]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/ide/ide-io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61 int error = 0;
62
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
65
66 /*
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
69 */
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
72
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
75
76 /*
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
79 */
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
83 }
84
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
89 }
90
91 return ret;
92 }
93
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
99 *
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
103 */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
111
112 /*
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
115 */
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
118
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
124 }
125
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
142
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150 struct request_pm_state *pm = rq->data;
151
152 if (drive->media != ide_disk)
153 return;
154
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
171 }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
178
179 memset(args, 0, sizeof(*args));
180
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
189 }
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
195
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
199
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
202 /*
203 * skip idedisk_pm_idle for ATAPI devices
204 */
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
210
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
214
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
216 /*
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
220 */
221 if (drive->hwif->dma_host_set == NULL)
222 break;
223 /*
224 * TODO: respect ->using_dma setting
225 */
226 ide_set_dma(drive);
227 break;
228 }
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
231
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
236 }
237
238 /**
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
243 *
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
248 *
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
251 */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
255 {
256 unsigned long flags;
257 int ret;
258
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
263
264 return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
273 *
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
276 */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279 unsigned long flags;
280
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
291 }
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299 {
300 ide_hwif_t *hwif = drive->hwif;
301 struct ide_taskfile *tf = &task->tf;
302
303 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304 u16 data = hwif->INW(hwif->io_ports[IDE_DATA_OFFSET]);
305
306 tf->data = data & 0xff;
307 tf->hob_data = (data >> 8) & 0xff;
308 }
309
310 /* be sure we're looking at the low order bits */
311 hwif->OUTB(drive->ctl & ~0x80, hwif->io_ports[IDE_CONTROL_OFFSET]);
312
313 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314 tf->nsect = hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
315 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316 tf->lbal = hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
317 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318 tf->lbam = hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
319 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320 tf->lbah = hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
321 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322 tf->device = hwif->INB(hwif->io_ports[IDE_SELECT_OFFSET]);
323
324 if (task->tf_flags & IDE_TFLAG_LBA48) {
325 hwif->OUTB(drive->ctl | 0x80,
326 hwif->io_ports[IDE_CONTROL_OFFSET]);
327
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329 tf->hob_feature =
330 hwif->INB(hwif->io_ports[IDE_FEATURE_OFFSET]);
331 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
332 tf->hob_nsect =
333 hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
335 tf->hob_lbal =
336 hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
337 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
338 tf->hob_lbam =
339 hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
340 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
341 tf->hob_lbah =
342 hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
343 }
344 }
345
346 /**
347 * ide_end_drive_cmd - end an explicit drive command
348 * @drive: command
349 * @stat: status bits
350 * @err: error bits
351 *
352 * Clean up after success/failure of an explicit drive command.
353 * These get thrown onto the queue so they are synchronized with
354 * real I/O operations on the drive.
355 *
356 * In LBA48 mode we have to read the register set twice to get
357 * all the extra information out.
358 */
359
360 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
361 {
362 unsigned long flags;
363 struct request *rq;
364
365 spin_lock_irqsave(&ide_lock, flags);
366 rq = HWGROUP(drive)->rq;
367 spin_unlock_irqrestore(&ide_lock, flags);
368
369 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
370 ide_task_t *task = (ide_task_t *)rq->special;
371
372 if (rq->errors == 0)
373 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
374
375 if (task) {
376 struct ide_taskfile *tf = &task->tf;
377
378 tf->error = err;
379 tf->status = stat;
380
381 ide_tf_read(drive, task);
382
383 if (task->tf_flags & IDE_TFLAG_DYN)
384 kfree(task);
385 }
386 } else if (blk_pm_request(rq)) {
387 struct request_pm_state *pm = rq->data;
388 #ifdef DEBUG_PM
389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390 drive->name, rq->pm->pm_step, stat, err);
391 #endif
392 ide_complete_power_step(drive, rq, stat, err);
393 if (pm->pm_step == ide_pm_state_completed)
394 ide_complete_pm_request(drive, rq);
395 return;
396 }
397
398 spin_lock_irqsave(&ide_lock, flags);
399 HWGROUP(drive)->rq = NULL;
400 rq->errors = err;
401 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
402 blk_rq_bytes(rq))))
403 BUG();
404 spin_unlock_irqrestore(&ide_lock, flags);
405 }
406
407 EXPORT_SYMBOL(ide_end_drive_cmd);
408
409 /**
410 * try_to_flush_leftover_data - flush junk
411 * @drive: drive to flush
412 *
413 * try_to_flush_leftover_data() is invoked in response to a drive
414 * unexpectedly having its DRQ_STAT bit set. As an alternative to
415 * resetting the drive, this routine tries to clear the condition
416 * by read a sector's worth of data from the drive. Of course,
417 * this may not help if the drive is *waiting* for data from *us*.
