]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ide/hpt366.c
Remove two unneeded exports and make two symbols static in fs/mpage.c
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / hpt366.c
1 /*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2008 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/BIOS%20+%20Driver/.
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@lxorguk.ukuu.org.uk>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
118 */
119
120 #include <linux/types.h>
121 #include <linux/module.h>
122 #include <linux/kernel.h>
123 #include <linux/delay.h>
124 #include <linux/blkdev.h>
125 #include <linux/interrupt.h>
126 #include <linux/pci.h>
127 #include <linux/init.h>
128 #include <linux/ide.h>
129
130 #include <asm/uaccess.h>
131 #include <asm/io.h>
132
133 #define DRV_NAME "hpt366"
134
135 /* various tuning parameters */
136 #define HPT_RESET_STATE_ENGINE
137 #undef HPT_DELAY_INTERRUPT
138
139 static const char *quirk_drives[] = {
140 "QUANTUM FIREBALLlct08 08",
141 "QUANTUM FIREBALLP KA6.4",
142 "QUANTUM FIREBALLP LM20.4",
143 "QUANTUM FIREBALLP LM20.5",
144 NULL
145 };
146
147 static const char *bad_ata100_5[] = {
148 "IBM-DTLA-307075",
149 "IBM-DTLA-307060",
150 "IBM-DTLA-307045",
151 "IBM-DTLA-307030",
152 "IBM-DTLA-307020",
153 "IBM-DTLA-307015",
154 "IBM-DTLA-305040",
155 "IBM-DTLA-305030",
156 "IBM-DTLA-305020",
157 "IC35L010AVER07-0",
158 "IC35L020AVER07-0",
159 "IC35L030AVER07-0",
160 "IC35L040AVER07-0",
161 "IC35L060AVER07-0",
162 "WDC AC310200R",
163 NULL
164 };
165
166 static const char *bad_ata66_4[] = {
167 "IBM-DTLA-307075",
168 "IBM-DTLA-307060",
169 "IBM-DTLA-307045",
170 "IBM-DTLA-307030",
171 "IBM-DTLA-307020",
172 "IBM-DTLA-307015",
173 "IBM-DTLA-305040",
174 "IBM-DTLA-305030",
175 "IBM-DTLA-305020",
176 "IC35L010AVER07-0",
177 "IC35L020AVER07-0",
178 "IC35L030AVER07-0",
179 "IC35L040AVER07-0",
180 "IC35L060AVER07-0",
181 "WDC AC310200R",
182 "MAXTOR STM3320620A",
183 NULL
184 };
185
186 static const char *bad_ata66_3[] = {
187 "WDC AC310200R",
188 NULL
189 };
190
191 static const char *bad_ata33[] = {
192 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
193 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
194 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
195 "Maxtor 90510D4",
196 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
197 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
198 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
199 NULL
200 };
201
202 static u8 xfer_speeds[] = {
203 XFER_UDMA_6,
204 XFER_UDMA_5,
205 XFER_UDMA_4,
206 XFER_UDMA_3,
207 XFER_UDMA_2,
208 XFER_UDMA_1,
209 XFER_UDMA_0,
210
211 XFER_MW_DMA_2,
212 XFER_MW_DMA_1,
213 XFER_MW_DMA_0,
214
215 XFER_PIO_4,
216 XFER_PIO_3,
217 XFER_PIO_2,
218 XFER_PIO_1,
219 XFER_PIO_0
220 };
221
222 /* Key for bus clock timings
223 * 36x 37x
224 * bits bits
225 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
226 * cycles = value + 1
227 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
228 * cycles = value + 1
229 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
230 * register access.
231 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
232 * register access.
233 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
234 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
235 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
236 * MW DMA xfer.
237 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
238 * task file register access.
239 * 28 28 UDMA enable.
240 * 29 29 DMA enable.
241 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
242 * PIO xfer.
243 * 31 31 FIFO enable.
244 */
245
246 static u32 forty_base_hpt36x[] = {
247 /* XFER_UDMA_6 */ 0x900fd943,
248 /* XFER_UDMA_5 */ 0x900fd943,
249 /* XFER_UDMA_4 */ 0x900fd943,
250 /* XFER_UDMA_3 */ 0x900ad943,
251 /* XFER_UDMA_2 */ 0x900bd943,
252 /* XFER_UDMA_1 */ 0x9008d943,
253 /* XFER_UDMA_0 */ 0x9008d943,
254
255 /* XFER_MW_DMA_2 */ 0xa008d943,
256 /* XFER_MW_DMA_1 */ 0xa010d955,
257 /* XFER_MW_DMA_0 */ 0xa010d9fc,
258
259 /* XFER_PIO_4 */ 0xc008d963,
260 /* XFER_PIO_3 */ 0xc010d974,
261 /* XFER_PIO_2 */ 0xc010d997,
262 /* XFER_PIO_1 */ 0xc010d9c7,
263 /* XFER_PIO_0 */ 0xc018d9d9
264 };
265
266 static u32 thirty_three_base_hpt36x[] = {
267 /* XFER_UDMA_6 */ 0x90c9a731,
268 /* XFER_UDMA_5 */ 0x90c9a731,
269 /* XFER_UDMA_4 */ 0x90c9a731,
270 /* XFER_UDMA_3 */ 0x90cfa731,
271 /* XFER_UDMA_2 */ 0x90caa731,
272 /* XFER_UDMA_1 */ 0x90cba731,
273 /* XFER_UDMA_0 */ 0x90c8a731,
274
275 /* XFER_MW_DMA_2 */ 0xa0c8a731,
276 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
277 /* XFER_MW_DMA_0 */ 0xa0c8a797,
278
279 /* XFER_PIO_4 */ 0xc0c8a731,
280 /* XFER_PIO_3 */ 0xc0c8a742,
281 /* XFER_PIO_2 */ 0xc0d0a753,
282 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
283 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
284 };
285
286 static u32 twenty_five_base_hpt36x[] = {
287 /* XFER_UDMA_6 */ 0x90c98521,
288 /* XFER_UDMA_5 */ 0x90c98521,
