]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/i2c/i2c-core.c
[media] i2c: Export an unlocked flavor of i2c_transfer
[mirror_ubuntu-focal-kernel.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com> */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/i2c.h>
33 #include <linux/init.h>
34 #include <linux/idr.h>
35 #include <linux/mutex.h>
36 #include <linux/of_device.h>
37 #include <linux/completion.h>
38 #include <linux/hardirq.h>
39 #include <linux/irqflags.h>
40 #include <linux/rwsem.h>
41 #include <linux/pm_runtime.h>
42 #include <asm/uaccess.h>
43
44 #include "i2c-core.h"
45
46
47 /* core_lock protects i2c_adapter_idr, and guarantees
48 that device detection, deletion of detected devices, and attach_adapter
49 and detach_adapter calls are serialized */
50 static DEFINE_MUTEX(core_lock);
51 static DEFINE_IDR(i2c_adapter_idr);
52
53 static struct device_type i2c_client_type;
54 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
55
56 /* ------------------------------------------------------------------------- */
57
58 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
59 const struct i2c_client *client)
60 {
61 while (id->name[0]) {
62 if (strcmp(client->name, id->name) == 0)
63 return id;
64 id++;
65 }
66 return NULL;
67 }
68
69 static int i2c_device_match(struct device *dev, struct device_driver *drv)
70 {
71 struct i2c_client *client = i2c_verify_client(dev);
72 struct i2c_driver *driver;
73
74 if (!client)
75 return 0;
76
77 /* Attempt an OF style match */
78 if (of_driver_match_device(dev, drv))
79 return 1;
80
81 driver = to_i2c_driver(drv);
82 /* match on an id table if there is one */
83 if (driver->id_table)
84 return i2c_match_id(driver->id_table, client) != NULL;
85
86 return 0;
87 }
88
89 #ifdef CONFIG_HOTPLUG
90
91 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
92 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
93 {
94 struct i2c_client *client = to_i2c_client(dev);
95
96 if (add_uevent_var(env, "MODALIAS=%s%s",
97 I2C_MODULE_PREFIX, client->name))
98 return -ENOMEM;
99 dev_dbg(dev, "uevent\n");
100 return 0;
101 }
102
103 #else
104 #define i2c_device_uevent NULL
105 #endif /* CONFIG_HOTPLUG */
106
107 static int i2c_device_probe(struct device *dev)
108 {
109 struct i2c_client *client = i2c_verify_client(dev);
110 struct i2c_driver *driver;
111 int status;
112
113 if (!client)
114 return 0;
115
116 driver = to_i2c_driver(dev->driver);
117 if (!driver->probe || !driver->id_table)
118 return -ENODEV;
119 client->driver = driver;
120 if (!device_can_wakeup(&client->dev))
121 device_init_wakeup(&client->dev,
122 client->flags & I2C_CLIENT_WAKE);
123 dev_dbg(dev, "probe\n");
124
125 status = driver->probe(client, i2c_match_id(driver->id_table, client));
126 if (status) {
127 client->driver = NULL;
128 i2c_set_clientdata(client, NULL);
129 }
130 return status;
131 }
132
133 static int i2c_device_remove(struct device *dev)
134 {
135 struct i2c_client *client = i2c_verify_client(dev);
136 struct i2c_driver *driver;
137 int status;
138
139 if (!client || !dev->driver)
140 return 0;
141
142 driver = to_i2c_driver(dev->driver);
143 if (driver->remove) {
144 dev_dbg(dev, "remove\n");
145 status = driver->remove(client);
146 } else {
147 dev->driver = NULL;
148 status = 0;
149 }
150 if (status == 0) {
151 client->driver = NULL;
152 i2c_set_clientdata(client, NULL);
153 }
154 return status;
155 }
156
157 static void i2c_device_shutdown(struct device *dev)
158 {
159 struct i2c_client *client = i2c_verify_client(dev);
160 struct i2c_driver *driver;
161
162 if (!client || !dev->driver)
163 return;
164 driver = to_i2c_driver(dev->driver);
165 if (driver->shutdown)
166 driver->shutdown(client);
167 }
168
169 #ifdef CONFIG_PM_SLEEP
170 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
171 {
172 struct i2c_client *client = i2c_verify_client(dev);
173 struct i2c_driver *driver;
174
175 if (!client || !dev->driver)
176 return 0;
177 driver = to_i2c_driver(dev->driver);
178 if (!driver->suspend)
179 return 0;
180 return driver->suspend(client, mesg);
181 }
182
183 static int i2c_legacy_resume(struct device *dev)
184 {
185 struct i2c_client *client = i2c_verify_client(dev);
186 struct i2c_driver *driver;
187
188 if (!client || !dev->driver)
189 return 0;
190 driver = to_i2c_driver(dev->driver);
191 if (!driver->resume)
192 return 0;
193 return driver->resume(client);
194 }
195
196 static int i2c_device_pm_suspend(struct device *dev)
197 {
198 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
199
200 if (pm)
201 return pm_generic_suspend(dev);
202 else
203 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
204 }
205
206 static int i2c_device_pm_resume(struct device *dev)
207 {
208 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
209
210 if (pm)
211 return pm_generic_resume(dev);
212 else
213 return i2c_legacy_resume(dev);
214 }
215
216 static int i2c_device_pm_freeze(struct device *dev)
217 {
218 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
219
220 if (pm)
221 return pm_generic_freeze(dev);
222 else
223 return i2c_legacy_suspend(dev, PMSG_FREEZE);
224 }
225
226 static int i2c_device_pm_thaw(struct device *dev)
227 {
228 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
229
230 if (pm)
231 return pm_generic_thaw(dev);
232 else
233 return i2c_legacy_resume(dev);
234 }
235
236 static int i2c_device_pm_poweroff(struct device *dev)
237 {
238 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
239
240 if (pm)
241 return pm_generic_poweroff(dev);
242 else
243 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
244 }
245
246 static int i2c_device_pm_restore(struct device *dev)
247 {
248 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
249
250 if (pm)
251 return pm_generic_restore(dev);
252 else
253 return i2c_legacy_resume(dev);
254 }
255 #else /* !CONFIG_PM_SLEEP */
256 #define i2c_device_pm_suspend NULL
257 #define i2c_device_pm_resume NULL
258 #define i2c_device_pm_freeze NULL
259 #define i2c_device_pm_thaw NULL
260 #define i2c_device_pm_poweroff NULL
261 #define i2c_device_pm_restore NULL
262 #endif /* !CONFIG_PM_SLEEP */
263
264 static void i2c_client_dev_release(struct device *dev)
265 {
266 kfree(to_i2c_client(dev));
267 }
268
269 static ssize_t
270 show_name(struct device *dev, struct device_attribute *attr, char *buf)
271 {
272 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
273 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
274 }
275
276 static ssize_t
277 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 struct i2c_client *client = to_i2c_client(dev);
280 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
281 }
282
283 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
284 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
285
286 static struct attribute *i2c_dev_attrs[] = {
287 &dev_attr_name.attr,
288 /* modalias helps coldplug: modprobe $(cat .../modalias) */
289 &dev_attr_modalias.attr,
290 NULL
291 };
292
293 static struct attribute_group i2c_dev_attr_group = {
294 .attrs = i2c_dev_attrs,
295 };
296
297 static const struct attribute_group *i2c_dev_attr_groups[] = {
298 &i2c_dev_attr_group,
299 NULL
300 };
301
302 static const struct dev_pm_ops i2c_device_pm_ops = {
303 .suspend = i2c_device_pm_suspend,
304 .resume = i2c_device_pm_resume,
305 .freeze = i2c_device_pm_freeze,
306 .thaw = i2c_device_pm_thaw,
307 .poweroff = i2c_device_pm_poweroff,
308 .restore = i2c_device_pm_restore,
309 SET_RUNTIME_PM_OPS(
310 pm_generic_runtime_suspend,
311 pm_generic_runtime_resume,
312 pm_generic_runtime_idle
313 )
314 };
315
316 struct bus_type i2c_bus_type = {
317 .name = "i2c",
318 .match = i2c_device_match,
319 .probe = i2c_device_probe,
320 .remove = i2c_device_remove,
321 .shutdown = i2c_device_shutdown,
322 .pm = &i2c_device_pm_ops,
323 };
324 EXPORT_SYMBOL_GPL(i2c_bus_type);
325
326 static struct device_type i2c_client_type = {
327 .groups = i2c_dev_attr_groups,
328 .uevent = i2c_device_uevent,
329 .release = i2c_client_dev_release,
330 };
331
332
333 /**
334 * i2c_verify_client - return parameter as i2c_client, or NULL
335 * @dev: device, probably from some driver model iterator
336 *
337 * When traversing the driver model tree, perhaps using driver model
338 * iterators like @device_for_each_child(), you can't assume very much
339 * about the nodes you find. Use this function to avoid oopses caused
340 * by wrongly treating some non-I2C device as an i2c_client.