418 */
419 static void try_to_flush_leftover_data (ide_drive_t *drive)
420 {
421 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
422
423 if (drive->media != ide_disk)
424 return;
425 while (i > 0) {
426 u32 buffer[16];
427 u32 wcount = (i > 16) ? 16 : i;
428
429 i -= wcount;
430 HWIF(drive)->ata_input_data(drive, buffer, wcount);
431 }
432 }
433
434 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
435 {
436 if (rq->rq_disk) {
437 ide_driver_t *drv;
438
439 drv = *(ide_driver_t **)rq->rq_disk->private_data;
440 drv->end_request(drive, 0, 0);
441 } else
442 ide_end_request(drive, 0, 0);
443 }
444
445 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
446 {
447 ide_hwif_t *hwif = drive->hwif;
448
449 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
450 /* other bits are useless when BUSY */
451 rq->errors |= ERROR_RESET;
452 } else if (stat & ERR_STAT) {
453 /* err has different meaning on cdrom and tape */
454 if (err == ABRT_ERR) {
455 if (drive->select.b.lba &&
456 /* some newer drives don't support WIN_SPECIFY */
457 hwif->INB(hwif->io_ports[IDE_COMMAND_OFFSET]) ==
458 WIN_SPECIFY)
459 return ide_stopped;
460 } else if ((err & BAD_CRC) == BAD_CRC) {
461 /* UDMA crc error, just retry the operation */
462 drive->crc_count++;
463 } else if (err & (BBD_ERR | ECC_ERR)) {
464 /* retries won't help these */
465 rq->errors = ERROR_MAX;
466 } else if (err & TRK0_ERR) {
467 /* help it find track zero */
468 rq->errors |= ERROR_RECAL;
469 }
470 }
471
472 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
473 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
474 try_to_flush_leftover_data(drive);
475
476 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
477 ide_kill_rq(drive, rq);
478 return ide_stopped;
479 }
480
481 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
482 rq->errors |= ERROR_RESET;
483
484 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
485 ++rq->errors;
486 return ide_do_reset(drive);
487 }
488
489 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
490 drive->special.b.recalibrate = 1;
491
492 ++rq->errors;
493
494 return ide_stopped;
495 }
496
497 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
498 {
499 ide_hwif_t *hwif = drive->hwif;
500
501 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
502 /* other bits are useless when BUSY */
503 rq->errors |= ERROR_RESET;
504 } else {
505 /* add decoding error stuff */
506 }
507
508 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
509 /* force an abort */
510 hwif->OUTB(WIN_IDLEIMMEDIATE,
511 hwif->io_ports[IDE_COMMAND_OFFSET]);
512
513 if (rq->errors >= ERROR_MAX) {
514 ide_kill_rq(drive, rq);
515 } else {
516 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
517 ++rq->errors;
518 return ide_do_reset(drive);
519 }
520 ++rq->errors;
521 }
522
523 return ide_stopped;
524 }
525
526 ide_startstop_t
527 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
528 {
529 if (drive->media == ide_disk)
530 return ide_ata_error(drive, rq, stat, err);
531 return ide_atapi_error(drive, rq, stat, err);
532 }
533
534 EXPORT_SYMBOL_GPL(__ide_error);
535
536 /**
537 * ide_error - handle an error on the IDE
538 * @drive: drive the error occurred on
539 * @msg: message to report
540 * @stat: status bits
541 *
542 * ide_error() takes action based on the error returned by the drive.
543 * For normal I/O that may well include retries. We deal with
544 * both new-style (taskfile) and old style command handling here.