289 /* XFER_UDMA_4 */ 0x90c98521,
290 /* XFER_UDMA_3 */ 0x90cf8521,
291 /* XFER_UDMA_2 */ 0x90cf8521,
292 /* XFER_UDMA_1 */ 0x90cb8521,
293 /* XFER_UDMA_0 */ 0x90cb8521,
294
295 /* XFER_MW_DMA_2 */ 0xa0ca8521,
296 /* XFER_MW_DMA_1 */ 0xa0ca8532,
297 /* XFER_MW_DMA_0 */ 0xa0ca8575,
298
299 /* XFER_PIO_4 */ 0xc0ca8521,
300 /* XFER_PIO_3 */ 0xc0ca8532,
301 /* XFER_PIO_2 */ 0xc0ca8542,
302 /* XFER_PIO_1 */ 0xc0d08572,
303 /* XFER_PIO_0 */ 0xc0d08585
304 };
305
306 #if 0
307 /* These are the timing tables from the HighPoint open source drivers... */
308 static u32 thirty_three_base_hpt37x[] = {
309 /* XFER_UDMA_6 */ 0x12446231, /* 0x12646231 ?? */
310 /* XFER_UDMA_5 */ 0x12446231,
311 /* XFER_UDMA_4 */ 0x12446231,
312 /* XFER_UDMA_3 */ 0x126c6231,
313 /* XFER_UDMA_2 */ 0x12486231,
314 /* XFER_UDMA_1 */ 0x124c6233,
315 /* XFER_UDMA_0 */ 0x12506297,
316
317 /* XFER_MW_DMA_2 */ 0x22406c31,
318 /* XFER_MW_DMA_1 */ 0x22406c33,
319 /* XFER_MW_DMA_0 */ 0x22406c97,
320
321 /* XFER_PIO_4 */ 0x06414e31,
322 /* XFER_PIO_3 */ 0x06414e42,
323 /* XFER_PIO_2 */ 0x06414e53,
324 /* XFER_PIO_1 */ 0x06814e93,
325 /* XFER_PIO_0 */ 0x06814ea7
326 };
327
328 static u32 fifty_base_hpt37x[] = {
329 /* XFER_UDMA_6 */ 0x12848242,
330 /* XFER_UDMA_5 */ 0x12848242,
331 /* XFER_UDMA_4 */ 0x12ac8242,
332 /* XFER_UDMA_3 */ 0x128c8242,
333 /* XFER_UDMA_2 */ 0x120c8242,
334 /* XFER_UDMA_1 */ 0x12148254,
335 /* XFER_UDMA_0 */ 0x121882ea,
336
337 /* XFER_MW_DMA_2 */ 0x22808242,
338 /* XFER_MW_DMA_1 */ 0x22808254,
339 /* XFER_MW_DMA_0 */ 0x228082ea,
340
341 /* XFER_PIO_4 */ 0x0a81f442,
342 /* XFER_PIO_3 */ 0x0a81f443,
343 /* XFER_PIO_2 */ 0x0a81f454,
344 /* XFER_PIO_1 */ 0x0ac1f465,
345 /* XFER_PIO_0 */ 0x0ac1f48a
346 };
347
348 static u32 sixty_six_base_hpt37x[] = {
349 /* XFER_UDMA_6 */ 0x1c869c62,
350 /* XFER_UDMA_5 */ 0x1cae9c62, /* 0x1c8a9c62 */
351 /* XFER_UDMA_4 */ 0x1c8a9c62,
352 /* XFER_UDMA_3 */ 0x1c8e9c62,
353 /* XFER_UDMA_2 */ 0x1c929c62,
354 /* XFER_UDMA_1 */ 0x1c9a9c62,
355 /* XFER_UDMA_0 */ 0x1c829c62,
356
357 /* XFER_MW_DMA_2 */ 0x2c829c62,
358 /* XFER_MW_DMA_1 */ 0x2c829c66,
359 /* XFER_MW_DMA_0 */ 0x2c829d2e,
360
361 /* XFER_PIO_4 */ 0x0c829c62,
362 /* XFER_PIO_3 */ 0x0c829c84,
363 /* XFER_PIO_2 */ 0x0c829ca6,
364 /* XFER_PIO_1 */ 0x0d029d26,
365 /* XFER_PIO_0 */ 0x0d029d5e
366 };
367 #else
368 /*
369 * The following are the new timing tables with PIO mode data/taskfile transfer
370 * overclocking fixed...
371 */
372
373 /* This table is taken from the HPT370 data manual rev. 1.02 */
374 static u32 thirty_three_base_hpt37x[] = {
375 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
376 /* XFER_UDMA_5 */ 0x16455031,
377 /* XFER_UDMA_4 */ 0x16455031,
378 /* XFER_UDMA_3 */ 0x166d5031,
379 /* XFER_UDMA_2 */ 0x16495031,
380 /* XFER_UDMA_1 */ 0x164d5033,
381 /* XFER_UDMA_0 */ 0x16515097,
382
383 /* XFER_MW_DMA_2 */ 0x26515031,
384 /* XFER_MW_DMA_1 */ 0x26515033,
385 /* XFER_MW_DMA_0 */ 0x26515097,
386
387 /* XFER_PIO_4 */ 0x06515021,
388 /* XFER_PIO_3 */ 0x06515022,
389 /* XFER_PIO_2 */ 0x06515033,
390 /* XFER_PIO_1 */ 0x06915065,
391 /* XFER_PIO_0 */ 0x06d1508a
392 };
393
394 static u32 fifty_base_hpt37x[] = {
395 /* XFER_UDMA_6 */ 0x1a861842,
396 /* XFER_UDMA_5 */ 0x1a861842,
397 /* XFER_UDMA_4 */ 0x1aae1842,
398 /* XFER_UDMA_3 */ 0x1a8e1842,
399 /* XFER_UDMA_2 */ 0x1a0e1842,
400 /* XFER_UDMA_1 */ 0x1a161854,
401 /* XFER_UDMA_0 */ 0x1a1a18ea,
402
403 /* XFER_MW_DMA_2 */ 0x2a821842,
404 /* XFER_MW_DMA_1 */ 0x2a821854,
405 /* XFER_MW_DMA_0 */ 0x2a8218ea,
406
407 /* XFER_PIO_4 */ 0x0a821842,
408 /* XFER_PIO_3 */ 0x0a821843,
409 /* XFER_PIO_2 */ 0x0a821855,
410 /* XFER_PIO_1 */ 0x0ac218a8,
411 /* XFER_PIO_0 */ 0x0b02190c
412 };
413
414 static u32 sixty_six_base_hpt37x[] = {
415 /* XFER_UDMA_6 */ 0x1c86fe62,
416 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
417 /* XFER_UDMA_4 */ 0x1c8afe62,
418 /* XFER_UDMA_3 */ 0x1c8efe62,
419 /* XFER_UDMA_2 */ 0x1c92fe62,
420 /* XFER_UDMA_1 */ 0x1c9afe62,
421 /* XFER_UDMA_0 */ 0x1c82fe62,
422
423 /* XFER_MW_DMA_2 */ 0x2c82fe62,
424 /* XFER_MW_DMA_1 */ 0x2c82fe66,
425 /* XFER_MW_DMA_0 */ 0x2c82ff2e,
426
427 /* XFER_PIO_4 */ 0x0c82fe62,
428 /* XFER_PIO_3 */ 0x0c82fe84,
429 /* XFER_PIO_2 */ 0x0c82fea6,
430 /* XFER_PIO_1 */ 0x0d02ff26,
431 /* XFER_PIO_0 */ 0x0d42ff7f
432 };
433 #endif
434
435 #define HPT366_DEBUG_DRIVE_INFO 0
436 #define HPT371_ALLOW_ATA133_6 1
437 #define HPT302_ALLOW_ATA133_6 1
438 #define HPT372_ALLOW_ATA133_6 1
439 #define HPT370_ALLOW_ATA100_5 0
440 #define HPT366_ALLOW_ATA66_4 1
441 #define HPT366_ALLOW_ATA66_3 1
442 #define HPT366_MAX_DEVS 8
443
444 /* Supported ATA clock frequencies */
445 enum ata_clock {
446 ATA_CLOCK_25MHZ,
447 ATA_CLOCK_33MHZ,
448 ATA_CLOCK_40MHZ,
449 ATA_CLOCK_50MHZ,
450 ATA_CLOCK_66MHZ,
451 NUM_ATA_CLOCKS
452 };
453
454 struct hpt_timings {
455 u32 pio_mask;
456 u32 dma_mask;
457 u32 ultra_mask;
458 u32 *clock_table[NUM_ATA_CLOCKS];
459 };
460
461 /*
462 * Hold all the HighPoint chip information in one place.
