0 },
577 { },
578 };
579
580 static int dummy_probe(struct i2c_client *client,
581 const struct i2c_device_id *id)
582 {
583 return 0;
584 }
585
586 static int dummy_remove(struct i2c_client *client)
587 {
588 return 0;
589 }
590
591 static struct i2c_driver dummy_driver = {
592 .driver.name = "dummy",
593 .probe = dummy_probe,
594 .remove = dummy_remove,
595 .id_table = dummy_id,
596 };
597
598 /**
599 * i2c_new_dummy - return a new i2c device bound to a dummy driver
600 * @adapter: the adapter managing the device
601 * @address: seven bit address to be used
602 * Context: can sleep
603 *
604 * This returns an I2C client bound to the "dummy" driver, intended for use
605 * with devices that consume multiple addresses. Examples of such chips
606 * include various EEPROMS (like 24c04 and 24c08 models).
607 *
608 * These dummy devices have two main uses. First, most I2C and SMBus calls
609 * except i2c_transfer() need a client handle; the dummy will be that handle.
610 * And second, this prevents the specified address from being bound to a
611 * different driver.
612 *
613 * This returns the new i2c client, which should be saved for later use with
614 * i2c_unregister_device(); or NULL to indicate an error.
615 */
616 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
617 {
618 struct i2c_board_info info = {
619 I2C_BOARD_INFO("dummy", address),
620 };
621
622 return i2c_new_device(adapter, &info);
623 }
624 EXPORT_SYMBOL_GPL(i2c_new_dummy);
625
626 /* ------------------------------------------------------------------------- */
627
628 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
629
630 static void i2c_adapter_dev_release(struct device *dev)
631 {
632 struct i2c_adapter *adap = to_i2c_adapter(dev);
633 complete(&adap->dev_released);
634 }
635
636 /*
637 * Let users instantiate I2C devices through sysfs. This can be used when
638 * platform initialization code doesn't contain the proper data for
639 * whatever reason. Also useful for drivers that do device detection and
640 * detection fails, either because the device uses an unexpected address,
641 * or this is a compatible device with different ID register values.
642 *
643 * Parameter checking may look overzealous, but we really don't want
644 * the user to provide incorrect parameters.
645 */
646 static ssize_t
647 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
648 const char *buf, size_t count)
649 {
650 struct i2c_adapter *adap = to_i2c_adapter(dev);
651 struct i2c_board_info info;
652 struct i2c_client *client;
653 char *blank, end;
654 int res;
655
656 memset(&info, 0, sizeof(struct i2c_board_info));
657
658 blank = strchr(buf, ' ');
659 if (!blank) {
660 dev_err(dev, "%s: Missing parameters\n", "new_device");
661 return -EINVAL;
662 }
663 if (blank - buf > I2C_NAME_SIZE - 1) {
664 dev_err(dev, "%s: Invalid device name\n", "new_device");
665 return -EINVAL;
666 }
667 memcpy(info.type, buf, blank - buf);
668
669 /* Parse remaining parameters, reject extra parameters */
670 res = sscanf(++blank, "%hi%c", &info.addr, &end);
671 if (res < 1) {
672 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
673 return -EINVAL;
674 }
675 if (res > 1 && end != '\n') {
676 dev_err(dev, "%s: Extra parameters\n", "new_device");
677 return -EINVAL;
678 }
679
680 client = i2c_new_device(adap, &info);
681 if (!client)
682 return -EINVAL;
683
684 /* Keep track of the added device */
685 mutex_lock(&adap->userspace_clients_lock);
686 list_add_tail(&client->detected, &adap->userspace_clients);
687 mutex_unlock(&adap->userspace_clients_lock);
688 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
689 info.type, info.addr);
690
691 return count;
692 }
693
694 /*
695 * And of course let the users delete the devices they instantiated, if
696 * they got it wrong. This interface can only be used to delete devices
697 * instantiated by i2c_sysfs_new_device above. This guarantees that we
698 * don't delete devices to which some kernel code still has references.
699 *
700 * Parameter checking may look overzealous, but we really don't want
701 * the user to delete the wrong device.
702 */
703 static ssize_t
704 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
705 const char *buf, size_t count)
706 {
707 struct i2c_adapter *adap = to_i2c_adapter(dev);
708 struct i2c_client *client, *next;
709 unsigned short addr;
710 char end;
711 int res;
712
713 /* Parse parameters, reject extra parameters */
714 res = sscanf(buf, "%hi%c", &addr, &end);
715 if (res < 1) {
716 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
717 return -EINVAL;
718 }
719 if (res > 1 && end != '\n') {
720 dev_err(dev, "%s: Extra parameters\n", "delete_device");
721 return -EINVAL;
722 }
723
724 /* Make sure the device was added through sysfs */
725 res = -ENOENT;
726 mutex_lock(&adap->userspace_clients_lock);
727 list_for_each_entry_safe(client, next, &adap->userspace_clients,
728 detected) {
729 if (client->addr == addr) {
730 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
731 "delete_device", client->name, client->addr);
732
733 list_del(&client->detected);
734 i2c_unregister_device(client);
735 res = count;
736 break;
737 }
738 }
739 mutex_unlock(&adap->userspace_clients_lock);
740
741 if (res < 0)
742 dev_err(dev, "%s: Can't find device in list\n",
743 "delete_device");
744 return res;
745 }
746
747 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
748 static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
749
750 static struct attribute *i2c_adapter_attrs[] = {
751 &dev_attr_name.attr,