545 * In the case of taskfile command handling there is work left to
546 * do
547 */
548
549 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
550 {
551 struct request *rq;
552 u8 err;
553
554 err = ide_dump_status(drive, msg, stat);
555
556 if ((rq = HWGROUP(drive)->rq) == NULL)
557 return ide_stopped;
558
559 /* retry only "normal" I/O: */
560 if (!blk_fs_request(rq)) {
561 rq->errors = 1;
562 ide_end_drive_cmd(drive, stat, err);
563 return ide_stopped;
564 }
565
566 if (rq->rq_disk) {
567 ide_driver_t *drv;
568
569 drv = *(ide_driver_t **)rq->rq_disk->private_data;
570 return drv->error(drive, rq, stat, err);
571 } else
572 return __ide_error(drive, rq, stat, err);
573 }
574
575 EXPORT_SYMBOL_GPL(ide_error);
576
577 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
578 {
579 if (drive->media != ide_disk)
580 rq->errors |= ERROR_RESET;
581
582 ide_kill_rq(drive, rq);
583
584 return ide_stopped;
585 }
586
587 EXPORT_SYMBOL_GPL(__ide_abort);
588
589 /**
590 * ide_abort - abort pending IDE operations
591 * @drive: drive the error occurred on
592 * @msg: message to report
593 *
594 * ide_abort kills and cleans up when we are about to do a
595 * host initiated reset on active commands. Longer term we
596 * want handlers to have sensible abort handling themselves
597 *
598 * This differs fundamentally from ide_error because in
599 * this case the command is doing just fine when we
600 * blow it away.
601 */
602
603 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
604 {
605 struct request *rq;
606
607 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
608 return ide_stopped;
609
610 /* retry only "normal" I/O: */
611 if (!blk_fs_request(rq)) {
612 rq->errors = 1;
613 ide_end_drive_cmd(drive, BUSY_STAT, 0);
614 return ide_stopped;
615 }
616
617 if (rq->rq_disk) {
618 ide_driver_t *drv;
619
620 drv = *(ide_driver_t **)rq->rq_disk->private_data;
621 return drv->abort(drive, rq);
622 } else
623 return __ide_abort(drive, rq);
624 }
625
626 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
627 {
628 tf->nsect = drive->sect;
629 tf->lbal = drive->sect;
630 tf->lbam = drive->cyl;
631 tf->lbah = drive->cyl >> 8;
632 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
633 tf->command = WIN_SPECIFY;
634 }
635
636 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
637 {
638 tf->nsect = drive->sect;
639 tf->command = WIN_RESTORE;
640 }
641
642 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
643 {
644 tf->nsect = drive->mult_req;
645 tf->command = WIN_SETMULT;
646 }
647
648 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
649 {
650 special_t *s = &drive->special;
651 ide_task_t args;
652
653 memset(&args, 0, sizeof(ide_task_t));
654 args.data_phase = TASKFILE_NO_DATA;
655
656 if (s->b.set_geometry) {
657 s->b.set_geometry = 0;
658 ide_tf_set_specify_cmd(drive, &args.tf);
659 } else if (s->b.recalibrate) {
660 s->b.recalibrate = 0;
661 ide_tf_set_restore_cmd(drive, &args.tf);
662 } else if (s->b.set_multmode) {
663 s->b.set_multmode = 0;
664 if (drive->mult_req > drive->id->max_multsect)
665 drive->mult_req = drive->id->max_multsect;
666 ide_tf_set_setmult_cmd(drive, &args.tf);
667 } else if (s->all) {
668 int special = s->all;
669 s->all = 0;
670 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
671 return ide_stopped;
672 }
673
674 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
675 IDE_TFLAG_CUSTOM_HANDLER;
676
677 do_rw_taskfile(drive, &args);
678
679 return ide_started;
680 }
681
682 /*
683 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
684 */
685 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
686 {
687 switch (req_pio) {
688 case 202:
689 case 201:
690 case 200:
691 case 102:
692 case 101:
693 case 100:
694 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
695 case 9:
696 case 8:
697 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
698 case 7:
699 case 6:
700 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
701 default:
702 return 0;
703 }
704 }
705
706 /**
707 * do_special - issue some special commands
708 * @drive: drive the command is for
709 *
710 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
711 * commands to a drive. It used to do much more, but has been scaled
712 * back.