463 */
464
465 struct hpt_info {
466 char *chip_name; /* Chip name */
467 u8 chip_type; /* Chip type */
468 u8 udma_mask; /* Allowed UltraDMA modes mask. */
469 u8 dpll_clk; /* DPLL clock in MHz */
470 u8 pci_clk; /* PCI clock in MHz */
471 struct hpt_timings *timings; /* Chipset timing data */
472 u8 clock; /* ATA clock selected */
473 };
474
475 /* Supported HighPoint chips */
476 enum {
477 HPT36x,
478 HPT370,
479 HPT370A,
480 HPT374,
481 HPT372,
482 HPT372A,
483 HPT302,
484 HPT371,
485 HPT372N,
486 HPT302N,
487 HPT371N
488 };
489
490 static struct hpt_timings hpt36x_timings = {
491 .pio_mask = 0xc1f8ffff,
492 .dma_mask = 0x303800ff,
493 .ultra_mask = 0x30070000,
494 .clock_table = {
495 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
496 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
497 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
498 [ATA_CLOCK_50MHZ] = NULL,
499 [ATA_CLOCK_66MHZ] = NULL
500 }
501 };
502
503 static struct hpt_timings hpt37x_timings = {
504 .pio_mask = 0xcfc3ffff,
505 .dma_mask = 0x31c001ff,
506 .ultra_mask = 0x303c0000,
507 .clock_table = {
508 [ATA_CLOCK_25MHZ] = NULL,
509 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
510 [ATA_CLOCK_40MHZ] = NULL,
511 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
512 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
513 }
514 };
515
516 static const struct hpt_info hpt36x __devinitdata = {
517 .chip_name = "HPT36x",
518 .chip_type = HPT36x,
519 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
520 .dpll_clk = 0, /* no DPLL */
521 .timings = &hpt36x_timings
522 };
523
524 static const struct hpt_info hpt370 __devinitdata = {
525 .chip_name = "HPT370",
526 .chip_type = HPT370,
527 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
528 .dpll_clk = 48,
529 .timings = &hpt37x_timings
530 };
531
532 static const struct hpt_info hpt370a __devinitdata = {
533 .chip_name = "HPT370A",
534 .chip_type = HPT370A,
535 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
536 .dpll_clk = 48,
537 .timings = &hpt37x_timings
538 };
539
540 static const struct hpt_info hpt374 __devinitdata = {
541 .chip_name = "HPT374",
542 .chip_type = HPT374,
543 .udma_mask = ATA_UDMA5,
544 .dpll_clk = 48,
545 .timings = &hpt37x_timings
546 };
547
548 static const struct hpt_info hpt372 __devinitdata = {
549 .chip_name = "HPT372",
550 .chip_type = HPT372,
551 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
552 .dpll_clk = 55,
553 .timings = &hpt37x_timings
554 };
555
556 static const struct hpt_info hpt372a __devinitdata = {
557 .chip_name = "HPT372A",
558 .chip_type = HPT372A,
559 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
560 .dpll_clk = 66,
561 .timings = &hpt37x_timings
562 };
563
564 static const struct hpt_info hpt302 __devinitdata = {
565 .chip_name = "HPT302",
566 .chip_type = HPT302,
567 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
568 .dpll_clk = 66,
569 .timings = &hpt37x_timings
570 };
571
572 static const struct hpt_info hpt371 __devinitdata = {
573 .chip_name = "HPT371",
574 .chip_type = HPT371,
575 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
576 .dpll_clk = 66,
577 .timings = &hpt37x_timings
578 };
579
580 static const struct hpt_info hpt372n __devinitdata = {
581 .chip_name = "HPT372N",
582 .chip_type = HPT372N,
583 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
584 .dpll_clk = 77,
585 .timings = &hpt37x_timings
586 };
587
588 static const struct hpt_info hpt302n __devinitdata = {
589 .chip_name = "HPT302N",
590 .chip_type = HPT302N,
591 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
592 .dpll_clk = 77,
593 .timings = &hpt37x_timings
594 };
595
596 static const struct hpt_info hpt371n __devinitdata = {
597 .chip_name = "HPT371N",
598 .chip_type = HPT371N,
599 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
600 .dpll_clk = 77,
601 .timings = &hpt37x_timings
602 };
603
604 static int check_in_drive_list(ide_drive_t *drive, const char **list)
605 {
606 char *m = (char *)&drive->id[ATA_ID_PROD];
607
608 while (*list)
609 if (!strcmp(*list++, m))
610 return 1;
611 return 0;
612 }
613
614 static struct hpt_info *hpt3xx_get_info(struct device *dev)
615 {
616 struct ide_host *host = dev_get_drvdata(dev);
617 struct hpt_info *info = (struct hpt_info *)host->host_priv;
618
619 return dev == host->dev[1] ? info + 1 : info;
620 }
621
622 /*
623 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
624 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
625 */
626
627 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
628 {
629 ide_hwif_t *hwif = drive->hwif;
630 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
631 u8 mask = hwif->ultra_mask;
632
633 switch (info->chip_type) {
634 case HPT36x:
635 if (!HPT366_ALLOW_ATA66_4 ||
636 check_in_drive_list(drive, bad_ata66_4))
637 mask = ATA_UDMA3;
638
639 if (!HPT366_ALLOW_ATA66_3 ||
640 check_in_drive_list(drive, bad_ata66_3))
641 mask = ATA_UDMA2;
642 break;
643 case HPT370:
644 if (!HPT370_ALLOW_ATA100_5 ||
645 check_in_drive_list(drive, bad_ata100_5))
646 mask = ATA_UDMA4;
647 break;
648 case HPT370A:
649 if (!HPT370_ALLOW_ATA100_5 ||
650 check_in_drive_list(drive, bad_ata100_5))
651 return ATA_UDMA4;
652 case HPT372 :
653 case HPT372A:
654 case HPT372N:
655 case HPT374 :
656 if (ata_id_is_sata(drive->id))
657 mask &= ~0x0e;
658 /* Fall thru */
659 default:
660 return mask;
661 }
662
663 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
664 }
665
666 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
667 {
668 ide_hwif_t *hwif = drive->hwif;
669 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
670
671 switch (info->chip_type) {
672 case HPT372 :
673 case HPT372A:
674 case HPT372N:
675 case HPT374 :
676 if (ata_id_is_sata(drive->id))
677 return 0x00;
678 /* Fall thru */
679 default:
680 return 0x07;
681 }
682 }
683
684 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
685 {
686 int i;
687
688 /*