752 &dev_attr_new_device.attr,
753 &dev_attr_delete_device.attr,
754 NULL
755 };
756
757 static struct attribute_group i2c_adapter_attr_group = {
758 .attrs = i2c_adapter_attrs,
759 };
760
761 static const struct attribute_group *i2c_adapter_attr_groups[] = {
762 &i2c_adapter_attr_group,
763 NULL
764 };
765
766 struct device_type i2c_adapter_type = {
767 .groups = i2c_adapter_attr_groups,
768 .release = i2c_adapter_dev_release,
769 };
770 EXPORT_SYMBOL_GPL(i2c_adapter_type);
771
772 #ifdef CONFIG_I2C_COMPAT
773 static struct class_compat *i2c_adapter_compat_class;
774 #endif
775
776 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
777 {
778 struct i2c_devinfo *devinfo;
779
780 down_read(&__i2c_board_lock);
781 list_for_each_entry(devinfo, &__i2c_board_list, list) {
782 if (devinfo->busnum == adapter->nr
783 && !i2c_new_device(adapter,
784 &devinfo->board_info))
785 dev_err(&adapter->dev,
786 "Can't create device at 0x%02x\n",
787 devinfo->board_info.addr);
788 }
789 up_read(&__i2c_board_lock);
790 }
791
792 static int i2c_do_add_adapter(struct i2c_driver *driver,
793 struct i2c_adapter *adap)
794 {
795 /* Detect supported devices on that bus, and instantiate them */
796 i2c_detect(adap, driver);
797
798 /* Let legacy drivers scan this bus for matching devices */
799 if (driver->attach_adapter) {
800 dev_warn(&adap->dev, "attach_adapter method is deprecated\n");
801 dev_warn(&adap->dev, "Please use another way to instantiate "
802 "your i2c_client\n");
803 /* We ignore the return code; if it fails, too bad */
804 driver->attach_adapter(adap);
805 }
806 return 0;
807 }
808
809 static int __process_new_adapter(struct device_driver *d, void *data)
810 {
811 return i2c_do_add_adapter(to_i2c_driver(d), data);
812 }
813
814 static int i2c_register_adapter(struct i2c_adapter *adap)
815 {
816 int res = 0;
817
818 /* Can't register until after driver model init */
819 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
820 res = -EAGAIN;
821 goto out_list;
822 }
823
824 /* Sanity checks */
825 if (unlikely(adap->name[0] == '\0')) {
826 pr_err("i2c-core: Attempt to register an adapter with "
827 "no name!\n");
828 return -EINVAL;
829 }
830 if (unlikely(!adap->algo)) {
831 pr_err("i2c-core: Attempt to register adapter '%s' with "
832 "no algo!\n", adap->name);
833 return -EINVAL;
834 }
835
836 rt_mutex_init(&adap->bus_lock);
837 mutex_init(&adap->userspace_clients_lock);
838 INIT_LIST_HEAD(&adap->userspace_clients);
839
840 /* Set default timeout to 1 second if not already set */
841 if (adap->timeout == 0)
842 adap->timeout = HZ;
843
844 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
845 adap->dev.bus = &i2c_bus_type;
846 adap->dev.type = &i2c_adapter_type;
847 res = device_register(&adap->dev);
848 if (res)
849 goto out_list;
850
851 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
852
853 #ifdef CONFIG_I2C_COMPAT
854 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
855 adap->dev.parent);
856 if (res)
857 dev_warn(&adap->dev,
858 "Failed to create compatibility class link\n");
859 #endif
860
861 /* create pre-declared device nodes */
862 if (adap->nr < __i2c_first_dynamic_bus_num)
863 i2c_scan_static_board_info(adap);
864
865 /* Notify drivers */
866 mutex_lock(&core_lock);
867 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
868 mutex_unlock(&core_lock);
869
870 return 0;
871
872 out_list:
873 mutex_lock(&core_lock);
874 idr_remove(&i2c_adapter_idr, adap->nr);
875 mutex_unlock(&core_lock);
876 return res;
877 }
878
879 /**
880 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
881 * @adapter: the adapter to add
882 * Context: can sleep
883 *
884 * This routine is used to declare an I2C adapter when its bus number
885 * doesn't matter. Examples: for I2C adapters dynamically added by
886 * USB links or PCI plugin cards.
887 *
888 * When this returns zero, a new bus number was allocated and stored
889 * in adap->nr, and the specified adapter became available for clients.
890 * Otherwise, a negative errno value is returned.
891 */
892 int i2c_add_adapter(struct i2c_adapter *adapter)
893 {
894 int id, res = 0;
895
896 retry:
897 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
898 return -ENOMEM;
899
900 mutex_lock(&core_lock);
901 /* "above" here means "above or equal to", sigh */
902 res = idr_get_new_above(&i2c_adapter_idr, adapter,
903 __i2c_first_dynamic_bus_num, &id);
904 mutex_unlock(&core_lock);
905
906 if (res < 0) {
907 if (res == -EAGAIN)
908 goto retry;
909 return res;
910 }
911
912 adapter->nr = id;
913 return i2c_register_adapter(adapter);
914 }
915 EXPORT_SYMBOL(i2c_add_adapter);
916
917 /**
918 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
919 * @adap: the adapter to register (with adap->nr initialized)
920 * Context: can sleep
921 *
922 * This routine is used to declare an I2C adapter when its bus number
923 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
924 * or otherwise built in to the system's mainboard, and where i2c_board_info
925 * is used to properly configure I2C devices.
926 *
927 * If no devices have pre-been declared for this bus, then be sure to
928 * register the adapter before any dynamically allocated ones. Otherwise
929 * the required bus ID may not be available.
930 *
931 * When this returns zero, the specified adapter became available for
932 * clients using the bus number provided in adap->nr. Also, the table
933 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
934 * and the appropriate driver model device nodes are created. Otherwise, a
935 * negative errno value is returned.