341 */
342 struct i2c_client *i2c_verify_client(struct device *dev)
343 {
344 return (dev->type == &i2c_client_type)
345 ? to_i2c_client(dev)
346 : NULL;
347 }
348 EXPORT_SYMBOL(i2c_verify_client);
349
350
351 /* This is a permissive address validity check, I2C address map constraints
352 * are purposely not enforced, except for the general call address. */
353 static int i2c_check_client_addr_validity(const struct i2c_client *client)
354 {
355 if (client->flags & I2C_CLIENT_TEN) {
356 /* 10-bit address, all values are valid */
357 if (client->addr > 0x3ff)
358 return -EINVAL;
359 } else {
360 /* 7-bit address, reject the general call address */
361 if (client->addr == 0x00 || client->addr > 0x7f)
362 return -EINVAL;
363 }
364 return 0;
365 }
366
367 /* And this is a strict address validity check, used when probing. If a
368 * device uses a reserved address, then it shouldn't be probed. 7-bit
369 * addressing is assumed, 10-bit address devices are rare and should be
370 * explicitly enumerated. */
371 static int i2c_check_addr_validity(unsigned short addr)
372 {
373 /*
374 * Reserved addresses per I2C specification:
375 * 0x00 General call address / START byte
376 * 0x01 CBUS address
377 * 0x02 Reserved for different bus format
378 * 0x03 Reserved for future purposes
379 * 0x04-0x07 Hs-mode master code
380 * 0x78-0x7b 10-bit slave addressing
381 * 0x7c-0x7f Reserved for future purposes
382 */
383 if (addr < 0x08 || addr > 0x77)
384 return -EINVAL;
385 return 0;
386 }
387
388 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
389 {
390 struct i2c_client *client = i2c_verify_client(dev);
391 int addr = *(int *)addrp;
392
393 if (client && client->addr == addr)
394 return -EBUSY;
395 return 0;
396 }
397
398 /* walk up mux tree */
399 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
400 {
401 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
402 int result;
403
404 result = device_for_each_child(&adapter->dev, &addr,
405 __i2c_check_addr_busy);
406
407 if (!result && parent)
408 result = i2c_check_mux_parents(parent, addr);
409
410 return result;
411 }
412
413 /* recurse down mux tree */
414 static int i2c_check_mux_children(struct device *dev, void *addrp)
415 {
416 int result;
417
418 if (dev->type == &i2c_adapter_type)
419 result = device_for_each_child(dev, addrp,
420 i2c_check_mux_children);
421 else
422 result = __i2c_check_addr_busy(dev, addrp);
423
424 return result;
425 }
426
427 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
428 {
429 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
430 int result = 0;
431
432 if (parent)
433 result = i2c_check_mux_parents(parent, addr);
434
435 if (!result)
436 result = device_for_each_child(&adapter->dev, &addr,
437 i2c_check_mux_children);
438
439 return result;
440 }
441
442 /**
443 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
444 * @adapter: Target I2C bus segment
445 */
446 void i2c_lock_adapter(struct i2c_adapter *adapter)
447 {
448 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
449
450 if (parent)
451 i2c_lock_adapter(parent);
452 else
453 rt_mutex_lock(&adapter->bus_lock);
454 }
455 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
456
457 /**
458 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
459 * @adapter: Target I2C bus segment
460 */
461 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
462 {
463 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
464
465 if (parent)
466 return i2c_trylock_adapter(parent);
467 else
468 return rt_mutex_trylock(&adapter->bus_lock);
469 }
470
471 /**
472 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
473 * @adapter: Target I2C bus segment
474 */
475 void i2c_unlock_adapter(struct i2c_adapter *adapter)
476 {
477 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
478
479 if (parent)
480 i2c_unlock_adapter(parent);
481 else
482 rt_mutex_unlock(&adapter->bus_lock);
483 }
484 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
485
486 /**
487 * i2c_new_device - instantiate an i2c device
488 * @adap: the adapter managing the device
489 * @info: describes one I2C device; bus_num is ignored
490 * Context: can sleep
491 *
492 * Create an i2c device. Binding is handled through driver model
493 * probe()/remove() methods. A driver may be bound to this device when we
494 * return from this function, or any later moment (e.g. maybe hotplugging will
495 * load the driver module). This call is not appropriate for use by mainboard
496 * initialization logic, which usually runs during an arch_initcall() long
497 * before any i2c_adapter could exist.
498 *
499 * This returns the new i2c client, which may be saved for later use with
500 * i2c_unregister_device(); or NULL to indicate an error.
501 */
502 struct i2c_client *
503 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
504 {
505 struct i2c_client *client;
506 int status;
507
508 client = kzalloc(sizeof *client, GFP_KERNEL);
509 if (!client)
510 return NULL;
511
512 client->adapter = adap;
513
514 client->dev.platform_data = info->platform_data;
515
516 if (info->archdata)
517 client->dev.archdata = *info->archdata;
518
519 client->flags = info->flags;
520 client->addr = info->addr;
521 client->irq = info->irq;
522
523 strlcpy(client->name, info->type, sizeof(client->name));
524
525 /* Check for address validity */
526 status = i2c_check_client_addr_validity(client);
527 if (status) {
528 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
529 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
530 goto out_err_silent;
531 }
532
533 /* Check for address business */
534 status = i2c_check_addr_busy(adap, client->addr);
535 if (status)
536 goto out_err;
537
538 client->dev.parent = &client->adapter->dev;
539 client->dev.bus = &i2c_bus_type;
540 client->dev.type = &i2c_client_type;
541 client->dev.of_node = info->of_node;
542
543 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
544 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
545 client->addr | ((client->flags & I2C_CLIENT_TEN)
546 ? 0xa000 : 0));
547 status = device_register(&client->dev);
548 if (status)
549 goto out_err;
550
551 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
552 client->name, dev_name(&client->dev));
553
554 return client;
555
556 out_err:
557 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
558 "(%d)\n", client->name, client->addr, status);
559 out_err_silent:
560 kfree(client);
561 return NULL;
562 }
563 EXPORT_SYMBOL_GPL(i2c_new_device);
564
565
566 /**
567 * i2c_unregister_device - reverse effect of i2c_new_device()
568 * @client: value returned from i2c_new_device()
569 * Context: can sleep
570 */
571 void i2c_unregister_device(struct i2c_client *client)
572 {
573 device_unregister(&client->dev);
574 }
575 EXPORT_SYMBOL_GPL(i2c_unregister_device);
576
577
578 static const struct i2c_device_id dummy_id[] = {
579 { "dummy", 0 },
580 { },
581 };
582
583 static int dummy_probe(struct i2c_client *client,
584 const struct i2c_device_id *id)
585 {
586 return 0;
587 }
588
589 static int dummy_remove(struct i2c_client *client)
590 {
591 return 0;
592 }
593
594 static struct i2c_driver dummy_driver = {
595 .driver.name = "dummy",
596 .probe = dummy_probe,
597 .remove = dummy_remove,
598 .id_table = dummy_id,
599 };
600
601 /**
602 * i2c_new_dummy - return a new i2c device bound to a dummy driver
603 * @adapter: the adapter managing the device
604 * @address: seven bit address to be used
605 * Context: can sleep
606 *
607 * This returns an I2C client bound to the "dummy" driver, intended for use
608 * with devices that consume multiple addresses. Examples of such chips
609 * include various EEPROMS (like 24c04 and 24c08 models).