689 * Lookup the transfer mode table to get the index into
690 * the timing table.
691 *
692 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
693 */
694 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
695 if (xfer_speeds[i] == speed)
696 break;
697
698 return info->timings->clock_table[info->clock][i];
699 }
700
701 static void hpt3xx_set_mode(ide_drive_t *drive, const u8 speed)
702 {
703 ide_hwif_t *hwif = drive->hwif;
704 struct pci_dev *dev = to_pci_dev(hwif->dev);
705 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
706 struct hpt_timings *t = info->timings;
707 u8 itr_addr = 0x40 + (drive->dn * 4);
708 u32 old_itr = 0;
709 u32 new_itr = get_speed_setting(speed, info);
710 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
711 (speed < XFER_UDMA_0 ? t->dma_mask :
712 t->ultra_mask);
713
714 pci_read_config_dword(dev, itr_addr, &old_itr);
715 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
716 /*
717 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
718 * to avoid problems handling I/O errors later
719 */
720 new_itr &= ~0xc0000000;
721
722 pci_write_config_dword(dev, itr_addr, new_itr);
723 }
724
725 static void hpt3xx_set_pio_mode(ide_drive_t *drive, const u8 pio)
726 {
727 hpt3xx_set_mode(drive, XFER_PIO_0 + pio);
728 }
729
730 static void hpt3xx_quirkproc(ide_drive_t *drive)
731 {
732 char *m = (char *)&drive->id[ATA_ID_PROD];
733 const char **list = quirk_drives;
734
735 while (*list)
736 if (strstr(m, *list++)) {
737 drive->quirk_list = 1;
738 return;
739 }
740
741 drive->quirk_list = 0;
742 }
743
744 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
745 {
746 ide_hwif_t *hwif = drive->hwif;
747 struct pci_dev *dev = to_pci_dev(hwif->dev);
748 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
749
750 if (drive->quirk_list == 0)
751 return;
752
753 if (info->chip_type >= HPT370) {
754 u8 scr1 = 0;
755
756 pci_read_config_byte(dev, 0x5a, &scr1);
757 if (((scr1 & 0x10) >> 4) != mask) {
758 if (mask)
759 scr1 |= 0x10;
760 else
761 scr1 &= ~0x10;
762 pci_write_config_byte(dev, 0x5a, scr1);
763 }
764 } else if (mask)
765 disable_irq(hwif->irq);
766 else
767 enable_irq(hwif->irq);
768 }
769
770 /*
771 * This is specific to the HPT366 UDMA chipset
772 * by HighPoint|Triones Technologies, Inc.
773 */
774 static void hpt366_dma_lost_irq(ide_drive_t *drive)
775 {
776 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
777 u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
778
779 pci_read_config_byte(dev, 0x50, &mcr1);
780 pci_read_config_byte(dev, 0x52, &mcr3);
781 pci_read_config_byte(dev, 0x5a, &scr1);
782 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
783 drive->name, __func__, mcr1, mcr3, scr1);
784 if (scr1 & 0x10)
785 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
786 ide_dma_lost_irq(drive);
787 }
788
789 static void hpt370_clear_engine(ide_drive_t *drive)
790 {
791 ide_hwif_t *hwif = drive->hwif;
792 struct pci_dev *dev = to_pci_dev(hwif->dev);
793
794 pci_write_config_byte(dev, hwif->select_data, 0x37);
795 udelay(10);
796 }
797
798 static void hpt370_irq_timeout(ide_drive_t *drive)
799 {
800 ide_hwif_t *hwif = drive->hwif;
801 struct pci_dev *dev = to_pci_dev(hwif->dev);
802 u16 bfifo = 0;
803 u8 dma_cmd;
804
805 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
806 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
807
808 /* get DMA command mode */
809 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
810 /* stop DMA */
811 outb(dma_cmd & ~0x1, hwif->dma_base + ATA_DMA_CMD);
812 hpt370_clear_engine(drive);
813 }
814
815 static void hpt370_dma_start(ide_drive_t *drive)
816 {
817 #ifdef HPT_RESET_STATE_ENGINE
818 hpt370_clear_engine(drive);
819 #endif
820 ide_dma_start(drive);
821 }
822
823 static int hpt370_dma_end(ide_drive_t *drive)
824 {
825 ide_hwif_t *hwif = drive->hwif;
826 u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
827
828 if (dma_stat & 0x01) {
829 /* wait a little */
830 udelay(20);
831 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
832 if (dma_stat & 0x01)
833 hpt370_irq_timeout(drive);
834 }
835 return ide_dma_end(drive);
836 }
837
838 static void hpt370_dma_timeout(ide_drive_t *drive)
839 {
840 hpt370_irq_timeout(drive);
841 ide_dma_timeout(drive);
842 }
843
844 /* returns 1 if DMA IRQ issued, 0 otherwise */
845 static int hpt374_dma_test_irq(ide_drive_t *drive)
846 {
847 ide_hwif_t *hwif = drive->hwif;
848 struct pci_dev *dev = to_pci_dev(hwif->dev);
849 u16 bfifo = 0;
850 u8 dma_stat;
851
852 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
853 if (bfifo & 0x1FF) {
854 // printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
855 return 0;
856 }
857
858 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
859 /* return 1 if INTR asserted */
860 if (dma_stat & 4)
861 return 1;
862
863 return 0;
864 }
865
866 static int hpt374_dma_end(ide_drive_t *drive)
867 {
868 ide_hwif_t *hwif = drive->hwif;
869 struct pci_dev *dev = to_pci_dev(hwif->dev);
870 u8 mcr = 0, mcr_addr = hwif->select_data;
871 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
872
873 pci_read_config_byte(dev, 0x6a, &bwsr);
874 pci_read_config_byte(dev, mcr_addr, &mcr);
875 if (bwsr & mask)
876 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
877 return ide_dma_end(drive);
878 }
879
880 /**
881 * hpt3xxn_set_clock - perform clock switching dance
882 * @hwif: hwif to switch
883 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
884 *
885 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
886 */
887
888 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
889 {
890 unsigned long base = hwif->extra_base;
891 u8 scr2 = inb(base + 0x6b);
892
893 if ((scr2 & 0x7f) == mode)
894 return;
895
896 /* Tristate the bus */
897 outb(0x80, base + 0x63);
898 outb(0x80, base + 0x67);
899
900 /* Switch clock and reset channels */
901 outb(mode, base + 0x6b);
902 outb(0xc0, base + 0x69);
903
904 /*
905 * Reset the state machines.