936 */
937 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
938 {
939 int id;
940 int status;
941
942 if (adap->nr & ~MAX_ID_MASK)
943 return -EINVAL;
944
945 retry:
946 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
947 return -ENOMEM;
948
949 mutex_lock(&core_lock);
950 /* "above" here means "above or equal to", sigh;
951 * we need the "equal to" result to force the result
952 */
953 status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
954 if (status == 0 && id != adap->nr) {
955 status = -EBUSY;
956 idr_remove(&i2c_adapter_idr, id);
957 }
958 mutex_unlock(&core_lock);
959 if (status == -EAGAIN)
960 goto retry;
961
962 if (status == 0)
963 status = i2c_register_adapter(adap);
964 return status;
965 }
966 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
967
968 static int i2c_do_del_adapter(struct i2c_driver *driver,
969 struct i2c_adapter *adapter)
970 {
971 struct i2c_client *client, *_n;
972 int res;
973
974 /* Remove the devices we created ourselves as the result of hardware
975 * probing (using a driver's detect method) */
976 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
977 if (client->adapter == adapter) {
978 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
979 client->name, client->addr);
980 list_del(&client->detected);
981 i2c_unregister_device(client);
982 }
983 }
984
985 if (!driver->detach_adapter)
986 return 0;
987 dev_warn(&adapter->dev, "detach_adapter method is deprecated\n");
988 res = driver->detach_adapter(adapter);
989 if (res)
990 dev_err(&adapter->dev, "detach_adapter failed (%d) "
991 "for driver [%s]\n", res, driver->driver.name);
992 return res;
993 }
994
995 static int __unregister_client(struct device *dev, void *dummy)
996 {
997 struct i2c_client *client = i2c_verify_client(dev);
998 if (client && strcmp(client->name, "dummy"))
999 i2c_unregister_device(client);
1000 return 0;
1001 }
1002
1003 static int __unregister_dummy(struct device *dev, void *dummy)
1004 {
1005 struct i2c_client *client = i2c_verify_client(dev);
1006 if (client)
1007 i2c_unregister_device(client);
1008 return 0;
1009 }
1010
1011 static int __process_removed_adapter(struct device_driver *d, void *data)
1012 {
1013 return i2c_do_del_adapter(to_i2c_driver(d), data);
1014 }
1015
1016 /**
1017 * i2c_del_adapter - unregister I2C adapter
1018 * @adap: the adapter being unregistered
1019 * Context: can sleep
1020 *
1021 * This unregisters an I2C adapter which was previously registered
1022 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1023 */
1024 int i2c_del_adapter(struct i2c_adapter *adap)
1025 {
1026 int res = 0;
1027 struct i2c_adapter *found;
1028 struct i2c_client *client, *next;
1029
1030 /* First make sure that this adapter was ever added */
1031 mutex_lock(&core_lock);
1032 found = idr_find(&i2c_adapter_idr, adap->nr);
1033 mutex_unlock(&core_lock);
1034 if (found != adap) {
1035 pr_debug("i2c-core: attempting to delete unregistered "
1036 "adapter [%s]\n", adap->name);
1037 return -EINVAL;
1038 }
1039
1040 /* Tell drivers about this removal */
1041 mutex_lock(&core_lock);
1042 res = bus_for_each_drv(&i2c_bus_type, NULL, adap,
1043 __process_removed_adapter);
1044 mutex_unlock(&core_lock);
1045 if (res)
1046 return res;
1047
1048 /* Remove devices instantiated from sysfs */
1049 mutex_lock(&adap->userspace_clients_lock);
1050 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1051 detected) {
1052 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1053 client->addr);
1054 list_del(&client->detected);
1055 i2c_unregister_device(client);
1056 }
1057 mutex_unlock(&adap->userspace_clients_lock);
1058
1059 /* Detach any active clients. This can't fail, thus we do not
1060 * check the returned value. This is a two-pass process, because
1061 * we can't remove the dummy devices during the first pass: they
1062 * could have been instantiated by real devices wishing to clean
1063 * them up properly, so we give them a chance to do that first. */
1064 res = device_for_each_child(&adap->dev, NULL, __unregister_client);
1065 res = device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1066
1067 #ifdef CONFIG_I2C_COMPAT
1068 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1069 adap->dev.parent);
1070 #endif
1071
1072 /* device name is gone after device_unregister */
1073 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1074
1075 /* clean up the sysfs representation */
1076 init_completion(&adap->dev_released);
1077 device_unregister(&adap->dev);
1078
1079 /* wait for sysfs to drop all references */
1080 wait_for_completion(&adap->dev_released);
1081
1082 /* free bus id */
1083 mutex_lock(&core_lock);
1084 idr_remove(&i2c_adapter_idr, adap->nr);
1085 mutex_unlock(&core_lock);
1086
1087 /* Clear the device structure in case this adapter is ever going to be
1088 added again */
1089 memset(&adap->dev, 0, sizeof(adap->dev));
1090
1091 return 0;
1092 }
1093 EXPORT_SYMBOL(i2c_del_adapter);
1094
1095
1096 /* ------------------------------------------------------------------------- */
1097
1098 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1099 {
1100 int res;
1101
1102 mutex_lock(&core_lock);
1103 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1104 mutex_unlock(&core_lock);
1105
1106 return res;
1107 }
1108 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1109
1110 static int __process_new_driver(struct device *dev, void *data)
1111 {
1112 if (dev->type != &i2c_adapter_type)
1113 return 0;
1114 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1115 }
1116
1117 /*
1118 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1119 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1120 */
1121
1122 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1123 {
1124 int res;
1125
1126 /* Can't register until after driver model init */
1127 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1128 return -EAGAIN;
1129
1130 /* add the driver to the list of i2c drivers in the driver core */
1131 driver->driver.owner = owner;
1132 driver->driver.bus = &i2c_bus_type;
1133
1134 /* When registration returns, the driver core
1135 * will have called probe() for all matching-but-unbound devices.
1136 */
1137 res = driver_register(&driver->driver);
1138 if (res)
1139 return res;
1140
1141 /* Drivers should switch to dev_pm_ops instead. */
1142 if (driver->suspend)
1143 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1144 driver->driver.name);
1145 if (driver->resume)
1146 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1147 driver->driver.name);
1148
1149 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1150
1151 INIT_LIST_HEAD(&driver->clients);
1152 /* Walk the adapters that are already present */
1153 i2c_for_each_dev(driver, __process_new_driver);
1154
1155 return 0;
1156 }
1157 EXPORT_SYMBOL(i2c_register_driver);
1158
1159 static int __process_removed_driver(struct device *dev, void *data)
1160 {
1161 if (dev->type != &i2c_adapter_type)
1162 return 0;
1163 return i2c_do_del_adapter(data, to_i2c_adapter(dev));
1164 }
1165
1166 /**
1167 * i2c_del_driver - unregister I2C driver
1168 * @driver: the driver being unregistered
1169 * Context: can sleep
1170 */
1171 void i2c_del_driver(struct i2c_driver *driver)
1172 {
1173 i2c_for_each_dev(driver, __process_removed_driver);
1174
1175 driver_unregister(&driver->driver);
1176 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1177 }
1178 EXPORT_SYMBOL(i2c_del_driver);
1179
1180 /* ------------------------------------------------------------------------- */
1181
1182 /**
1183 * i2c_use_client - increments the reference count of the i2c client structure
1184 * @client: the client being referenced
1185 *
1186 * Each live reference to a client should be refcounted. The driver model does
1187 * that automatically as part of driver binding, so that most drivers don't
1188 * need to do this explicitly: they hold a reference until they're unbound
1189 * from the device.