713 */
714
715 static ide_startstop_t do_special (ide_drive_t *drive)
716 {
717 special_t *s = &drive->special;
718
719 #ifdef DEBUG
720 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
721 #endif
722 if (s->b.set_tune) {
723 ide_hwif_t *hwif = drive->hwif;
724 u8 req_pio = drive->tune_req;
725
726 s->b.set_tune = 0;
727
728 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
729
730 if (hwif->set_pio_mode == NULL)
731 return ide_stopped;
732
733 /*
734 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
735 */
736 if (req_pio == 8 || req_pio == 9) {
737 unsigned long flags;
738
739 spin_lock_irqsave(&ide_lock, flags);
740 hwif->set_pio_mode(drive, req_pio);
741 spin_unlock_irqrestore(&ide_lock, flags);
742 } else
743 hwif->set_pio_mode(drive, req_pio);
744 } else {
745 int keep_dma = drive->using_dma;
746
747 ide_set_pio(drive, req_pio);
748
749 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
750 if (keep_dma)
751 ide_dma_on(drive);
752 }
753 }
754
755 return ide_stopped;
756 } else {
757 if (drive->media == ide_disk)
758 return ide_disk_special(drive);
759
760 s->all = 0;
761 drive->mult_req = 0;
762 return ide_stopped;
763 }
764 }
765
766 void ide_map_sg(ide_drive_t *drive, struct request *rq)
767 {
768 ide_hwif_t *hwif = drive->hwif;
769 struct scatterlist *sg = hwif->sg_table;
770
771 if (hwif->sg_mapped) /* needed by ide-scsi */
772 return;
773
774 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
775 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
776 } else {
777 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
778 hwif->sg_nents = 1;
779 }
780 }
781
782 EXPORT_SYMBOL_GPL(ide_map_sg);
783
784 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
785 {
786 ide_hwif_t *hwif = drive->hwif;
787
788 hwif->nsect = hwif->nleft = rq->nr_sectors;
789 hwif->cursg_ofs = 0;
790 hwif->cursg = NULL;
791 }
792
793 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
794
795 /**
796 * execute_drive_command - issue special drive command
797 * @drive: the drive to issue the command on
798 * @rq: the request structure holding the command
799 *
800 * execute_drive_cmd() issues a special drive command, usually
801 * initiated by ioctl() from the external hdparm program. The
802 * command can be a drive command, drive task or taskfile
803 * operation. Weirdly you can call it with NULL to wait for
804 * all commands to finish. Don't do this as that is due to change
805 */
806
807 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
808 struct request *rq)
809 {
810 ide_hwif_t *hwif = HWIF(drive);
811 ide_task_t *task = rq->special;
812
813 if (task) {
814 hwif->data_phase = task->data_phase;
815
816 switch (hwif->data_phase) {
817 case TASKFILE_MULTI_OUT:
818 case TASKFILE_OUT:
819 case TASKFILE_MULTI_IN:
820 case TASKFILE_IN:
821 ide_init_sg_cmd(drive, rq);
822 ide_map_sg(drive, rq);
823 default:
824 break;
825 }
826
827 return do_rw_taskfile(drive, task);
828 }
829
830 /*
831 * NULL is actually a valid way of waiting for
832 * all current requests to be flushed from the queue.
833 */
834 #ifdef DEBUG
835 printk("%s: DRIVE_CMD (null)\n", drive->name);
836 #endif
837 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
838
839 return ide_stopped;
840 }
841
842 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
843 {
844 struct request_pm_state *pm = rq->data;
845
846 if (blk_pm_suspend_request(rq) &&
847 pm->pm_step == ide_pm_state_start_suspend)
848 /* Mark drive blocked when starting the suspend sequence. */
849 drive->blocked = 1;
850 else if (blk_pm_resume_request(rq) &&
851 pm->pm_step == ide_pm_state_start_resume) {
852 /*
853 * The first thing we do on wakeup is to wait for BSY bit to
854 * go away (with a looong timeout) as a drive on this hwif may
855 * just be POSTing itself.
856 * We do that before even selecting as the "other" device on
857 * the bus may be broken enough to walk on our toes at this
858 * point.
859 */
860 int rc;
861 #ifdef DEBUG_PM
862 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
863 #endif
864 rc = ide_wait_not_busy(HWIF(drive), 35000);
865 if (rc)
866 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
867 SELECT_DRIVE(drive);
868 ide_set_irq(drive, 1);
869 rc = ide_wait_not_busy(HWIF(drive), 100000);
870 if (rc)
871 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
872 }
873 }
874
875 /**
876 * start_request - start of I/O and command issuing for IDE
877 *
878 * start_request() initiates handling of a new I/O request. It
879 * accepts commands and I/O (read/write) requests. It also does
880 * the final remapping for weird stuff like EZDrive. Once
881 * device mapper can work sector level the EZDrive stuff can go away
882 *
883 * FIXME: this function needs a rename
884 */
885
886 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
887 {
888 ide_startstop_t startstop;
889 sector_t block;
890
891 BUG_ON(!blk_rq_started(rq));
892
893 #ifdef DEBUG
894 printk("%s: start_request: current=0x%08lx\n",
895 HWIF(drive)->name, (unsigned long) rq);
896 #endif
897
898 /* bail early if we've exceeded max_failures */
899 if (drive->max_failures && (drive->failures > drive->max_failures)) {
900 rq->cmd_flags |= REQ_FAILED;
901 goto kill_rq;
902 }
903
904 block = rq->sector;
905 if (blk_fs_request(rq) &&
906 (drive->media == ide_disk || drive->media == ide_floppy)) {
907 block += drive->sect0;
908 }
909 /* Yecch - this will shift the entire interval,
910 possibly killing some innocent following sector */
911 if (block == 0 && drive->remap_0_to_1 == 1)
912 block = 1; /* redirect MBR access to EZ-Drive partn table */
913
914 if (blk_pm_request(rq))
915 ide_check_pm_state(drive, rq);
916
917 SELECT_DRIVE(drive);
918 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
919 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
920 return startstop;
921 }
922 if (!drive->special.all) {
923 ide_driver_t *drv;
924
925 /*
926 * We reset the drive so we need to issue a SETFEATURES.