906 * NOTE: avoid accidentally enabling the disabled channels.
907 */
908 outb(inb(base + 0x60) | 0x32, base + 0x60);
909 outb(inb(base + 0x64) | 0x32, base + 0x64);
910
911 /* Complete reset */
912 outb(0x00, base + 0x69);
913
914 /* Reconnect channels to bus */
915 outb(0x00, base + 0x63);
916 outb(0x00, base + 0x67);
917 }
918
919 /**
920 * hpt3xxn_rw_disk - prepare for I/O
921 * @drive: drive for command
922 * @rq: block request structure
923 *
924 * This is called when a disk I/O is issued to HPT3xxN.
925 * We need it because of the clock switching.
926 */
927
928 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
929 {
930 hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x23 : 0x21);
931 }
932
933 /**
934 * hpt37x_calibrate_dpll - calibrate the DPLL
935 * @dev: PCI device
936 *
937 * Perform a calibration cycle on the DPLL.
938 * Returns 1 if this succeeds
939 */
940 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
941 {
942 u32 dpll = (f_high << 16) | f_low | 0x100;
943 u8 scr2;
944 int i;
945
946 pci_write_config_dword(dev, 0x5c, dpll);
947
948 /* Wait for oscillator ready */
949 for(i = 0; i < 0x5000; ++i) {
950 udelay(50);
951 pci_read_config_byte(dev, 0x5b, &scr2);
952 if (scr2 & 0x80)
953 break;
954 }
955 /* See if it stays ready (we'll just bail out if it's not yet) */
956 for(i = 0; i < 0x1000; ++i) {
957 pci_read_config_byte(dev, 0x5b, &scr2);
958 /* DPLL destabilized? */
959 if(!(scr2 & 0x80))
960 return 0;
961 }
962 /* Turn off tuning, we have the DPLL set */
963 pci_read_config_dword (dev, 0x5c, &dpll);
964 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
965 return 1;
966 }
967
968 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
969 {
970 struct ide_host *host = pci_get_drvdata(dev);
971 struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]);
972 u8 chip_type = info->chip_type;
973 u8 new_mcr, old_mcr = 0;
974
975 /*
976 * Disable the "fast interrupt" prediction. Don't hold off
977 * on interrupts. (== 0x01 despite what the docs say)
978 */
979 pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
980
981 if (chip_type >= HPT374)
982 new_mcr = old_mcr & ~0x07;
983 else if (chip_type >= HPT370) {
984 new_mcr = old_mcr;
985 new_mcr &= ~0x02;
986 #ifdef HPT_DELAY_INTERRUPT
987 new_mcr &= ~0x01;
988 #else
989 new_mcr |= 0x01;
990 #endif
991 } else /* HPT366 and HPT368 */
992 new_mcr = old_mcr & ~0x80;
993
994 if (new_mcr != old_mcr)
995 pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
996 }
997
998 static int init_chipset_hpt366(struct pci_dev *dev)
999 {
1000 unsigned long io_base = pci_resource_start(dev, 4);
1001 struct hpt_info *info = hpt3xx_get_info(&dev->dev);
1002 const char *name = DRV_NAME;
1003 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
1004 u8 chip_type;
1005 enum ata_clock clock;
1006
1007 chip_type = info->chip_type;
1008
1009 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
1010 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
1011 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
1012 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
1013
1014 /*
1015 * First, try to estimate the PCI clock frequency...
1016 */
1017 if (chip_type >= HPT370) {
1018 u8 scr1 = 0;
1019 u16 f_cnt = 0;
1020 u32 temp = 0;
1021
1022 /* Interrupt force enable. */
1023 pci_read_config_byte(dev, 0x5a, &scr1);
1024 if (scr1 & 0x10)
1025 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
1026
1027 /*
1028 * HighPoint does this for HPT372A.
1029 * NOTE: This register is only writeable via I/O space.
1030 */
1031 if (chip_type == HPT372A)
1032 outb(0x0e, io_base + 0x9c);
1033
1034 /*
1035 * Default to PCI clock. Make sure MA15/16 are set to output
1036 * to prevent drives having problems with 40-pin cables.
1037 */
1038 pci_write_config_byte(dev, 0x5b, 0x23);
1039
1040 /*
1041 * We'll have to read f_CNT value in order to determine
1042 * the PCI clock frequency according to the following ratio:
1043 *
1044 * f_CNT = Fpci * 192 / Fdpll
1045 *
1046 * First try reading the register in which the HighPoint BIOS
1047 * saves f_CNT value before reprogramming the DPLL from its
1048 * default setting (which differs for the various chips).