1190 *
1191 * A pointer to the client with the incremented reference counter is returned.
1192 */
1193 struct i2c_client *i2c_use_client(struct i2c_client *client)
1194 {
1195 if (client && get_device(&client->dev))
1196 return client;
1197 return NULL;
1198 }
1199 EXPORT_SYMBOL(i2c_use_client);
1200
1201 /**
1202 * i2c_release_client - release a use of the i2c client structure
1203 * @client: the client being no longer referenced
1204 *
1205 * Must be called when a user of a client is finished with it.
1206 */
1207 void i2c_release_client(struct i2c_client *client)
1208 {
1209 if (client)
1210 put_device(&client->dev);
1211 }
1212 EXPORT_SYMBOL(i2c_release_client);
1213
1214 struct i2c_cmd_arg {
1215 unsigned cmd;
1216 void *arg;
1217 };
1218
1219 static int i2c_cmd(struct device *dev, void *_arg)
1220 {
1221 struct i2c_client *client = i2c_verify_client(dev);
1222 struct i2c_cmd_arg *arg = _arg;
1223
1224 if (client && client->driver && client->driver->command)
1225 client->driver->command(client, arg->cmd, arg->arg);
1226 return 0;
1227 }
1228
1229 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1230 {
1231 struct i2c_cmd_arg cmd_arg;
1232
1233 cmd_arg.cmd = cmd;
1234 cmd_arg.arg = arg;
1235 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1236 }
1237 EXPORT_SYMBOL(i2c_clients_command);
1238
1239 static int __init i2c_init(void)
1240 {
1241 int retval;
1242
1243 retval = bus_register(&i2c_bus_type);
1244 if (retval)
1245 return retval;
1246 #ifdef CONFIG_I2C_COMPAT
1247 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1248 if (!i2c_adapter_compat_class) {
1249 retval = -ENOMEM;
1250 goto bus_err;
1251 }
1252 #endif
1253 retval = i2c_add_driver(&dummy_driver);
1254 if (retval)
1255 goto class_err;
1256 return 0;
1257
1258 class_err:
1259 #ifdef CONFIG_I2C_COMPAT
1260 class_compat_unregister(i2c_adapter_compat_class);
1261 bus_err:
1262 #endif
1263 bus_unregister(&i2c_bus_type);
1264 return retval;
1265 }
1266
1267 static void __exit i2c_exit(void)
1268 {
1269 i2c_del_driver(&dummy_driver);
1270 #ifdef CONFIG_I2C_COMPAT
1271 class_compat_unregister(i2c_adapter_compat_class);
1272 #endif
1273 bus_unregister(&i2c_bus_type);
1274 }
1275
1276 /* We must initialize early, because some subsystems register i2c drivers
1277 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1278 */
1279 postcore_initcall(i2c_init);
1280 module_exit(i2c_exit);
1281
1282 /* ----------------------------------------------------
1283 * the functional interface to the i2c busses.
1284 * ----------------------------------------------------
1285 */
1286
1287 /**
1288 * i2c_transfer - execute a single or combined I2C message
1289 * @adap: Handle to I2C bus
1290 * @msgs: One or more messages to execute before STOP is issued to
1291 * terminate the operation; each message begins with a START.
1292 * @num: Number of messages to be executed.
1293 *
1294 * Returns negative errno, else the number of messages executed.
1295 *
1296 * Note that there is no requirement that each message be sent to
1297 * the same slave address, although that is the most common model.
1298 */
1299 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1300 {
1301 unsigned long orig_jiffies;
1302 int ret, try;
1303
1304 /* REVISIT the fault reporting model here is weak:
1305 *
1306 * - When we get an error after receiving N bytes from a slave,
1307 * there is no way to report "N".
1308 *
1309 * - When we get a NAK after transmitting N bytes to a slave,
1310 * there is no way to report "N" ... or to let the master
1311 * continue executing the rest of this combined message, if
1312 * that's the appropriate response.
1313 *
1314 * - When for example "num" is two and we successfully complete
1315 * the first message but get an error part way through the
1316 * second, it's unclear whether that should be reported as
1317 * one (discarding status on the second message) or errno
1318 * (discarding status on the first one).
1319 */
1320
1321 if (adap->algo->master_xfer) {
1322 #ifdef DEBUG
1323 for (ret = 0; ret < num; ret++) {
1324 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1325 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1326 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1327 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1328 }
1329 #endif
1330
1331 if (in_atomic() || irqs_disabled()) {
1332 ret = i2c_trylock_adapter(adap);
1333 if (!ret)
1334 /* I2C activity is ongoing. */
1335 return -EAGAIN;
1336 } else {
1337 i2c_lock_adapter(adap);
1338 }
1339
1340 /* Retry automatically on arbitration loss */
1341 orig_jiffies = jiffies;
1342 for (ret = 0, try = 0; try <= adap->retries; try++) {
1343 ret = adap->algo->master_xfer(adap, msgs, num);
1344 if (ret != -EAGAIN)
1345 break;
1346 if (time_after(jiffies, orig_jiffies + adap->timeout))
1347 break;
1348 }
1349 i2c_unlock_adapter(adap);
1350
1351 return ret;
1352 } else {
1353 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1354 return -EOPNOTSUPP;
1355 }
1356 }
1357 EXPORT_SYMBOL(i2c_transfer);
1358
1359 /**
1360 * i2c_master_send - issue a single I2C message in master transmit mode
1361 * @client: Handle to slave device
1362 * @buf: Data that will be written to the slave
1363 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1364 *
1365 * Returns negative errno, or else the number of bytes written.