610 *
611 * These dummy devices have two main uses. First, most I2C and SMBus calls
612 * except i2c_transfer() need a client handle; the dummy will be that handle.
613 * And second, this prevents the specified address from being bound to a
614 * different driver.
615 *
616 * This returns the new i2c client, which should be saved for later use with
617 * i2c_unregister_device(); or NULL to indicate an error.
618 */
619 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
620 {
621 struct i2c_board_info info = {
622 I2C_BOARD_INFO("dummy", address),
623 };
624
625 return i2c_new_device(adapter, &info);
626 }
627 EXPORT_SYMBOL_GPL(i2c_new_dummy);
628
629 /* ------------------------------------------------------------------------- */
630
631 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
632
633 static void i2c_adapter_dev_release(struct device *dev)
634 {
635 struct i2c_adapter *adap = to_i2c_adapter(dev);
636 complete(&adap->dev_released);
637 }
638
639 /*
640 * Let users instantiate I2C devices through sysfs. This can be used when
641 * platform initialization code doesn't contain the proper data for
642 * whatever reason. Also useful for drivers that do device detection and
643 * detection fails, either because the device uses an unexpected address,
644 * or this is a compatible device with different ID register values.
645 *
646 * Parameter checking may look overzealous, but we really don't want
647 * the user to provide incorrect parameters.
648 */
649 static ssize_t
650 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
651 const char *buf, size_t count)
652 {
653 struct i2c_adapter *adap = to_i2c_adapter(dev);
654 struct i2c_board_info info;
655 struct i2c_client *client;
656 char *blank, end;
657 int res;
658
659 memset(&info, 0, sizeof(struct i2c_board_info));
660
661 blank = strchr(buf, ' ');
662 if (!blank) {
663 dev_err(dev, "%s: Missing parameters\n", "new_device");
664 return -EINVAL;
665 }
666 if (blank - buf > I2C_NAME_SIZE - 1) {
667 dev_err(dev, "%s: Invalid device name\n", "new_device");
668 return -EINVAL;
669 }
670 memcpy(info.type, buf, blank - buf);
671
672 /* Parse remaining parameters, reject extra parameters */
673 res = sscanf(++blank, "%hi%c", &info.addr, &end);
674 if (res < 1) {
675 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
676 return -EINVAL;
677 }
678 if (res > 1 && end != '\n') {
679 dev_err(dev, "%s: Extra parameters\n", "new_device");
680 return -EINVAL;
681 }
682
683 client = i2c_new_device(adap, &info);
684 if (!client)
685 return -EINVAL;
686
687 /* Keep track of the added device */
688 mutex_lock(&adap->userspace_clients_lock);
689 list_add_tail(&client->detected, &adap->userspace_clients);
690 mutex_unlock(&adap->userspace_clients_lock);
691 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
692 info.type, info.addr);
693
694 return count;
695 }
696
697 /*
698 * And of course let the users delete the devices they instantiated, if
699 * they got it wrong. This interface can only be used to delete devices
700 * instantiated by i2c_sysfs_new_device above. This guarantees that we
701 * don't delete devices to which some kernel code still has references.
702 *
703 * Parameter checking may look overzealous, but we really don't want
704 * the user to delete the wrong device.
705 */
706 static ssize_t
707 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
708 const char *buf, size_t count)
709 {
710 struct i2c_adapter *adap = to_i2c_adapter(dev);
711 struct i2c_client *client, *next;
712 unsigned short addr;
713 char end;
714 int res;
715
716 /* Parse parameters, reject extra parameters */
717 res = sscanf(buf, "%hi%c", &addr, &end);
718 if (res < 1) {
719 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
720 return -EINVAL;
721 }
722 if (res > 1 && end != '\n') {
723 dev_err(dev, "%s: Extra parameters\n", "delete_device");
724 return -EINVAL;
725 }
726
727 /* Make sure the device was added through sysfs */
728 res = -ENOENT;
729 mutex_lock(&adap->userspace_clients_lock);
730 list_for_each_entry_safe(client, next, &adap->userspace_clients,
731 detected) {
732 if (client->addr == addr) {
733 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
734 "delete_device", client->name, client->addr);
735
736 list_del(&client->detected);
737 i2c_unregister_device(client);
738 res = count;
739 break;
740 }
741 }
742 mutex_unlock(&adap->userspace_clients_lock);
743
744 if (res < 0)
745 dev_err(dev, "%s: Can't find device in list\n",
746 "delete_device");
747 return res;
748 }
749
750 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
751 static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
752
753 static struct attribute *i2c_adapter_attrs[] = {
754 &dev_attr_name.attr,
755 &dev_attr_new_device.attr,
756 &dev_attr_delete_device.attr,
757 NULL
758 };
759
760 static struct attribute_group i2c_adapter_attr_group = {
761 .attrs = i2c_adapter_attrs,
762 };
763
764 static const struct attribute_group *i2c_adapter_attr_groups[] = {
765 &i2c_adapter_attr_group,
766 NULL
767 };
768
769 struct device_type i2c_adapter_type = {
770 .groups = i2c_adapter_attr_groups,
771 .release = i2c_adapter_dev_release,
772 };
773 EXPORT_SYMBOL_GPL(i2c_adapter_type);
774
775 #ifdef CONFIG_I2C_COMPAT
776 static struct class_compat *i2c_adapter_compat_class;
777 #endif
778
779 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
780 {
781 struct i2c_devinfo *devinfo;
782
783 down_read(&__i2c_board_lock);
784 list_for_each_entry(devinfo, &__i2c_board_list, list) {
785 if (devinfo->busnum == adapter->nr
786 && !i2c_new_device(adapter,
787 &devinfo->board_info))
788 dev_err(&adapter->dev,
789 "Can't create device at 0x%02x\n",
790 devinfo->board_info.addr);
791 }
792 up_read(&__i2c_board_lock);
793 }
794
795 static int i2c_do_add_adapter(struct i2c_driver *driver,
796 struct i2c_adapter *adap)
797 {
798 /* Detect supported devices on that bus, and instantiate them */
799 i2c_detect(adap, driver);
800
801 /* Let legacy drivers scan this bus for matching devices */
802 if (driver->attach_adapter) {
803 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
804 driver->driver.name);
805 dev_warn(&adap->dev, "Please use another way to instantiate "
806 "your i2c_client\n");
807 /* We ignore the return code; if it fails, too bad */
808 driver->attach_adapter(adap);
809 }
810 return 0;
811 }
812
813 static int __process_new_adapter(struct device_driver *d, void *data)
814 {
815 return i2c_do_add_adapter(to_i2c_driver(d), data);
816 }
817
818 static int i2c_register_adapter(struct i2c_adapter *adap)
819 {
820 int res = 0;
821
822 /* Can't register until after driver model init */
823 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
824 res = -EAGAIN;
825 goto out_list;
826 }
827
828 /* Sanity checks */
829 if (unlikely(adap->name[0] == '\0')) {
830 pr_err("i2c-core: Attempt to register an adapter with "
831 "no name!\n");
832 return -EINVAL;
833 }
834 if (unlikely(!adap->algo)) {
835 pr_err("i2c-core: Attempt to register adapter '%s' with "
836 "no algo!\n", adap->name);
837 return -EINVAL;
838 }
839
840 rt_mutex_init(&adap->bus_lock);
841 mutex_init(&adap->userspace_clients_lock);
842 INIT_LIST_HEAD(&adap->userspace_clients);
843
844 /* Set default timeout to 1 second if not already set */
845 if (adap->timeout == 0)
846 adap->timeout = HZ;
847
848 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
849 adap->dev.bus = &i2c_bus_type;
850 adap->dev.type = &i2c_adapter_type;
851 res = device_register(&adap->dev);
852 if (res)
853 goto out_list;
854
855 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
856
857 #ifdef CONFIG_I2C_COMPAT
858 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
859 adap->dev.parent);
860 if (res)
861 dev_warn(&adap->dev,
862 "Failed to create compatibility class link\n");
863 #endif
864
865 /* create pre-declared device nodes */
866 if (adap->nr < __i2c_first_dynamic_bus_num)
867 i2c_scan_static_board_info(adap);
868
869 /* Notify drivers */
870 mutex_lock(&core_lock);
871 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
872 mutex_unlock(&core_lock);
873
874 return 0;
875
876 out_list:
877 mutex_lock(&core_lock);
878 idr_remove(&i2c_adapter_idr, adap->nr);
879 mutex_unlock(&core_lock);
880 return res;
881 }
882
883 /**
884 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
885 * @adapter: the adapter to add
886 * Context: can sleep
887 *
888 * This routine is used to declare an I2C adapter when its bus number
889 * doesn't matter. Examples: for I2C adapters dynamically added by
890 * USB links or PCI plugin cards.