1049 *
1050 * NOTE: This register is only accessible via I/O space;
1051 * HPT374 BIOS only saves it for the function 0, so we have to
1052 * always read it from there -- no need to check the result of
1053 * pci_get_slot() for the function 0 as the whole device has
1054 * been already "pinned" (via function 1) in init_setup_hpt374()
1055 */
1056 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1057 struct pci_dev *dev1 = pci_get_slot(dev->bus,
1058 dev->devfn - 1);
1059 unsigned long io_base = pci_resource_start(dev1, 4);
1060
1061 temp = inl(io_base + 0x90);
1062 pci_dev_put(dev1);
1063 } else
1064 temp = inl(io_base + 0x90);
1065
1066 /*
1067 * In case the signature check fails, we'll have to
1068 * resort to reading the f_CNT register itself in hopes
1069 * that nobody has touched the DPLL yet...
1070 */
1071 if ((temp & 0xFFFFF000) != 0xABCDE000) {
1072 int i;
1073
1074 printk(KERN_WARNING "%s %s: no clock data saved by "
1075 "BIOS\n", name, pci_name(dev));
1076
1077 /* Calculate the average value of f_CNT. */
1078 for (temp = i = 0; i < 128; i++) {
1079 pci_read_config_word(dev, 0x78, &f_cnt);
1080 temp += f_cnt & 0x1ff;
1081 mdelay(1);
1082 }
1083 f_cnt = temp / 128;
1084 } else
1085 f_cnt = temp & 0x1ff;
1086
1087 dpll_clk = info->dpll_clk;
1088 pci_clk = (f_cnt * dpll_clk) / 192;
1089
1090 /* Clamp PCI clock to bands. */
1091 if (pci_clk < 40)
1092 pci_clk = 33;
1093 else if(pci_clk < 45)
1094 pci_clk = 40;
1095 else if(pci_clk < 55)
1096 pci_clk = 50;
1097 else
1098 pci_clk = 66;
1099
1100 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1101 "assuming %d MHz PCI\n", name, pci_name(dev),
1102 dpll_clk, f_cnt, pci_clk);
1103 } else {
1104 u32 itr1 = 0;
1105
1106 pci_read_config_dword(dev, 0x40, &itr1);
1107
1108 /* Detect PCI clock by looking at cmd_high_time. */
1109 switch((itr1 >> 8) & 0x07) {
1110 case 0x09:
1111 pci_clk = 40;
1112 break;
1113 case 0x05:
1114 pci_clk = 25;
1115 break;
1116 case 0x07:
1117 default:
1118 pci_clk = 33;
1119 break;
1120 }
1121 }
1122
1123 /* Let's assume we'll use PCI clock for the ATA clock... */
1124 switch (pci_clk) {
1125 case 25:
1126 clock = ATA_CLOCK_25MHZ;
1127 break;
1128 case 33:
1129 default:
1130 clock = ATA_CLOCK_33MHZ;
1131 break;
1132 case 40:
1133 clock = ATA_CLOCK_40MHZ;
1134 break;
1135 case 50:
1136 clock = ATA_CLOCK_50MHZ;
1137 break;
1138 case 66:
1139 clock = ATA_CLOCK_66MHZ;
1140 break;
1141 }
1142
1143 /*
1144 * Only try the DPLL if we don't have a table for the PCI clock that
1145 * we are running at for HPT370/A, always use it for anything newer...
1146 *
1147 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1148 * We also don't like using the DPLL because this causes glitches
1149 * on PRST-/SRST- when the state engine gets reset...
1150 */
1151 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1152 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1153 int adjust;
1154
1155 /*
1156 * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1157 * supported/enabled, use 50 MHz DPLL clock otherwise...
1158 */
1159 if (info->udma_mask == ATA_UDMA6) {
1160 dpll_clk = 66;
1161 clock = ATA_CLOCK_66MHZ;
1162 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1163 dpll_clk = 50;
1164 clock = ATA_CLOCK_50MHZ;
1165 }
1166
1167 if (info->timings->clock_table[clock] == NULL) {
1168 printk(KERN_ERR "%s %s: unknown bus timing!\n",
1169 name, pci_name(dev));
1170 return -EIO;
1171 }
1172
1173 /* Select the DPLL clock. */
1174 pci_write_config_byte(dev, 0x5b, 0x21);
1175
1176 /*
1177 * Adjust the DPLL based upon PCI clock, enable it,
1178 * and wait for stabilization...
1179 */
1180 f_low = (pci_clk * 48) / dpll_clk;
1181
1182 for (adjust = 0; adjust < 8; adjust++) {
1183 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1184 break;
1185
1186 /*
1187 * See if it'll settle at a fractionally different clock
1188 */
1189 if (adjust & 1)
1190 f_low -= adjust >> 1;
1191 else
1192 f_low += adjust >> 1;
1193 }
1194 if (adjust == 8) {
1195 printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1196 name, pci_name(dev));
1197 return -EIO;
1198 }
1199
1200 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1201 name, pci_name(dev), dpll_clk);
1202 } else {
1203 /* Mark the fact that we're not using the DPLL. */
1204 dpll_clk = 0;
1205
1206 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1207 name, pci_name(dev), pci_clk);
1208 }
1209
1210 /* Store the clock frequencies. */
1211 info->dpll_clk = dpll_clk;
1212 info->pci_clk = pci_clk;
1213 info->clock = clock;
1214
1215 if (chip_type >= HPT370) {
1216 u8 mcr1, mcr4;
1217
1218 /*
1219 * Reset the state engines.
1220 * NOTE: Avoid accidentally enabling the disabled channels.
1221 */
1222 pci_read_config_byte (dev, 0x50, &mcr1);
1223 pci_read_config_byte (dev, 0x54, &mcr4);
1224 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1225 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1226 udelay(100);
1227 }
1228
1229 /*
1230 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1231 * the MISC. register to stretch the UltraDMA Tss timing.
1232 * NOTE: This register is only writeable via I/O space.
1233 */
1234 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1235 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1236
1237 hpt3xx_disable_fast_irq(dev, 0x50);
1238 hpt3xx_disable_fast_irq(dev, 0x54);
1239
1240 return 0;
1241 }
1242
1243 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1244 {
1245 struct pci_dev *dev = to_pci_dev(hwif->dev);
1246 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1247 u8 chip_type = info->chip_type;
1248 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1249
1250 /*
1251 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1252 * address lines to access an external EEPROM. To read valid
1253 * cable detect state the pins must be enabled as inputs.