1366 */
1367 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1368 {
1369 int ret;
1370 struct i2c_adapter *adap = client->adapter;
1371 struct i2c_msg msg;
1372
1373 msg.addr = client->addr;
1374 msg.flags = client->flags & I2C_M_TEN;
1375 msg.len = count;
1376 msg.buf = (char *)buf;
1377
1378 ret = i2c_transfer(adap, &msg, 1);
1379
1380 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1381 transmitted, else error code. */
1382 return (ret == 1) ? count : ret;
1383 }
1384 EXPORT_SYMBOL(i2c_master_send);
1385
1386 /**
1387 * i2c_master_recv - issue a single I2C message in master receive mode
1388 * @client: Handle to slave device
1389 * @buf: Where to store data read from slave
1390 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1391 *
1392 * Returns negative errno, or else the number of bytes read.
1393 */
1394 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1395 {
1396 struct i2c_adapter *adap = client->adapter;
1397 struct i2c_msg msg;
1398 int ret;
1399
1400 msg.addr = client->addr;
1401 msg.flags = client->flags & I2C_M_TEN;
1402 msg.flags |= I2C_M_RD;
1403 msg.len = count;
1404 msg.buf = buf;
1405
1406 ret = i2c_transfer(adap, &msg, 1);
1407
1408 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1409 transmitted, else error code. */
1410 return (ret == 1) ? count : ret;
1411 }
1412 EXPORT_SYMBOL(i2c_master_recv);
1413
1414 /* ----------------------------------------------------
1415 * the i2c address scanning function
1416 * Will not work for 10-bit addresses!
1417 * ----------------------------------------------------
1418 */
1419
1420 /*
1421 * Legacy default probe function, mostly relevant for SMBus. The default
1422 * probe method is a quick write, but it is known to corrupt the 24RF08
1423 * EEPROMs due to a state machine bug, and could also irreversibly
1424 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1425 * we use a short byte read instead. Also, some bus drivers don't implement
1426 * quick write, so we fallback to a byte read in that case too.
1427 * On x86, there is another special case for FSC hardware monitoring chips,
1428 * which want regular byte reads (address 0x73.) Fortunately, these are the
1429 * only known chips using this I2C address on PC hardware.
1430 * Returns 1 if probe succeeded, 0 if not.
1431 */
1432 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1433 {
1434 int err;
1435 union i2c_smbus_data dummy;
1436
1437 #ifdef CONFIG_X86
1438 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1439 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1440 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1441 I2C_SMBUS_BYTE_DATA, &dummy);
1442 else
1443 #endif
1444 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1445 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1446 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1447 I2C_SMBUS_QUICK, NULL);
1448 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1449 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1450 I2C_SMBUS_BYTE, &dummy);
1451 else {
1452 dev_warn(&adap->dev, "No suitable probing method supported\n");
1453 err = -EOPNOTSUPP;
1454 }
1455
1456 return err >= 0;
1457 }
1458
1459 static int i2c_detect_address(struct i2c_client *temp_client,
1460 struct i2c_driver *driver)
1461 {
1462 struct i2c_board_info info;
1463 struct i2c_adapter *adapter = temp_client->adapter;
1464 int addr = temp_client->addr;
1465 int err;
1466
1467 /* Make sure the address is valid */
1468 err = i2c_check_addr_validity(addr);
1469 if (err) {
1470 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1471 addr);
1472 return err;
1473 }
1474
1475 /* Skip if already in use */
1476 if (i2c_check_addr_busy(adapter, addr))
1477 return 0;
1478
1479 /* Make sure there is something at this address */
1480 if (!i2c_default_probe(adapter, addr))
1481 return 0;
1482
1483 /* Finally call the custom detection function */
1484 memset(&info, 0, sizeof(struct i2c_board_info));
1485 info.addr = addr;
1486 err = driver->detect(temp_client, &info);
1487 if (err) {
1488 /* -ENODEV is returned if the detection fails. We catch it
1489 here as this isn't an error. */
1490 return err == -ENODEV ? 0 : err;
1491 }
1492
1493 /* Consistency check */
1494 if (info.type[0] == '\0') {
1495 dev_err(&adapter->dev, "%s detection function provided "
1496 "no name for 0x%x\n", driver->driver.name,
1497 addr);
1498 } else {
1499 struct i2c_client *client;
1500
1501 /* Detection succeeded, instantiate the device */
1502 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1503 info.type, info.addr);
1504 client = i2c_new_device(adapter, &info);
1505 if (client)
1506 list_add_tail(&client->detected, &driver->clients);
1507 else
1508 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1509 info.type, info.addr);
1510 }
1511 return 0;
1512 }
1513
1514 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1515 {
1516 const unsigned short *address_list;
1517 struct i2c_client *temp_client;
1518 int i, err = 0;
1519 int adap_id = i2c_adapter_id(adapter);
1520
1521 address_list = driver->address_list;
1522 if (!driver->detect || !address_list)
1523 return 0;
1524
1525 /* Stop here if the classes do not match */
1526 if (!(adapter->class & driver->class))
1527 return 0;
1528
1529 /* Set up a temporary client to help detect callback */
1530 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1531 if (!temp_client)
1532 return -ENOMEM;
1533 temp_client->adapter = adapter;
1534
1535 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1536 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1537 "addr 0x%02x\n", adap_id, address_list[i]);
1538 temp_client->addr = address_list[i];
1539 err = i2c_detect_address(temp_client, driver);
1540 if (unlikely(err))
1541 break;
1542 }
1543
1544 kfree(temp_client);
1545 return err;
1546 }
1547
1548 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1549 {
1550 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1551 I2C_SMBUS_QUICK, NULL) >= 0;
1552 }
1553 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1554