891 *
892 * When this returns zero, a new bus number was allocated and stored
893 * in adap->nr, and the specified adapter became available for clients.
894 * Otherwise, a negative errno value is returned.
895 */
896 int i2c_add_adapter(struct i2c_adapter *adapter)
897 {
898 int id, res = 0;
899
900 retry:
901 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
902 return -ENOMEM;
903
904 mutex_lock(&core_lock);
905 /* "above" here means "above or equal to", sigh */
906 res = idr_get_new_above(&i2c_adapter_idr, adapter,
907 __i2c_first_dynamic_bus_num, &id);
908 mutex_unlock(&core_lock);
909
910 if (res < 0) {
911 if (res == -EAGAIN)
912 goto retry;
913 return res;
914 }
915
916 adapter->nr = id;
917 return i2c_register_adapter(adapter);
918 }
919 EXPORT_SYMBOL(i2c_add_adapter);
920
921 /**
922 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
923 * @adap: the adapter to register (with adap->nr initialized)
924 * Context: can sleep
925 *
926 * This routine is used to declare an I2C adapter when its bus number
927 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
928 * or otherwise built in to the system's mainboard, and where i2c_board_info
929 * is used to properly configure I2C devices.
930 *
931 * If the requested bus number is set to -1, then this function will behave
932 * identically to i2c_add_adapter, and will dynamically assign a bus number.
933 *
934 * If no devices have pre-been declared for this bus, then be sure to
935 * register the adapter before any dynamically allocated ones. Otherwise
936 * the required bus ID may not be available.
937 *
938 * When this returns zero, the specified adapter became available for
939 * clients using the bus number provided in adap->nr. Also, the table
940 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
941 * and the appropriate driver model device nodes are created. Otherwise, a
942 * negative errno value is returned.
943 */
944 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
945 {
946 int id;
947 int status;
948
949 if (adap->nr == -1) /* -1 means dynamically assign bus id */
950 return i2c_add_adapter(adap);
951 if (adap->nr & ~MAX_ID_MASK)
952 return -EINVAL;
953
954 retry:
955 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
956 return -ENOMEM;
957
958 mutex_lock(&core_lock);
959 /* "above" here means "above or equal to", sigh;
960 * we need the "equal to" result to force the result
961 */
962 status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
963 if (status == 0 && id != adap->nr) {
964 status = -EBUSY;
965 idr_remove(&i2c_adapter_idr, id);
966 }
967 mutex_unlock(&core_lock);
968 if (status == -EAGAIN)
969 goto retry;
970
971 if (status == 0)
972 status = i2c_register_adapter(adap);
973 return status;
974 }
975 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
976
977 static int i2c_do_del_adapter(struct i2c_driver *driver,
978 struct i2c_adapter *adapter)
979 {
980 struct i2c_client *client, *_n;
981 int res;
982
983 /* Remove the devices we created ourselves as the result of hardware
984 * probing (using a driver's detect method) */
985 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
986 if (client->adapter == adapter) {
987 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
988 client->name, client->addr);
989 list_del(&client->detected);
990 i2c_unregister_device(client);
991 }
992 }
993
994 if (!driver->detach_adapter)
995 return 0;
996 dev_warn(&adapter->dev, "%s: detach_adapter method is deprecated\n",
997 driver->driver.name);
998 res = driver->detach_adapter(adapter);
999 if (res)
1000 dev_err(&adapter->dev, "detach_adapter failed (%d) "
1001 "for driver [%s]\n", res, driver->driver.name);
1002 return res;
1003 }
1004
1005 static int __unregister_client(struct device *dev, void *dummy)
1006 {
1007 struct i2c_client *client = i2c_verify_client(dev);
1008 if (client && strcmp(client->name, "dummy"))
1009 i2c_unregister_device(client);
1010 return 0;
1011 }
1012
1013 static int __unregister_dummy(struct device *dev, void *dummy)
1014 {
1015 struct i2c_client *client = i2c_verify_client(dev);
1016 if (client)
1017 i2c_unregister_device(client);
1018 return 0;
1019 }
1020
1021 static int __process_removed_adapter(struct device_driver *d, void *data)
1022 {
1023 return i2c_do_del_adapter(to_i2c_driver(d), data);
1024 }
1025
1026 /**
1027 * i2c_del_adapter - unregister I2C adapter
1028 * @adap: the adapter being unregistered
1029 * Context: can sleep
1030 *
1031 * This unregisters an I2C adapter which was previously registered
1032 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1033 */
1034 int i2c_del_adapter(struct i2c_adapter *adap)
1035 {
1036 int res = 0;
1037 struct i2c_adapter *found;
1038 struct i2c_client *client, *next;
1039
1040 /* First make sure that this adapter was ever added */
1041 mutex_lock(&core_lock);
1042 found = idr_find(&i2c_adapter_idr, adap->nr);
1043 mutex_unlock(&core_lock);
1044 if (found != adap) {
1045 pr_debug("i2c-core: attempting to delete unregistered "
1046 "adapter [%s]\n", adap->name);
1047 return -EINVAL;
1048 }
1049
1050 /* Tell drivers about this removal */
1051 mutex_lock(&core_lock);
1052 res = bus_for_each_drv(&i2c_bus_type, NULL, adap,
1053 __process_removed_adapter);
1054 mutex_unlock(&core_lock);
1055 if (res)
1056 return res;
1057
1058 /* Remove devices instantiated from sysfs */
1059 mutex_lock(&adap->userspace_clients_lock);
1060 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1061 detected) {
1062 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1063 client->addr);
1064 list_del(&client->detected);
1065 i2c_unregister_device(client);
1066 }
1067 mutex_unlock(&adap->userspace_clients_lock);
1068
1069 /* Detach any active clients. This can't fail, thus we do not
1070 * check the returned value. This is a two-pass process, because
1071 * we can't remove the dummy devices during the first pass: they
1072 * could have been instantiated by real devices wishing to clean
1073 * them up properly, so we give them a chance to do that first. */
1074 res = device_for_each_child(&adap->dev, NULL, __unregister_client);
1075 res = device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1076
1077 #ifdef CONFIG_I2C_COMPAT
1078 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1079 adap->dev.parent);
1080 #endif
1081
1082 /* device name is gone after device_unregister */
1083 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1084
1085 /* clean up the sysfs representation */
1086 init_completion(&adap->dev_released);
1087 device_unregister(&adap->dev);
1088
1089 /* wait for sysfs to drop all references */
1090 wait_for_completion(&adap->dev_released);
1091
1092 /* free bus id */
1093 mutex_lock(&core_lock);
1094 idr_remove(&i2c_adapter_idr, adap->nr);
1095 mutex_unlock(&core_lock);
1096
1097 /* Clear the device structure in case this adapter is ever going to be
1098 added again */
1099 memset(&adap->dev, 0, sizeof(adap->dev));
1100
1101 return 0;
1102 }
1103 EXPORT_SYMBOL(i2c_del_adapter);
1104
1105
1106 /* ------------------------------------------------------------------------- */
1107
1108 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1109 {
1110 int res;
1111
1112 mutex_lock(&core_lock);
1113 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1114 mutex_unlock(&core_lock);
1115
1116 return res;
1117 }
1118 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1119
1120 static int __process_new_driver(struct device *dev, void *data)
1121 {
1122 if (dev->type != &i2c_adapter_type)
1123 return 0;
1124 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1125 }
1126
1127 /*
1128 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1129 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1130 */
1131
1132 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1133 {
1134 int res;
1135
1136 /* Can't register until after driver model init */
1137 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1138 return -EAGAIN;
1139
1140 /* add the driver to the list of i2c drivers in the driver core */
1141 driver->driver.owner = owner;
1142 driver->driver.bus = &i2c_bus_type;
1143
1144 /* When registration returns, the driver core
1145 * will have called probe() for all matching-but-unbound devices.