1254 */
1255 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1256 /*
1257 * HPT374 PCI function 1
1258 * - set bit 15 of reg 0x52 to enable TCBLID as input
1259 * - set bit 15 of reg 0x56 to enable FCBLID as input
1260 */
1261 u8 mcr_addr = hwif->select_data + 2;
1262 u16 mcr;
1263
1264 pci_read_config_word(dev, mcr_addr, &mcr);
1265 pci_write_config_word(dev, mcr_addr, (mcr | 0x8000));
1266 /* now read cable id register */
1267 pci_read_config_byte(dev, 0x5a, &scr1);
1268 pci_write_config_word(dev, mcr_addr, mcr);
1269 } else if (chip_type >= HPT370) {
1270 /*
1271 * HPT370/372 and 374 pcifn 0
1272 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1273 */
1274 u8 scr2 = 0;
1275
1276 pci_read_config_byte(dev, 0x5b, &scr2);
1277 pci_write_config_byte(dev, 0x5b, (scr2 & ~1));
1278 /* now read cable id register */
1279 pci_read_config_byte(dev, 0x5a, &scr1);
1280 pci_write_config_byte(dev, 0x5b, scr2);
1281 } else
1282 pci_read_config_byte(dev, 0x5a, &scr1);
1283
1284 return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1285 }
1286
1287 static void __devinit init_hwif_hpt366(ide_hwif_t *hwif)
1288 {
1289 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1290 u8 chip_type = info->chip_type;
1291
1292 /* Cache the channel's MISC. control registers' offset */
1293 hwif->select_data = hwif->channel ? 0x54 : 0x50;
1294
1295 /*
1296 * HPT3xxN chips have some complications:
1297 *
1298 * - on 33 MHz PCI we must clock switch
1299 * - on 66 MHz PCI we must NOT use the PCI clock
1300 */
1301 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1302 /*
1303 * Clock is shared between the channels,
1304 * so we'll have to serialize them... :-(
1305 */
1306 hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1307 hwif->rw_disk = &hpt3xxn_rw_disk;
1308 }
1309 }
1310
1311 static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
1312 const struct ide_port_info *d)
1313 {
1314 struct pci_dev *dev = to_pci_dev(hwif->dev);
1315 unsigned long flags, base = ide_pci_dma_base(hwif, d);
1316 u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1317
1318 if (base == 0)
1319 return -1;
1320
1321 hwif->dma_base = base;
1322
1323 if (ide_pci_check_simplex(hwif, d) < 0)
1324 return -1;
1325
1326 if (ide_pci_set_master(dev, d->name) < 0)
1327 return -1;
1328
1329 dma_old = inb(base + 2);
1330
1331 local_irq_save(flags);
1332
1333 dma_new = dma_old;
1334 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1335 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1336
1337 if (masterdma & 0x30) dma_new |= 0x20;
1338 if ( slavedma & 0x30) dma_new |= 0x40;
1339 if (dma_new != dma_old)
1340 outb(dma_new, base + 2);
1341
1342 local_irq_restore(flags);
1343
1344 printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n",
1345 hwif->name, base, base + 7);
1346
1347 hwif->extra_base = base + (hwif->channel ? 8 : 16);
1348
1349 if (ide_allocate_dma_engine(hwif))
1350 return -1;
1351
1352 return 0;
1353 }
1354
1355 static void __devinit hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1356 {
1357 if (dev2->irq != dev->irq) {
1358 /* FIXME: we need a core pci_set_interrupt() */
1359 dev2->irq = dev->irq;
1360 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1361 "fixed\n", pci_name(dev2));
1362 }
1363 }
1364
1365 static void __devinit hpt371_init(struct pci_dev *dev)
1366 {
1367 u8 mcr1 = 0;
1368
1369 /*
1370 * HPT371 chips physically have only one channel, the secondary one,
1371 * but the primary channel registers do exist! Go figure...
1372 * So, we manually disable the non-existing channel here
1373 * (if the BIOS hasn't done this already).
1374 */
1375 pci_read_config_byte(dev, 0x50, &mcr1);
1376 if (mcr1 & 0x04)
1377 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1378 }
1379
1380 static int __devinit hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1381 {
1382 u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1383
1384 /*
1385 * Now we'll have to force both channels enabled if
1386 * at least one of them has been enabled by BIOS...
1387 */
1388 pci_read_config_byte(dev, 0x50, &mcr1);
1389 if (mcr1 & 0x30)
1390 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1391
1392 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1393 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1394
1395 if (pin1 != pin2 && dev->irq == dev2->irq) {
1396 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1397 "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1398 return 1;
1399 }
1400
1401 return 0;
1402 }
1403
1404 #define IDE_HFLAGS_HPT3XX \
1405 (IDE_HFLAG_NO_ATAPI_DMA | \
1406 IDE_HFLAG_OFF_BOARD)
1407
1408 static const struct ide_port_ops hpt3xx_port_ops = {
1409 .set_pio_mode = hpt3xx_set_pio_mode,
1410 .set_dma_mode = hpt3xx_set_mode,
1411 .quirkproc = hpt3xx_quirkproc,
1412 .maskproc = hpt3xx_maskproc,
1413 .mdma_filter = hpt3xx_mdma_filter,
1414 .udma_filter = hpt3xx_udma_filter,
1415 .cable_detect = hpt3xx_cable_detect,
1416 };
1417
1418 static const struct ide_dma_ops hpt37x_dma_ops = {
1419 .dma_host_set = ide_dma_host_set,
1420 .dma_setup = ide_dma_setup,
1421 .dma_start = ide_dma_start,
1422 .dma_end = hpt374_dma_end,
1423 .dma_test_irq = hpt374_dma_test_irq,
1424 .dma_lost_irq = ide_dma_lost_irq,
1425 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1426 .dma_timeout = ide_dma_timeout,
1427 .dma_sff_read_status = ide_dma_sff_read_status,
1428 };
1429
1430 static const struct ide_dma_ops hpt370_dma_ops = {
1431 .dma_host_set = ide_dma_host_set,
1432 .dma_setup = ide_dma_setup,
1433 .dma_start = hpt370_dma_start,
1434 .dma_end = hpt370_dma_end,
1435 .dma_test_irq = ide_dma_test_irq,
1436 .dma_lost_irq = ide_dma_lost_irq,
1437 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1438 .dma_timeout = hpt370_dma_timeout,
1439 .dma_sff_read_status = ide_dma_sff_read_status,
1440 };
1441
1442 static const struct ide_dma_ops hpt36x_dma_ops = {
1443 .dma_host_set = ide_dma_host_set,
1444 .dma_setup = ide_dma_setup,
1445 .dma_start = ide_dma_start,
1446 .dma_end = ide_dma_end,
1447 .dma_test_irq = ide_dma_test_irq,
1448 .dma_lost_irq = hpt366_dma_lost_irq,
1449 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1450 .dma_timeout = ide_dma_timeout,
1451 .dma_sff_read_status = ide_dma_sff_read_status,
1452 };
1453
1454 static const struct ide_port_info hpt366_chipsets[] __devinitdata = {
1455 { /* 0: HPT36x */
1456 .name = DRV_NAME,
1457 .init_chipset = init_chipset_hpt366,
1458 .init_hwif = init_hwif_hpt366,
1459 .init_dma = init_dma_hpt366,
1460 /*
1461 * HPT36x chips have one channel per function and have
1462 * both channel enable bits located differently and visible
1463 * to both functions -- really stupid design decision... :-(
1464 * Bit 4 is for the primary channel, bit 5 for the secondary.