1555 struct i2c_client *
1556 i2c_new_probed_device(struct i2c_adapter *adap,
1557 struct i2c_board_info *info,
1558 unsigned short const *addr_list,
1559 int (*probe)(struct i2c_adapter *, unsigned short addr))
1560 {
1561 int i;
1562
1563 if (!probe)
1564 probe = i2c_default_probe;
1565
1566 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1567 /* Check address validity */
1568 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1569 dev_warn(&adap->dev, "Invalid 7-bit address "
1570 "0x%02x\n", addr_list[i]);
1571 continue;
1572 }
1573
1574 /* Check address availability */
1575 if (i2c_check_addr_busy(adap, addr_list[i])) {
1576 dev_dbg(&adap->dev, "Address 0x%02x already in "
1577 "use, not probing\n", addr_list[i]);
1578 continue;
1579 }
1580
1581 /* Test address responsiveness */
1582 if (probe(adap, addr_list[i]))
1583 break;
1584 }
1585
1586 if (addr_list[i] == I2C_CLIENT_END) {
1587 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1588 return NULL;
1589 }
1590
1591 info->addr = addr_list[i];
1592 return i2c_new_device(adap, info);
1593 }
1594 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1595
1596 struct i2c_adapter *i2c_get_adapter(int nr)
1597 {
1598 struct i2c_adapter *adapter;
1599
1600 mutex_lock(&core_lock);
1601 adapter = idr_find(&i2c_adapter_idr, nr);
1602 if (adapter && !try_module_get(adapter->owner))
1603 adapter = NULL;
1604
1605 mutex_unlock(&core_lock);
1606 return adapter;
1607 }
1608 EXPORT_SYMBOL(i2c_get_adapter);
1609
1610 void i2c_put_adapter(struct i2c_adapter *adap)
1611 {
1612 module_put(adap->owner);
1613 }
1614 EXPORT_SYMBOL(i2c_put_adapter);
1615
1616 /* The SMBus parts */
1617
1618 #define POLY (0x1070U << 3)
1619 static u8 crc8(u16 data)
1620 {
1621 int i;
1622
1623 for (i = 0; i < 8; i++) {
1624 if (data & 0x8000)
1625 data = data ^ POLY;
1626 data = data << 1;
1627 }
1628 return (u8)(data >> 8);
1629 }
1630
1631 /* Incremental CRC8 over count bytes in the array pointed to by p */
1632 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1633 {
1634 int i;
1635
1636 for (i = 0; i < count; i++)
1637 crc = crc8((crc ^ p[i]) << 8);
1638 return crc;
1639 }
1640
1641 /* Assume a 7-bit address, which is reasonable for SMBus */
1642 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1643 {
1644 /* The address will be sent first */
1645 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1646 pec = i2c_smbus_pec(pec, &addr, 1);
1647
1648 /* The data buffer follows */
1649 return i2c_smbus_pec(pec, msg->buf, msg->len);
1650 }
1651
1652 /* Used for write only transactions */
1653 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1654 {
1655 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1656 msg->len++;
1657 }
1658
1659 /* Return <0 on CRC error
1660 If there was a write before this read (most cases) we need to take the
1661 partial CRC from the write part into account.
1662 Note that this function does modify the message (we need to decrease the
1663 message length to hide the CRC byte from the caller). */
1664 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1665 {
1666 u8 rpec = msg->buf[--msg->len];
1667 cpec = i2c_smbus_msg_pec(cpec, msg);
1668
1669 if (rpec != cpec) {
1670 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1671 rpec, cpec);
1672 return -EBADMSG;
1673 }
1674 return 0;
1675 }
1676
1677 /**
1678 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1679 * @client: Handle to slave device
1680 *
1681 * This executes the SMBus "receive byte" protocol, returning negative errno
1682 * else the byte received from the device.
1683 */
1684 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1685 {
1686 union i2c_smbus_data data;
1687 int status;
1688
1689 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1690 I2C_SMBUS_READ, 0,
1691 I2C_SMBUS_BYTE, &data);
1692 return (status < 0) ? status : data.byte;
1693 }
1694 EXPORT_SYMBOL(i2c_smbus_read_byte);
1695
1696 /**
1697 * i2c_smbus_write_byte - SMBus "send byte" protocol
1698 * @client: Handle to slave device
1699 * @value: Byte to be sent
1700 *
1701 * This executes the SMBus "send byte" protocol, returning negative errno
1702 * else zero on success.
1703 */
1704 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1705 {
1706 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1707 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1708 }
1709 EXPORT_SYMBOL(i2c_smbus_write_byte);
1710
1711 /**
1712 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1713 * @client: Handle to slave device
1714 * @command: Byte interpreted by slave
1715 *
1716 * This executes the SMBus "read byte" protocol, returning negative errno
1717 * else a data byte received from the device.
1718 */
1719 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
1720 {
1721 union i2c_smbus_data data;
1722 int status;
1723
1724 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1725 I2C_SMBUS_READ, command,
1726 I2C_SMBUS_BYTE_DATA, &data);
1727 return (status < 0) ? status : data.byte;
1728 }
1729 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1730
1731 /**
1732 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1733 * @client: Handle to slave device
1734 * @command: Byte interpreted by slave
1735 * @value: Byte being written
1736 *
1737 * This executes the SMBus "write byte" protocol, returning negative errno
1738 * else zero on success.
1739 */
1740 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
1741 u8 value)
1742 {
1743 union i2c_smbus_data data;
1744 data.byte = value;
1745 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1746 I2C_SMBUS_WRITE, command,
1747 I2C_SMBUS_BYTE_DATA, &data);
1748 }
1749 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1750
1751 /**
1752 * i2c_smbus_read_word_data - SMBus "read word" protocol
1753 * @client: Handle to slave device
1754 * @command: Byte interpreted by slave
1755 *
1756 * This executes the SMBus "read word" protocol, returning negative errno
1757 * else a 16-bit unsigned "word" received from the device.