927 * Do it _after_ do_special() restored device parameters.
928 */
929 if (drive->current_speed == 0xff)
930 ide_config_drive_speed(drive, drive->desired_speed);
931
932 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
933 return execute_drive_cmd(drive, rq);
934 else if (blk_pm_request(rq)) {
935 struct request_pm_state *pm = rq->data;
936 #ifdef DEBUG_PM
937 printk("%s: start_power_step(step: %d)\n",
938 drive->name, rq->pm->pm_step);
939 #endif
940 startstop = ide_start_power_step(drive, rq);
941 if (startstop == ide_stopped &&
942 pm->pm_step == ide_pm_state_completed)
943 ide_complete_pm_request(drive, rq);
944 return startstop;
945 }
946
947 drv = *(ide_driver_t **)rq->rq_disk->private_data;
948 return drv->do_request(drive, rq, block);
949 }
950 return do_special(drive);
951 kill_rq:
952 ide_kill_rq(drive, rq);
953 return ide_stopped;
954 }
955
956 /**
957 * ide_stall_queue - pause an IDE device
958 * @drive: drive to stall
959 * @timeout: time to stall for (jiffies)
960 *
961 * ide_stall_queue() can be used by a drive to give excess bandwidth back
962 * to the hwgroup by sleeping for timeout jiffies.
963 */
964
965 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
966 {
967 if (timeout > WAIT_WORSTCASE)
968 timeout = WAIT_WORSTCASE;
969 drive->sleep = timeout + jiffies;
970 drive->sleeping = 1;
971 }
972
973 EXPORT_SYMBOL(ide_stall_queue);
974
975 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
976
977 /**
978 * choose_drive - select a drive to service
979 * @hwgroup: hardware group to select on
980 *
981 * choose_drive() selects the next drive which will be serviced.
982 * This is necessary because the IDE layer can't issue commands
983 * to both drives on the same cable, unlike SCSI.
984 */
985
986 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
987 {
988 ide_drive_t *drive, *best;
989
990 repeat:
991 best = NULL;
992 drive = hwgroup->drive;
993
994 /*
995 * drive is doing pre-flush, ordered write, post-flush sequence. even
996 * though that is 3 requests, it must be seen as a single transaction.
997 * we must not preempt this drive until that is complete
998 */
999 if (blk_queue_flushing(drive->queue)) {
1000 /*
1001 * small race where queue could get replugged during
1002 * the 3-request flush cycle, just yank the plug since
1003 * we want it to finish asap
1004 */
1005 blk_remove_plug(drive->queue);
1006 return drive;
1007 }
1008
1009 do {
1010 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1011 && !elv_queue_empty(drive->queue)) {
1012 if (!best
1013 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1014 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1015 {
1016 if (!blk_queue_plugged(drive->queue))
1017 best = drive;
1018 }
1019 }
1020 } while ((drive = drive->next) != hwgroup->drive);
1021 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1022 long t = (signed long)(WAKEUP(best) - jiffies);
1023 if (t >= WAIT_MIN_SLEEP) {
1024 /*
1025 * We *may* have some time to spare, but first let's see if
1026 * someone can potentially benefit from our nice mood today..
1027 */
1028 drive = best->next;
1029 do {
1030 if (!drive->sleeping
1031 && time_before(jiffies - best->service_time, WAKEUP(drive))
1032 && time_before(WAKEUP(drive), jiffies + t))
1033 {
1034 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1035 goto repeat;
1036 }
1037 } while ((drive = drive->next) != best);
1038 }
1039 }
1040 return best;
1041 }
1042
1043 /*
1044 * Issue a new request to a drive from hwgroup
1045 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1046 *
1047 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1048 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1049 * may have both interfaces in a single hwgroup to "serialize" access.