1146 */
1147 res = driver_register(&driver->driver);
1148 if (res)
1149 return res;
1150
1151 /* Drivers should switch to dev_pm_ops instead. */
1152 if (driver->suspend)
1153 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1154 driver->driver.name);
1155 if (driver->resume)
1156 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1157 driver->driver.name);
1158
1159 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1160
1161 INIT_LIST_HEAD(&driver->clients);
1162 /* Walk the adapters that are already present */
1163 i2c_for_each_dev(driver, __process_new_driver);
1164
1165 return 0;
1166 }
1167 EXPORT_SYMBOL(i2c_register_driver);
1168
1169 static int __process_removed_driver(struct device *dev, void *data)
1170 {
1171 if (dev->type != &i2c_adapter_type)
1172 return 0;
1173 return i2c_do_del_adapter(data, to_i2c_adapter(dev));
1174 }
1175
1176 /**
1177 * i2c_del_driver - unregister I2C driver
1178 * @driver: the driver being unregistered
1179 * Context: can sleep
1180 */
1181 void i2c_del_driver(struct i2c_driver *driver)
1182 {
1183 i2c_for_each_dev(driver, __process_removed_driver);
1184
1185 driver_unregister(&driver->driver);
1186 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1187 }
1188 EXPORT_SYMBOL(i2c_del_driver);
1189
1190 /* ------------------------------------------------------------------------- */
1191
1192 /**
1193 * i2c_use_client - increments the reference count of the i2c client structure
1194 * @client: the client being referenced
1195 *
1196 * Each live reference to a client should be refcounted. The driver model does
1197 * that automatically as part of driver binding, so that most drivers don't
1198 * need to do this explicitly: they hold a reference until they're unbound
1199 * from the device.
1200 *
1201 * A pointer to the client with the incremented reference counter is returned.
1202 */
1203 struct i2c_client *i2c_use_client(struct i2c_client *client)
1204 {
1205 if (client && get_device(&client->dev))
1206 return client;
1207 return NULL;
1208 }
1209 EXPORT_SYMBOL(i2c_use_client);
1210
1211 /**
1212 * i2c_release_client - release a use of the i2c client structure
1213 * @client: the client being no longer referenced
1214 *
1215 * Must be called when a user of a client is finished with it.
1216 */
1217 void i2c_release_client(struct i2c_client *client)
1218 {
1219 if (client)
1220 put_device(&client->dev);
1221 }
1222 EXPORT_SYMBOL(i2c_release_client);
1223
1224 struct i2c_cmd_arg {
1225 unsigned cmd;
1226 void *arg;
1227 };
1228
1229 static int i2c_cmd(struct device *dev, void *_arg)
1230 {
1231 struct i2c_client *client = i2c_verify_client(dev);
1232 struct i2c_cmd_arg *arg = _arg;
1233
1234 if (client && client->driver && client->driver->command)
1235 client->driver->command(client, arg->cmd, arg->arg);
1236 return 0;
1237 }
1238
1239 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1240 {
1241 struct i2c_cmd_arg cmd_arg;
1242
1243 cmd_arg.cmd = cmd;
1244 cmd_arg.arg = arg;
1245 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1246 }
1247 EXPORT_SYMBOL(i2c_clients_command);
1248
1249 static int __init i2c_init(void)
1250 {
1251 int retval;
1252
1253 retval = bus_register(&i2c_bus_type);
1254 if (retval)
1255 return retval;
1256 #ifdef CONFIG_I2C_COMPAT
1257 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1258 if (!i2c_adapter_compat_class) {
1259 retval = -ENOMEM;
1260 goto bus_err;
1261 }
1262 #endif
1263 retval = i2c_add_driver(&dummy_driver);
1264 if (retval)
1265 goto class_err;
1266 return 0;
1267
1268 class_err:
1269 #ifdef CONFIG_I2C_COMPAT
1270 class_compat_unregister(i2c_adapter_compat_class);
1271 bus_err:
1272 #endif
1273 bus_unregister(&i2c_bus_type);
1274 return retval;
1275 }
1276
1277 static void __exit i2c_exit(void)
1278 {
1279 i2c_del_driver(&dummy_driver);
1280 #ifdef CONFIG_I2C_COMPAT
1281 class_compat_unregister(i2c_adapter_compat_class);
1282 #endif
1283 bus_unregister(&i2c_bus_type);
1284 }
1285
1286 /* We must initialize early, because some subsystems register i2c drivers
1287 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1288 */
1289 postcore_initcall(i2c_init);
1290 module_exit(i2c_exit);
1291
1292 /* ----------------------------------------------------
1293 * the functional interface to the i2c busses.
1294 * ----------------------------------------------------
1295 */
1296
1297 /**
1298 * __i2c_transfer - unlocked flavor of i2c_transfer
1299 * @adap: Handle to I2C bus
1300 * @msgs: One or more messages to execute before STOP is issued to
1301 * terminate the operation; each message begins with a START.
1302 * @num: Number of messages to be executed.
1303 *
1304 * Returns negative errno, else the number of messages executed.
1305 *
1306 * Adapter lock must be held when calling this function. No debug logging
1307 * takes place. adap->algo->master_xfer existence isn't checked.
1308 */
1309 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1310 {
1311 unsigned long orig_jiffies;
1312 int ret, try;
1313
1314 /* Retry automatically on arbitration loss */
1315 orig_jiffies = jiffies;
1316 for (ret = 0, try = 0; try <= adap->retries; try++) {
1317 ret = adap->algo->master_xfer(adap, msgs, num);
1318 if (ret != -EAGAIN)
1319 break;
1320 if (time_after(jiffies, orig_jiffies + adap->timeout))
1321 break;
1322 }
1323
1324 return ret;
1325 }
1326 EXPORT_SYMBOL(__i2c_transfer);
1327
1328 /**
1329 * i2c_transfer - execute a single or combined I2C message
1330 * @adap: Handle to I2C bus
1331 * @msgs: One or more messages to execute before STOP is issued to
1332 * terminate the operation; each message begins with a START.
1333 * @num: Number of messages to be executed.
1334 *
1335 * Returns negative errno, else the number of messages executed.
1336 *
1337 * Note that there is no requirement that each message be sent to
1338 * the same slave address, although that is the most common model.
1339 */
1340 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1341 {
1342 int ret;
1343
1344 /* REVISIT the fault reporting model here is weak:
1345 *
1346 * - When we get an error after receiving N bytes from a slave,
1347 * there is no way to report "N".
1348 *
1349 * - When we get a NAK after transmitting N bytes to a slave,
1350 * there is no way to report "N" ... or to let the master
1351 * continue executing the rest of this combined message, if
1352 * that's the appropriate response.
1353 *
1354 * - When for example "num" is two and we successfully complete
1355 * the first message but get an error part way through the
1356 * second, it's unclear whether that should be reported as
1357 * one (discarding status on the second message) or errno
1358 * (discarding status on the first one).
1359 */
1360
1361 if (adap->algo->master_xfer) {
1362 #ifdef DEBUG
1363 for (ret = 0; ret < num; ret++) {
1364 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1365 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1366 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1367 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1368 }
1369 #endif
1370
1371 if (in_atomic() || irqs_disabled()) {
1372 ret = i2c_trylock_adapter(adap);
1373 if (!ret)
1374 /* I2C activity is ongoing. */
1375 return -EAGAIN;
1376 } else {
1377 i2c_lock_adapter(adap);
1378 }
1379
1380 ret = __i2c_transfer(adap, msgs, num);
1381 i2c_unlock_adapter(adap);
1382
1383 return ret;
1384 } else {
1385 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1386 return -EOPNOTSUPP;
1387 }
1388 }
1389 EXPORT_SYMBOL(i2c_transfer);
1390
1391 /**
1392 * i2c_master_send - issue a single I2C message in master transmit mode
1393 * @client: Handle to slave device
1394 * @buf: Data that will be written to the slave
1395 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1396 *
1397 * Returns negative errno, or else the number of bytes written.