1758 */
1759 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
1760 {
1761 union i2c_smbus_data data;
1762 int status;
1763
1764 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1765 I2C_SMBUS_READ, command,
1766 I2C_SMBUS_WORD_DATA, &data);
1767 return (status < 0) ? status : data.word;
1768 }
1769 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1770
1771 /**
1772 * i2c_smbus_write_word_data - SMBus "write word" protocol
1773 * @client: Handle to slave device
1774 * @command: Byte interpreted by slave
1775 * @value: 16-bit "word" being written
1776 *
1777 * This executes the SMBus "write word" protocol, returning negative errno
1778 * else zero on success.
1779 */
1780 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
1781 u16 value)
1782 {
1783 union i2c_smbus_data data;
1784 data.word = value;
1785 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1786 I2C_SMBUS_WRITE, command,
1787 I2C_SMBUS_WORD_DATA, &data);
1788 }
1789 EXPORT_SYMBOL(i2c_smbus_write_word_data);
1790
1791 /**
1792 * i2c_smbus_process_call - SMBus "process call" protocol
1793 * @client: Handle to slave device
1794 * @command: Byte interpreted by slave
1795 * @value: 16-bit "word" being written
1796 *
1797 * This executes the SMBus "process call" protocol, returning negative errno
1798 * else a 16-bit unsigned "word" received from the device.
1799 */
1800 s32 i2c_smbus_process_call(const struct i2c_client *client, u8 command,
1801 u16 value)
1802 {
1803 union i2c_smbus_data data;
1804 int status;
1805 data.word = value;
1806
1807 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1808 I2C_SMBUS_WRITE, command,
1809 I2C_SMBUS_PROC_CALL, &data);
1810 return (status < 0) ? status : data.word;
1811 }
1812 EXPORT_SYMBOL(i2c_smbus_process_call);
1813
1814 /**
1815 * i2c_smbus_read_block_data - SMBus "block read" protocol
1816 * @client: Handle to slave device
1817 * @command: Byte interpreted by slave
1818 * @values: Byte array into which data will be read; big enough to hold
1819 * the data returned by the slave. SMBus allows at most 32 bytes.
1820 *
1821 * This executes the SMBus "block read" protocol, returning negative errno
1822 * else the number of data bytes in the slave's response.
1823 *
1824 * Note that using this function requires that the client's adapter support
1825 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
1826 * support this; its emulation through I2C messaging relies on a specific
1827 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
1828 */
1829 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
1830 u8 *values)
1831 {
1832 union i2c_smbus_data data;
1833 int status;
1834
1835 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1836 I2C_SMBUS_READ, command,
1837 I2C_SMBUS_BLOCK_DATA, &data);
1838 if (status)
1839 return status;
1840
1841 memcpy(values, &data.block[1], data.block[0]);
1842 return data.block[0];
1843 }
1844 EXPORT_SYMBOL(i2c_smbus_read_block_data);
1845
1846 /**
1847 * i2c_smbus_write_block_data - SMBus "block write" protocol
1848 * @client: Handle to slave device
1849 * @command: Byte interpreted by slave
1850 * @length: Size of data block; SMBus allows at most 32 bytes
1851 * @values: Byte array which will be written.
1852 *
1853 * This executes the SMBus "block write" protocol, returning negative errno
1854 * else zero on success.
1855 */
1856 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
1857 u8 length, const u8 *values)
1858 {
1859 union i2c_smbus_data data;
1860
1861 if (length > I2C_SMBUS_BLOCK_MAX)
1862 length = I2C_SMBUS_BLOCK_MAX;
1863 data.block[0] = length;
1864 memcpy(&data.block[1], values, length);
1865 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1866 I2C_SMBUS_WRITE, command,
1867 I2C_SMBUS_BLOCK_DATA, &data);
1868 }
1869 EXPORT_SYMBOL(i2c_smbus_write_block_data);
1870
1871 /* Returns the number of read bytes */
1872 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
1873 u8 length, u8 *values)
1874 {
1875 union i2c_smbus_data data;
1876 int status;
1877
1878 if (length > I2C_SMBUS_BLOCK_MAX)
1879 length = I2C_SMBUS_BLOCK_MAX;
1880 data.block[0] = length;
1881 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1882 I2C_SMBUS_READ, command,
1883 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1884 if (status < 0)
1885 return status;
1886
1887 memcpy(values, &data.block[1], data.block[0]);
1888 return data.block[0];
1889 }
1890 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
1891
1892 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
1893 u8 length, const u8 *values)
1894 {
1895 union i2c_smbus_data data;
1896
1897 if (length > I2C_SMBUS_BLOCK_MAX)
1898 length = I2C_SMBUS_BLOCK_MAX;
1899 data.block[0] = length;
1900 memcpy(data.block + 1, values, length);
1901 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1902 I2C_SMBUS_WRITE, command,
1903 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1904 }
1905 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
1906
1907 /* Simulate a SMBus command using the i2c protocol
1908 No checking of parameters is done! */
1909 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
1910 unsigned short flags,
1911 char read_write, u8 command, int size,
1912 union i2c_smbus_data *data)
1913 {
1914 /* So we need to generate a series of msgs. In the case of writing, we
1915 need to use only one message; when reading, we need two. We initialize
1916 most things with sane defaults, to keep the code below somewhat
1917 simpler. */
1918 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
1919 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
1920 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
1921 struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 },
1922 { addr, flags | I2C_M_RD, 0, msgbuf1 }
1923 };
1924 int i;