1465 */
1466 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1467 .port_ops = &hpt3xx_port_ops,
1468 .dma_ops = &hpt36x_dma_ops,
1469 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1470 .pio_mask = ATA_PIO4,
1471 .mwdma_mask = ATA_MWDMA2,
1472 },
1473 { /* 1: HPT3xx */
1474 .name = DRV_NAME,
1475 .init_chipset = init_chipset_hpt366,
1476 .init_hwif = init_hwif_hpt366,
1477 .init_dma = init_dma_hpt366,
1478 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1479 .port_ops = &hpt3xx_port_ops,
1480 .dma_ops = &hpt37x_dma_ops,
1481 .host_flags = IDE_HFLAGS_HPT3XX,
1482 .pio_mask = ATA_PIO4,
1483 .mwdma_mask = ATA_MWDMA2,
1484 }
1485 };
1486
1487 /**
1488 * hpt366_init_one - called when an HPT366 is found
1489 * @dev: the hpt366 device
1490 * @id: the matching pci id
1491 *
1492 * Called when the PCI registration layer (or the IDE initialization)
1493 * finds a device matching our IDE device tables.
1494 */
1495 static int __devinit hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1496 {
1497 const struct hpt_info *info = NULL;
1498 struct hpt_info *dyn_info;
1499 struct pci_dev *dev2 = NULL;
1500 struct ide_port_info d;
1501 u8 idx = id->driver_data;
1502 u8 rev = dev->revision;
1503 int ret;
1504
1505 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1506 return -ENODEV;
1507
1508 switch (idx) {
1509 case 0:
1510 if (rev < 3)
1511 info = &hpt36x;
1512 else {
1513 switch (min_t(u8, rev, 6)) {
1514 case 3: info = &hpt370; break;
1515 case 4: info = &hpt370a; break;
1516 case 5: info = &hpt372; break;
1517 case 6: info = &hpt372n; break;
1518 }
1519 idx++;
1520 }
1521 break;
1522 case 1:
1523 info = (rev > 1) ? &hpt372n : &hpt372a;
1524 break;
1525 case 2:
1526 info = (rev > 1) ? &hpt302n : &hpt302;
1527 break;
1528 case 3:
1529 hpt371_init(dev);
1530 info = (rev > 1) ? &hpt371n : &hpt371;
1531 break;
1532 case 4:
1533 info = &hpt374;
1534 break;
1535 case 5:
1536 info = &hpt372n;
1537 break;
1538 }
1539
1540 printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1541
1542 d = hpt366_chipsets[min_t(u8, idx, 1)];
1543
1544 d.udma_mask = info->udma_mask;
1545
1546 /* fixup ->dma_ops for HPT370/HPT370A */
1547 if (info == &hpt370 || info == &hpt370a)
1548 d.dma_ops = &hpt370_dma_ops;
1549
1550 if (info == &hpt36x || info == &hpt374)
1551 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1552
1553 dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1554 if (dyn_info == NULL) {
1555 printk(KERN_ERR "%s %s: out of memory!\n",
1556 d.name, pci_name(dev));
1557 pci_dev_put(dev2);
1558 return -ENOMEM;
1559 }
1560
1561 /*
1562 * Copy everything from a static "template" structure
1563 * to just allocated per-chip hpt_info structure.
1564 */
1565 memcpy(dyn_info, info, sizeof(*dyn_info));
1566
1567 if (dev2) {
1568 memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1569
1570 if (info == &hpt374)
1571 hpt374_init(dev, dev2);
1572 else {
1573 if (hpt36x_init(dev, dev2))
1574 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1575 }
1576
1577 ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1578 if (ret < 0) {
1579 pci_dev_put(dev2);
1580 kfree(dyn_info);
1581 }
1582 return ret;
1583 }
1584
1585 ret = ide_pci_init_one(dev, &d, dyn_info);
1586 if (ret < 0)
1587 kfree(dyn_info);
1588
1589 return ret;
1590 }
1591
1592 static void __devexit hpt366_remove(struct pci_dev *dev)
1593 {
1594 struct ide_host *host = pci_get_drvdata(dev);
1595 struct ide_info *info = host->host_priv;
1596 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1597
1598 ide_pci_remove(dev);
1599 pci_dev_put(dev2);
1600 kfree(info);
1601 }
1602
1603 static const struct pci_device_id hpt366_pci_tbl[] __devinitconst = {
1604 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1605 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1606 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1607 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1608 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1609 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1610 { 0, },
1611 };
1612 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1613
1614 static struct pci_driver hpt366_pci_driver = {
1615 .name = "HPT366_IDE",
1616 .id_table = hpt366_pci_tbl,
1617 .probe = hpt366_init_one,
1618 .remove = __devexit_p(hpt366_remove),
1619 .suspend = ide_pci_suspend,
1620 .resume = ide_pci_resume,
1621 };
1622
1623 static int __init hpt366_ide_init(void)
1624 {
1625 return ide_pci_register_driver(&hpt366_pci_driver);
1626 }
1627
1628 static void __exit hpt366_ide_exit(void)
1629 {
1630 pci_unregister_driver(&hpt366_pci_driver);
1631 }
1632
1633 module_init(hpt366_ide_init);
1634 module_exit(hpt366_ide_exit);
1635
1636 MODULE_AUTHOR("Andre Hedrick");
1637 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1638 MODULE_LICENSE("GPL");