1050 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1051 * together into one hwgroup for serialized access.
1052 *
1053 * Note also that several hwgroups can end up sharing a single IRQ,
1054 * possibly along with many other devices. This is especially common in
1055 * PCI-based systems with off-board IDE controller cards.
1056 *
1057 * The IDE driver uses the single global ide_lock spinlock to protect
1058 * access to the request queues, and to protect the hwgroup->busy flag.
1059 *
1060 * The first thread into the driver for a particular hwgroup sets the
1061 * hwgroup->busy flag to indicate that this hwgroup is now active,
1062 * and then initiates processing of the top request from the request queue.
1063 *
1064 * Other threads attempting entry notice the busy setting, and will simply
1065 * queue their new requests and exit immediately. Note that hwgroup->busy
1066 * remains set even when the driver is merely awaiting the next interrupt.
1067 * Thus, the meaning is "this hwgroup is busy processing a request".
1068 *
1069 * When processing of a request completes, the completing thread or IRQ-handler
1070 * will start the next request from the queue. If no more work remains,
1071 * the driver will clear the hwgroup->busy flag and exit.
1072 *
1073 * The ide_lock (spinlock) is used to protect all access to the
1074 * hwgroup->busy flag, but is otherwise not needed for most processing in
1075 * the driver. This makes the driver much more friendlier to shared IRQs
1076 * than previous designs, while remaining 100% (?) SMP safe and capable.
1077 */
1078 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1079 {
1080 ide_drive_t *drive;
1081 ide_hwif_t *hwif;
1082 struct request *rq;
1083 ide_startstop_t startstop;
1084 int loops = 0;
1085
1086 /* for atari only: POSSIBLY BROKEN HERE(?) */
1087 ide_get_lock(ide_intr, hwgroup);
1088
1089 /* caller must own ide_lock */
1090 BUG_ON(!irqs_disabled());
1091
1092 while (!hwgroup->busy) {
1093 hwgroup->busy = 1;
1094 drive = choose_drive(hwgroup);
1095 if (drive == NULL) {
1096 int sleeping = 0;
1097 unsigned long sleep = 0; /* shut up, gcc */
1098 hwgroup->rq = NULL;
1099 drive = hwgroup->drive;
1100 do {
1101 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1102 sleeping = 1;
1103 sleep = drive->sleep;
1104 }
1105 } while ((drive = drive->next) != hwgroup->drive);
1106 if (sleeping) {
1107 /*
1108 * Take a short snooze, and then wake up this hwgroup again.
1109 * This gives other hwgroups on the same a chance to
1110 * play fairly with us, just in case there are big differences
1111 * in relative throughputs.. don't want to hog the cpu too much.
1112 */
1113 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1114 sleep = jiffies + WAIT_MIN_SLEEP;
1115 #if 1
1116 if (timer_pending(&hwgroup->timer))
1117 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1118 #endif
1119 /* so that ide_timer_expiry knows what to do */
1120 hwgroup->sleeping = 1;
1121 hwgroup->req_gen_timer = hwgroup->req_gen;
1122 mod_timer(&hwgroup->timer, sleep);
1123 /* we purposely leave hwgroup->busy==1
1124 * while sleeping */
1125 } else {
1126 /* Ugly, but how can we sleep for the lock
1127 * otherwise? perhaps from tq_disk?
1128 */
1129
1130 /* for atari only */
1131 ide_release_lock();
1132 hwgroup->busy = 0;
1133 }
1134
1135 /* no more work for this hwgroup (for now) */
1136 return;
1137 }
1138 again:
1139 hwif = HWIF(drive);
1140 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1141 /*
1142 * set nIEN for previous hwif, drives in the
1143 * quirk_list may not like intr setups/cleanups
1144 */
1145 if (drive->quirk_list != 1)
1146 ide_set_irq(drive, 0);
1147 }
1148 hwgroup->hwif = hwif;
1149 hwgroup->drive = drive;
1150 drive->sleeping = 0;
1151 drive->service_start = jiffies;
1152
1153 if (blk_queue_plugged(drive->queue)) {
1154 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1155 break;
1156 }
1157
1158 /*
1159 * we know that the queue isn't empty, but this can happen
1160 * if the q->prep_rq_fn() decides to kill a request
1161 */
1162 rq = elv_next_request(drive->queue);
1163 if (!rq) {
1164 hwgroup->busy = 0;
1165 break;
1166 }
1167
1168 /*
1169 * Sanity: don't accept a request that isn't a PM request
1170 * if we are currently power managed. This is very important as
1171 * blk_stop_queue() doesn't prevent the elv_next_request()
1172 * above to return us whatever is in the queue. Since we call
1173 * ide_do_request() ourselves, we end up taking requests while
1174 * the queue is blocked...