1398 */
1399 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1400 {
1401 int ret;
1402 struct i2c_adapter *adap = client->adapter;
1403 struct i2c_msg msg;
1404
1405 msg.addr = client->addr;
1406 msg.flags = client->flags & I2C_M_TEN;
1407 msg.len = count;
1408 msg.buf = (char *)buf;
1409
1410 ret = i2c_transfer(adap, &msg, 1);
1411
1412 /*
1413 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1414 * transmitted, else error code.
1415 */
1416 return (ret == 1) ? count : ret;
1417 }
1418 EXPORT_SYMBOL(i2c_master_send);
1419
1420 /**
1421 * i2c_master_recv - issue a single I2C message in master receive mode
1422 * @client: Handle to slave device
1423 * @buf: Where to store data read from slave
1424 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1425 *
1426 * Returns negative errno, or else the number of bytes read.
1427 */
1428 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1429 {
1430 struct i2c_adapter *adap = client->adapter;
1431 struct i2c_msg msg;
1432 int ret;
1433
1434 msg.addr = client->addr;
1435 msg.flags = client->flags & I2C_M_TEN;
1436 msg.flags |= I2C_M_RD;
1437 msg.len = count;
1438 msg.buf = buf;
1439
1440 ret = i2c_transfer(adap, &msg, 1);
1441
1442 /*
1443 * If everything went ok (i.e. 1 msg received), return #bytes received,
1444 * else error code.
1445 */
1446 return (ret == 1) ? count : ret;
1447 }
1448 EXPORT_SYMBOL(i2c_master_recv);
1449
1450 /* ----------------------------------------------------
1451 * the i2c address scanning function
1452 * Will not work for 10-bit addresses!
1453 * ----------------------------------------------------
1454 */
1455
1456 /*
1457 * Legacy default probe function, mostly relevant for SMBus. The default
1458 * probe method is a quick write, but it is known to corrupt the 24RF08
1459 * EEPROMs due to a state machine bug, and could also irreversibly
1460 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1461 * we use a short byte read instead. Also, some bus drivers don't implement
1462 * quick write, so we fallback to a byte read in that case too.
1463 * On x86, there is another special case for FSC hardware monitoring chips,
1464 * which want regular byte reads (address 0x73.) Fortunately, these are the
1465 * only known chips using this I2C address on PC hardware.
1466 * Returns 1 if probe succeeded, 0 if not.
1467 */
1468 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1469 {
1470 int err;
1471 union i2c_smbus_data dummy;
1472
1473 #ifdef CONFIG_X86
1474 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1475 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1476 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1477 I2C_SMBUS_BYTE_DATA, &dummy);
1478 else
1479 #endif
1480 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1481 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1482 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1483 I2C_SMBUS_QUICK, NULL);
1484 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1485 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1486 I2C_SMBUS_BYTE, &dummy);
1487 else {
1488 dev_warn(&adap->dev, "No suitable probing method supported\n");
1489 err = -EOPNOTSUPP;
1490 }
1491
1492 return err >= 0;
1493 }
1494
1495 static int i2c_detect_address(struct i2c_client *temp_client,
1496 struct i2c_driver *driver)
1497 {
1498 struct i2c_board_info info;
1499 struct i2c_adapter *adapter = temp_client->adapter;
1500 int addr = temp_client->addr;
1501 int err;
1502
1503 /* Make sure the address is valid */
1504 err = i2c_check_addr_validity(addr);
1505 if (err) {
1506 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1507 addr);
1508 return err;
1509 }
1510
1511 /* Skip if already in use */
1512 if (i2c_check_addr_busy(adapter, addr))
1513 return 0;
1514
1515 /* Make sure there is something at this address */
1516 if (!i2c_default_probe(adapter, addr))
1517 return 0;
1518
1519 /* Finally call the custom detection function */
1520 memset(&info, 0, sizeof(struct i2c_board_info));
1521 info.addr = addr;
1522 err = driver->detect(temp_client, &info);
1523 if (err) {
1524 /* -ENODEV is returned if the detection fails. We catch it
1525 here as this isn't an error. */
1526 return err == -ENODEV ? 0 : err;
1527 }
1528
1529 /* Consistency check */
1530 if (info.type[0] == '\0') {
1531 dev_err(&adapter->dev, "%s detection function provided "
1532 "no name for 0x%x\n", driver->driver.name,
1533 addr);
1534 } else {
1535 struct i2c_client *client;
1536
1537 /* Detection succeeded, instantiate the device */
1538 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1539 info.type, info.addr);
1540 client = i2c_new_device(adapter, &info);
1541 if (client)
1542 list_add_tail(&client->detected, &driver->clients);
1543 else
1544 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1545 info.type, info.addr);
1546 }
1547 return 0;
1548 }
1549
1550 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1551 {
1552 const unsigned short *address_list;
1553 struct i2c_client *temp_client;
1554 int i, err = 0;
1555 int adap_id = i2c_adapter_id(adapter);
1556
1557 address_list = driver->address_list;
1558 if (!driver->detect || !address_list)
1559 return 0;
1560
1561 /* Stop here if the classes do not match */
1562 if (!(adapter->class & driver->class))
1563 return 0;
1564
1565 /* Set up a temporary client to help detect callback */
1566 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1567 if (!temp_client)
1568 return -ENOMEM;
1569 temp_client->adapter = adapter;
1570
1571 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1572 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1573 "addr 0x%02x\n", adap_id, address_list[i]);
1574 temp_client->addr = address_list[i];
1575 err = i2c_detect_address(temp_client, driver);
1576 if (unlikely(err))
1577 break;
1578 }
1579
1580 kfree(temp_client);
1581 return err;
1582 }
1583
1584 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1585 {
1586 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1587 I2C_SMBUS_QUICK, NULL) >= 0;
1588 }
1589 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1590
1591 struct i2c_client *
1592 i2c_new_probed_device(struct i2c_adapter *adap,
1593 struct i2c_board_info *info,
1594 unsigned short const *addr_list,
1595 int (*probe)(struct i2c_adapter *, unsigned short addr))
1596 {
1597 int i;
1598
1599 if (!probe)
1600 probe = i2c_default_probe;
1601
1602 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1603 /* Check address validity */
1604 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1605 dev_warn(&adap->dev, "Invalid 7-bit address "
1606 "0x%02x\n", addr_list[i]);
1607 continue;
1608 }
1609
1610 /* Check address availability */
1611 if (i2c_check_addr_busy(adap, addr_list[i])) {
1612 dev_dbg(&adap->dev, "Address 0x%02x already in "
1613 "use, not probing\n", addr_list[i]);
1614 continue;
1615 }
1616
1617 /* Test address responsiveness */
1618 if (probe(adap, addr_list[i]))
1619 break;
1620 }
1621
1622 if (addr_list[i] == I2C_CLIENT_END) {
1623 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1624 return NULL;
1625 }
1626
1627 info->addr = addr_list[i];
1628 return i2c_new_device(adap, info);
1629 }
1630 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1631
1632 struct i2c_adapter *i2c_get_adapter(int nr)
1633 {
1634 struct i2c_adapter *adapter;
1635
1636 mutex_lock(&core_lock);
1637 adapter = idr_find(&i2c_adapter_idr, nr);
1638 if (adapter && !try_module_get(adapter->owner))
1639 adapter = NULL;
1640
1641 mutex_unlock(&core_lock);
1642 return adapter;
1643 }
1644 EXPORT_SYMBOL(i2c_get_adapter);
1645
1646 void i2c_put_adapter(struct i2c_adapter *adap)
1647 {
1648 module_put(adap->owner);
1649 }
1650 EXPORT_SYMBOL(i2c_put_adapter);
1651
1652 /* The SMBus parts */
1653
1654 #define POLY (0x1070U << 3)
1655 static u8 crc8(u16 data)
1656 {
1657 int i;
1658
1659 for (i = 0; i < 8; i++) {
1660 if (data & 0x8000)
1661 data = data ^ POLY;
1662 data = data << 1;
1663 }
1664 return (u8)(data >> 8);
1665 }
1666
1667 /* Incremental CRC8 over count bytes in the array pointed to by p */
1668 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1669 {
1670 int i;
1671
1672 for (i = 0; i < count; i++)
1673 crc = crc8((crc ^ p[i]) << 8);
1674 return crc;
1675 }
1676
1677 /* Assume a 7-bit address, which is reasonable for SMBus */
1678 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1679 {
1680 /* The address will be sent first */
1681 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1682 pec = i2c_smbus_pec(pec, &addr, 1);
1683
1684 /* The data buffer follows */
1685 return i2c_smbus_pec(pec, msg->buf, msg->len);
1686 }
1687
1688 /* Used for write only transactions */
1689 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1690 {
1691 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1692 msg->len++;
1693 }
1694
1695 /* Return <0 on CRC error
1696 If there was a write before this read (most cases) we need to take the
1697 partial CRC from the write part into account.