1925 u8 partial_pec = 0;
1926 int status;
1927
1928 msgbuf0[0] = command;
1929 switch (size) {
1930 case I2C_SMBUS_QUICK:
1931 msg[0].len = 0;
1932 /* Special case: The read/write field is used as data */
1933 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
1934 I2C_M_RD : 0);
1935 num = 1;
1936 break;
1937 case I2C_SMBUS_BYTE:
1938 if (read_write == I2C_SMBUS_READ) {
1939 /* Special case: only a read! */
1940 msg[0].flags = I2C_M_RD | flags;
1941 num = 1;
1942 }
1943 break;
1944 case I2C_SMBUS_BYTE_DATA:
1945 if (read_write == I2C_SMBUS_READ)
1946 msg[1].len = 1;
1947 else {
1948 msg[0].len = 2;
1949 msgbuf0[1] = data->byte;
1950 }
1951 break;
1952 case I2C_SMBUS_WORD_DATA:
1953 if (read_write == I2C_SMBUS_READ)
1954 msg[1].len = 2;
1955 else {
1956 msg[0].len = 3;
1957 msgbuf0[1] = data->word & 0xff;
1958 msgbuf0[2] = data->word >> 8;
1959 }
1960 break;
1961 case I2C_SMBUS_PROC_CALL:
1962 num = 2; /* Special case */
1963 read_write = I2C_SMBUS_READ;
1964 msg[0].len = 3;
1965 msg[1].len = 2;
1966 msgbuf0[1] = data->word & 0xff;
1967 msgbuf0[2] = data->word >> 8;
1968 break;
1969 case I2C_SMBUS_BLOCK_DATA:
1970 if (read_write == I2C_SMBUS_READ) {
1971 msg[1].flags |= I2C_M_RECV_LEN;
1972 msg[1].len = 1; /* block length will be added by
1973 the underlying bus driver */
1974 } else {
1975 msg[0].len = data->block[0] + 2;
1976 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
1977 dev_err(&adapter->dev,
1978 "Invalid block write size %d\n",
1979 data->block[0]);
1980 return -EINVAL;
1981 }
1982 for (i = 1; i < msg[0].len; i++)
1983 msgbuf0[i] = data->block[i-1];
1984 }
1985 break;
1986 case I2C_SMBUS_BLOCK_PROC_CALL:
1987 num = 2; /* Another special case */
1988 read_write = I2C_SMBUS_READ;
1989 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
1990 dev_err(&adapter->dev,
1991 "Invalid block write size %d\n",
1992 data->block[0]);
1993 return -EINVAL;
1994 }
1995 msg[0].len = data->block[0] + 2;
1996 for (i = 1; i < msg[0].len; i++)
1997 msgbuf0[i] = data->block[i-1];
1998 msg[1].flags |= I2C_M_RECV_LEN;
1999 msg[1].len = 1; /* block length will be added by
2000 the underlying bus driver */
2001 break;
2002 case I2C_SMBUS_I2C_BLOCK_DATA:
2003 if (read_write == I2C_SMBUS_READ) {
2004 msg[1].len = data->block[0];
2005 } else {
2006 msg[0].len = data->block[0] + 1;
2007 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2008 dev_err(&adapter->dev,
2009 "Invalid block write size %d\n",
2010 data->block[0]);
2011 return -EINVAL;
2012 }
2013 for (i = 1; i <= data->block[0]; i++)
2014 msgbuf0[i] = data->block[i];
2015 }
2016 break;
2017 default:
2018 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2019 return -EOPNOTSUPP;
2020 }
2021
2022 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2023 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2024 if (i) {
2025 /* Compute PEC if first message is a write */
2026 if (!(msg[0].flags & I2C_M_RD)) {
2027 if (num == 1) /* Write only */
2028 i2c_smbus_add_pec(&msg[0]);
2029 else /* Write followed by read */
2030 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2031 }
2032 /* Ask for PEC if last message is a read */
2033 if (msg[num-1].flags & I2C_M_RD)
2034 msg[num-1].len++;
2035 }
2036
2037 status = i2c_transfer(adapter, msg, num);
2038 if (status < 0)
2039 return status;
2040
2041 /* Check PEC if last message is a read */
2042 if (i && (msg[num-1].flags & I2C_M_RD)) {
2043 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2044 if (status < 0)
2045 return status;
2046 }
2047
2048 if (read_write == I2C_SMBUS_READ)
2049 switch (size) {
2050 case I2C_SMBUS_BYTE:
2051 data->byte = msgbuf0[0];
2052 break;
2053 case I2C_SMBUS_BYTE_DATA:
2054 data->byte = msgbuf1[0];
2055 break;
2056 case I2C_SMBUS_WORD_DATA:
2057 case I2C_SMBUS_PROC_CALL:
2058 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2059 break;
2060 case I2C_SMBUS_I2C_BLOCK_DATA:
2061 for (i = 0; i < data->block[0]; i++)
2062 data->block[i+1] = msgbuf1[i];
2063 break;
2064 case I2C_SMBUS_BLOCK_DATA:
2065 case I2C_SMBUS_BLOCK_PROC_CALL:
2066 for (i = 0; i < msgbuf1[0] + 1; i++)
2067 data->block[i] = msgbuf1[i];
2068 break;
2069 }
2070 return 0;
2071 }
2072
2073 /**
2074 * i2c_smbus_xfer - execute SMBus protocol operations
2075 * @adapter: Handle to I2C bus
2076 * @addr: Address of SMBus slave on that bus
2077 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2078 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2079 * @command: Byte interpreted by slave, for protocols which use such bytes
2080 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2081 * @data: Data to be read or written
2082 *
2083 * This executes an SMBus protocol operation, and returns a negative
2084 * errno code else zero on success.
2085 */
2086 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2087 char read_write, u8 command, int protocol,
2088 union i2c_smbus_data *data)
2089 {
2090 unsigned long orig_jiffies;
2091 int try;
2092 s32 res;
2093
2094 flags &= I2C_M_TEN | I2C_CLIENT_PEC;
2095
2096 if (adapter->algo->smbus_xfer) {
2097 i2c_lock_adapter(adapter);
2098
2099 /* Retry automatically on arbitration loss */
2100 orig_jiffies = jiffies;
2101 for (res = 0, try = 0; try <= adapter->retries; try++) {
2102 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2103 read_write, command,
2104 protocol, data);
2105 if (res != -EAGAIN)
2106 break;
2107 if (time_after(jiffies,
2108 orig_jiffies + adapter->timeout))
2109 break;
2110 }
2111 i2c_unlock_adapter(adapter);
2112 } else
2113 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2114 command, protocol, data);
2115
2116 return res;
2117 }
2118 EXPORT_SYMBOL(i2c_smbus_xfer);
2119
2120 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2121 MODULE_DESCRIPTION("I2C-Bus main module");
2122 MODULE_LICENSE("GPL");