1175 *
1176 * We let requests forced at head of queue with ide-preempt
1177 * though. I hope that doesn't happen too much, hopefully not
1178 * unless the subdriver triggers such a thing in its own PM
1179 * state machine.
1180 *
1181 * We count how many times we loop here to make sure we service
1182 * all drives in the hwgroup without looping for ever
1183 */
1184 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1185 drive = drive->next ? drive->next : hwgroup->drive;
1186 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1187 goto again;
1188 /* We clear busy, there should be no pending ATA command at this point. */
1189 hwgroup->busy = 0;
1190 break;
1191 }
1192
1193 hwgroup->rq = rq;
1194
1195 /*
1196 * Some systems have trouble with IDE IRQs arriving while
1197 * the driver is still setting things up. So, here we disable
1198 * the IRQ used by this interface while the request is being started.
1199 * This may look bad at first, but pretty much the same thing
1200 * happens anyway when any interrupt comes in, IDE or otherwise
1201 * -- the kernel masks the IRQ while it is being handled.
1202 */
1203 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1204 disable_irq_nosync(hwif->irq);
1205 spin_unlock(&ide_lock);
1206 local_irq_enable_in_hardirq();
1207 /* allow other IRQs while we start this request */
1208 startstop = start_request(drive, rq);
1209 spin_lock_irq(&ide_lock);
1210 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1211 enable_irq(hwif->irq);
1212 if (startstop == ide_stopped)
1213 hwgroup->busy = 0;
1214 }
1215 }
1216
1217 /*
1218 * Passes the stuff to ide_do_request
1219 */
1220 void do_ide_request(struct request_queue *q)
1221 {
1222 ide_drive_t *drive = q->queuedata;
1223
1224 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1225 }
1226
1227 /*
1228 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1229 * retry the current request in pio mode instead of risking tossing it
1230 * all away
1231 */
1232 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1233 {
1234 ide_hwif_t *hwif = HWIF(drive);
1235 struct request *rq;
1236 ide_startstop_t ret = ide_stopped;
1237
1238 /*
1239 * end current dma transaction
1240 */
1241
1242 if (error < 0) {
1243 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1244 (void)HWIF(drive)->ide_dma_end(drive);
1245 ret = ide_error(drive, "dma timeout error",
1246 ide_read_status(drive));
1247 } else {
1248 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1249 hwif->dma_timeout(drive);
1250 }
1251
1252 /*
1253 * disable dma for now, but remember that we did so because of
1254 * a timeout -- we'll reenable after we finish this next request
1255 * (or rather the first chunk of it) in pio.
1256 */
1257 drive->retry_pio++;
1258 drive->state = DMA_PIO_RETRY;
1259 ide_dma_off_quietly(drive);
1260
1261 /*
1262 * un-busy drive etc (hwgroup->busy is cleared on return) and
1263 * make sure request is sane
1264 */
1265 rq = HWGROUP(drive)->rq;
1266
1267 if (!rq)
1268 goto out;
1269
1270 HWGROUP(drive)->rq = NULL;
1271
1272 rq->errors = 0;
1273
1274 if (!rq->bio)
1275 goto out;
1276
1277 rq->sector = rq->bio->bi_sector;
1278 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1279 rq->hard_cur_sectors = rq->current_nr_sectors;
1280 rq->buffer = bio_data(rq->bio);
1281 out:
1282 return ret;
1283 }
1284
1285 /**
1286 * ide_timer_expiry - handle lack of an IDE interrupt
1287 * @data: timer callback magic (hwgroup)
1288 *
1289 * An IDE command has timed out before the expected drive return
1290 * occurred. At this point we attempt to clean up the current
1291 * mess. If the current handler includes an expiry handler then
1292 * we invoke the expiry handler, and providing it is happy the
1293 * work is done. If that fails we apply generic recovery rules
1294 * invoking the handler and checking the drive DMA status. We
1295 * have an excessively incestuous relationship with the DMA
1296 * logic that wants cleaning up.