1698 Note that this function does modify the message (we need to decrease the
1699 message length to hide the CRC byte from the caller). */
1700 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1701 {
1702 u8 rpec = msg->buf[--msg->len];
1703 cpec = i2c_smbus_msg_pec(cpec, msg);
1704
1705 if (rpec != cpec) {
1706 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1707 rpec, cpec);
1708 return -EBADMSG;
1709 }
1710 return 0;
1711 }
1712
1713 /**
1714 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1715 * @client: Handle to slave device
1716 *
1717 * This executes the SMBus "receive byte" protocol, returning negative errno
1718 * else the byte received from the device.
1719 */
1720 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1721 {
1722 union i2c_smbus_data data;
1723 int status;
1724
1725 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1726 I2C_SMBUS_READ, 0,
1727 I2C_SMBUS_BYTE, &data);
1728 return (status < 0) ? status : data.byte;
1729 }
1730 EXPORT_SYMBOL(i2c_smbus_read_byte);
1731
1732 /**
1733 * i2c_smbus_write_byte - SMBus "send byte" protocol
1734 * @client: Handle to slave device
1735 * @value: Byte to be sent
1736 *
1737 * This executes the SMBus "send byte" protocol, returning negative errno
1738 * else zero on success.
1739 */
1740 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1741 {
1742 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1743 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1744 }
1745 EXPORT_SYMBOL(i2c_smbus_write_byte);
1746
1747 /**
1748 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1749 * @client: Handle to slave device
1750 * @command: Byte interpreted by slave
1751 *
1752 * This executes the SMBus "read byte" protocol, returning negative errno
1753 * else a data byte received from the device.
1754 */
1755 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
1756 {
1757 union i2c_smbus_data data;
1758 int status;
1759
1760 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1761 I2C_SMBUS_READ, command,
1762 I2C_SMBUS_BYTE_DATA, &data);
1763 return (status < 0) ? status : data.byte;
1764 }
1765 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1766
1767 /**
1768 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1769 * @client: Handle to slave device
1770 * @command: Byte interpreted by slave
1771 * @value: Byte being written
1772 *
1773 * This executes the SMBus "write byte" protocol, returning negative errno
1774 * else zero on success.
1775 */
1776 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
1777 u8 value)
1778 {
1779 union i2c_smbus_data data;
1780 data.byte = value;
1781 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1782 I2C_SMBUS_WRITE, command,
1783 I2C_SMBUS_BYTE_DATA, &data);
1784 }
1785 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1786
1787 /**
1788 * i2c_smbus_read_word_data - SMBus "read word" protocol
1789 * @client: Handle to slave device
1790 * @command: Byte interpreted by slave
1791 *
1792 * This executes the SMBus "read word" protocol, returning negative errno
1793 * else a 16-bit unsigned "word" received from the device.
1794 */
1795 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
1796 {
1797 union i2c_smbus_data data;
1798 int status;
1799
1800 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1801 I2C_SMBUS_READ, command,
1802 I2C_SMBUS_WORD_DATA, &data);
1803 return (status < 0) ? status : data.word;
1804 }
1805 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1806
1807 /**
1808 * i2c_smbus_write_word_data - SMBus "write word" protocol
1809 * @client: Handle to slave device
1810 * @command: Byte interpreted by slave
1811 * @value: 16-bit "word" being written
1812 *
1813 * This executes the SMBus "write word" protocol, returning negative errno
1814 * else zero on success.
1815 */
1816 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
1817 u16 value)
1818 {
1819 union i2c_smbus_data data;
1820 data.word = value;
1821 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1822 I2C_SMBUS_WRITE, command,
1823 I2C_SMBUS_WORD_DATA, &data);
1824 }
1825 EXPORT_SYMBOL(i2c_smbus_write_word_data);
1826
1827 /**
1828 * i2c_smbus_process_call - SMBus "process call" protocol
1829 * @client: Handle to slave device
1830 * @command: Byte interpreted by slave
1831 * @value: 16-bit "word" being written
1832 *
1833 * This executes the SMBus "process call" protocol, returning negative errno
1834 * else a 16-bit unsigned "word" received from the device.
1835 */
1836 s32 i2c_smbus_process_call(const struct i2c_client *client, u8 command,
1837 u16 value)
1838 {
1839 union i2c_smbus_data data;
1840 int status;
1841 data.word = value;
1842
1843 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1844 I2C_SMBUS_WRITE, command,
1845 I2C_SMBUS_PROC_CALL, &data);
1846 return (status < 0) ? status : data.word;
1847 }
1848 EXPORT_SYMBOL(i2c_smbus_process_call);
1849
1850 /**
1851 * i2c_smbus_read_block_data - SMBus "block read" protocol
1852 * @client: Handle to slave device
1853 * @command: Byte interpreted by slave
1854 * @values: Byte array into which data will be read; big enough to hold
1855 * the data returned by the slave. SMBus allows at most 32 bytes.
1856 *
1857 * This executes the SMBus "block read" protocol, returning negative errno
1858 * else the number of data bytes in the slave's response.
1859 *
1860 * Note that using this function requires that the client's adapter support
1861 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
1862 * support this; its emulation through I2C messaging relies on a specific
1863 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
1864 */
1865 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
1866 u8 *values)
1867 {
1868 union i2c_smbus_data data;
1869 int status;
1870
1871 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1872 I2C_SMBUS_READ, command,
1873 I2C_SMBUS_BLOCK_DATA, &data);
1874 if (status)
1875 return status;
1876
1877 memcpy(values, &data.block[1], data.block[0]);
1878 return data.block[0];
1879 }
1880 EXPORT_SYMBOL(i2c_smbus_read_block_data);
1881
1882 /**
1883 * i2c_smbus_write_block_data - SMBus "block write" protocol
1884 * @client: Handle to slave device
1885 * @command: Byte interpreted by slave
1886 * @length: Size of data block; SMBus allows at most 32 bytes
1887 * @values: Byte array which will be written.
1888 *
1889 * This executes the SMBus "block write" protocol, returning negative errno
1890 * else zero on success.
1891 */
1892 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
1893 u8 length, const u8 *values)
1894 {
1895 union i2c_smbus_data data;
1896
1897 if (length > I2C_SMBUS_BLOCK_MAX)
1898 length = I2C_SMBUS_BLOCK_MAX;
1899 data.block[0] = length;
1900 memcpy(&data.block[1], values, length);
1901 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1902 I2C_SMBUS_WRITE, command,
1903 I2C_SMBUS_BLOCK_DATA, &data);
1904 }
1905 EXPORT_SYMBOL(i2c_smbus_write_block_data);
1906
1907 /* Returns the number of read bytes */
1908 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
1909 u8 length, u8 *values)
1910 {
1911 union i2c_smbus_data data;
1912 int status;
1913
1914 if (length > I2C_SMBUS_BLOCK_MAX)
1915 length = I2C_SMBUS_BLOCK_MAX;
1916 data.block[0] = length;
1917 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1918 I2C_SMBUS_READ, command,
1919 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1920 if (status < 0)
1921 return status;
1922
1923 memcpy(values, &data.block[1], data.block[0]);
1924 return data.block[0];
1925 }
1926 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
1927
1928 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
1929 u8 length, const u8 *values)
1930 {
1931 union i2c_smbus_data data;
1932
1933 if (length > I2C_SMBUS_BLOCK_MAX)
1934 length = I2C_SMBUS_BLOCK_MAX;
1935 data.block[0] = length;
1936 memcpy(data.block + 1, values, length);
1937 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1938 I2C_SMBUS_WRITE, command,
1939 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1940 }
1941 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
1942
1943 /* Simulate a SMBus command using the i2c protocol
1944 No checking of parameters is done! */
1945 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
1946 unsigned short flags,
1947 char read_write, u8 command, int size,
1948 union i2c_smbus_data *data)
1949 {
1950 /* So we need to generate a series of msgs. In the case of writing, we
1951 need to use only one message; when reading, we need two. We initialize
1952 most things with sane defaults, to keep the code below somewhat
1953 simpler. */
1954 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
1955 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
1956 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
1957 struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 },
1958 { addr, flags | I2C_M_RD, 0, msgbuf1 }
1959 };
1960 int i;
1961 u8 partial_pec = 0;
1962 int status;
1963
1964 msgbuf0[0] = command;
1965 switch (size) {
1966 case I2C_SMBUS_QUICK:
1967 msg[0].len = 0;
1968 /* Special case: The read/write field is used as data */
1969 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
1970 I2C_M_RD : 0);
1971 num = 1;
1972 break;
1973 case I2C_SMBUS_BYTE:
1974 if (read_write == I2C_SMBUS_READ) {
1975 /* Special case: only a read! */
1976 msg[0].flags = I2C_M_RD | flags;
1977 num = 1;
1978 }
1979 break;
1980 case I2C_SMBUS_BYTE_DATA:
1981 if (read_write == I2C_SMBUS_READ)
1982 msg[1].len = 1;
1983 else {
1984 msg[0].len = 2;
1985 msgbuf0[1] = data->byte;
1986 }
1987 break;
1988 case I2C_SMBUS_WORD_DATA:
1989 if (read_write == I2C_SMBUS_READ)
1990 msg[1].len = 2;
1991 else {
1992 msg[0].len = 3;
1993 msgbuf0[1] = data->word & 0xff;
1994 msgbuf0[2] = data->word >> 8;
1995 }
1996 break;
1997 case I2C_SMBUS_PROC_CALL:
1998 num = 2; /* Special case */
1999 read_write = I2C_SMBUS_READ;
2000 msg[0].len = 3;
2001 msg[1].len = 2;
2002 msgbuf0[1] = data->word & 0xff;
2003 msgbuf0[2] = data->word >> 8;
2004 break;
2005 case I2C_SMBUS_BLOCK_DATA:
2006 if (read_write == I2C_SMBUS_READ) {
2007 msg[1].flags |= I2C_M_RECV_LEN;
2008 msg[1].len = 1; /* block length will be added by
2009 the underlying bus driver */
2010 } else {
2011 msg[0].len = data->block[0] + 2;
2012 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2013 dev_err(&adapter->dev,
2014 "Invalid block write size %d\n",
2015 data->block[0]);
2016 return -EINVAL;
2017 }
2018 for (i = 1; i < msg[0].len; i++)
2019 msgbuf0[i] = data->block[i-1];
2020 }
2021 break;
2022 case I2C_SMBUS_BLOCK_PROC_CALL:
2023 num = 2; /* Another special case */
2024 read_write = I2C_SMBUS_READ;
2025 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2026 dev_err(&adapter->dev,
2027 "Invalid block write size %d\n",
2028 data->block[0]);
2029 return -EINVAL;
2030 }
2031 msg[0].len = data->block[0] + 2;
2032 for (i = 1; i < msg[0].len; i++)
2033 msgbuf0[i] = data->block[i-1];
2034 msg[1].flags |= I2C_M_RECV_LEN;
2035 msg[1].len = 1; /* block length will be added by
2036 the underlying bus driver */
2037 break;
2038 case I2C_SMBUS_I2C_BLOCK_DATA:
2039 if (read_write == I2C_SMBUS_READ) {
2040 msg[1].len = data->block[0];
2041 } else {
2042 msg[0].len = data->block[0] + 1;
2043 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2044 dev_err(&adapter->dev,
2045 "Invalid block write size %d\n",
2046 data->block[0]);
2047 return -EINVAL;
2048 }
2049 for (i = 1; i <= data->block[0]; i++)
2050 msgbuf0[i] = data->block[i];
2051 }
2052 break;
2053 default:
2054 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2055 return -EOPNOTSUPP;
2056 }
2057
2058 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2059 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2060 if (i) {
2061 /* Compute PEC if first message is a write */
2062 if (!(msg[0].flags & I2C_M_RD)) {
2063 if (num == 1) /* Write only */
2064 i2c_smbus_add_pec(&msg[0]);
2065 else /* Write followed by read */
2066 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2067 }
2068 /* Ask for PEC if last message is a read */
2069 if (msg[num-1].flags & I2C_M_RD)
2070 msg[num-1].len++;
2071 }
2072
2073 status = i2c_transfer(adapter, msg, num);
2074 if (status < 0)
2075 return status;
2076
2077 /* Check PEC if last message is a read */
2078 if (i && (msg[num-1].flags & I2C_M_RD)) {
2079 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2080 if (status < 0)
2081 return status;
2082 }
2083
2084 if (read_write == I2C_SMBUS_READ)
2085 switch (size) {
2086 case I2C_SMBUS_BYTE:
2087 data->byte = msgbuf0[0];
2088 break;
2089 case I2C_SMBUS_BYTE_DATA:
2090 data->byte = msgbuf1[0];
2091 break;
2092 case I2C_SMBUS_WORD_DATA:
2093 case I2C_SMBUS_PROC_CALL:
2094 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2095 break;
2096 case I2C_SMBUS_I2C_BLOCK_DATA:
2097 for (i = 0; i < data->block[0]; i++)
2098 data->block[i+1] = msgbuf1[i];
2099 break;
2100 case I2C_SMBUS_BLOCK_DATA:
2101 case I2C_SMBUS_BLOCK_PROC_CALL:
2102 for (i = 0; i < msgbuf1[0] + 1; i++)
2103 data->block[i] = msgbuf1[i];
2104 break;
2105 }
2106 return 0;
2107 }
2108
2109 /**
2110 * i2c_smbus_xfer - execute SMBus protocol operations
2111 * @adapter: Handle to I2C bus
2112 * @addr: Address of SMBus slave on that bus
2113 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2114 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2115 * @command: Byte interpreted by slave, for protocols which use such bytes
2116 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2117 * @data: Data to be read or written
2118 *
2119 * This executes an SMBus protocol operation, and returns a negative
2120 * errno code else zero on success.
2121 */
2122 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2123 char read_write, u8 command, int protocol,
2124 union i2c_smbus_data *data)
2125 {
2126 unsigned long orig_jiffies;
2127 int try;
2128 s32 res;
2129
2130 flags &= I2C_M_TEN | I2C_CLIENT_PEC;
2131
2132 if (adapter->algo->smbus_xfer) {
2133 i2c_lock_adapter(adapter);
2134
2135 /* Retry automatically on arbitration loss */
2136 orig_jiffies = jiffies;
2137 for (res = 0, try = 0; try <= adapter->retries; try++) {
2138 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2139 read_write, command,
2140 protocol, data);
2141 if (res != -EAGAIN)
2142 break;
2143 if (time_after(jiffies,
2144 orig_jiffies + adapter->timeout))
2145 break;
2146 }
2147 i2c_unlock_adapter(adapter);
2148 } else
2149 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2150 command, protocol, data);
2151
2152 return res;
2153 }
2154 EXPORT_SYMBOL(i2c_smbus_xfer);
2155
2156 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2157 MODULE_DESCRIPTION("I2C-Bus main module");
2158 MODULE_LICENSE("GPL");