1297 */
1298
1299 void ide_timer_expiry (unsigned long data)
1300 {
1301 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1302 ide_handler_t *handler;
1303 ide_expiry_t *expiry;
1304 unsigned long flags;
1305 unsigned long wait = -1;
1306
1307 spin_lock_irqsave(&ide_lock, flags);
1308
1309 if (((handler = hwgroup->handler) == NULL) ||
1310 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1311 /*
1312 * Either a marginal timeout occurred
1313 * (got the interrupt just as timer expired),
1314 * or we were "sleeping" to give other devices a chance.
1315 * Either way, we don't really want to complain about anything.
1316 */
1317 if (hwgroup->sleeping) {
1318 hwgroup->sleeping = 0;
1319 hwgroup->busy = 0;
1320 }
1321 } else {
1322 ide_drive_t *drive = hwgroup->drive;
1323 if (!drive) {
1324 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1325 hwgroup->handler = NULL;
1326 } else {
1327 ide_hwif_t *hwif;
1328 ide_startstop_t startstop = ide_stopped;
1329 if (!hwgroup->busy) {
1330 hwgroup->busy = 1; /* paranoia */
1331 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1332 }
1333 if ((expiry = hwgroup->expiry) != NULL) {
1334 /* continue */
1335 if ((wait = expiry(drive)) > 0) {
1336 /* reset timer */
1337 hwgroup->timer.expires = jiffies + wait;
1338 hwgroup->req_gen_timer = hwgroup->req_gen;
1339 add_timer(&hwgroup->timer);
1340 spin_unlock_irqrestore(&ide_lock, flags);
1341 return;
1342 }
1343 }
1344 hwgroup->handler = NULL;
1345 /*
1346 * We need to simulate a real interrupt when invoking
1347 * the handler() function, which means we need to
1348 * globally mask the specific IRQ:
1349 */
1350 spin_unlock(&ide_lock);
1351 hwif = HWIF(drive);
1352 /* disable_irq_nosync ?? */
1353 disable_irq(hwif->irq);
1354 /* local CPU only,
1355 * as if we were handling an interrupt */
1356 local_irq_disable();
1357 if (hwgroup->polling) {
1358 startstop = handler(drive);
1359 } else if (drive_is_ready(drive)) {
1360 if (drive->waiting_for_dma)
1361 hwgroup->hwif->dma_lost_irq(drive);
1362 (void)ide_ack_intr(hwif);
1363 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1364 startstop = handler(drive);
1365 } else {
1366 if (drive->waiting_for_dma) {
1367 startstop = ide_dma_timeout_retry(drive, wait);
1368 } else
1369 startstop =
1370 ide_error(drive, "irq timeout",
1371 ide_read_status(drive));
1372 }
1373 drive->service_time = jiffies - drive->service_start;
1374 spin_lock_irq(&ide_lock);
1375 enable_irq(hwif->irq);
1376 if (startstop == ide_stopped)
1377 hwgroup->busy = 0;
1378 }
1379 }
1380 ide_do_request(hwgroup, IDE_NO_IRQ);
1381 spin_unlock_irqrestore(&ide_lock, flags);
1382 }
1383
1384 /**
1385 * unexpected_intr - handle an unexpected IDE interrupt
1386 * @irq: interrupt line
1387 * @hwgroup: hwgroup being processed
1388 *
1389 * There's nothing really useful we can do with an unexpected interrupt,
1390 * other than reading the status register (to clear it), and logging it.
1391 * There should be no way that an irq can happen before we're ready for it,
1392 * so we needn't worry much about losing an "important" interrupt here.
1393 *
1394 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1395 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1396 * looks "good", we just ignore the interrupt completely.
1397 *
1398 * This routine assumes __cli() is in effect when called.
1399 *
1400 * If an unexpected interrupt happens on irq15 while we are handling irq14
1401 * and if the two interfaces are "serialized" (CMD640), then it looks like
1402 * we could screw up by interfering with a new request being set up for
1403 * irq15.
1404 *
1405 * In reality, this is a non-issue. The new command is not sent unless
1406 * the drive is ready to accept one, in which case we know the drive is
1407 * not trying to interrupt us. And ide_set_handler() is always invoked
1408 * before completing the issuance of any new drive command, so we will not
1409 * be accidentally invoked as a result of any valid command completion
1410 * interrupt.
1411 *
1412 * Note that we must walk the entire hwgroup here. We know which hwif
1413 * is doing the current command, but we don't know which hwif burped
1414 * mysteriously.
1415 */
1416
1417 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1418 {
1419 u8 stat;
1420 ide_hwif_t *hwif = hwgroup->hwif;
1421
1422 /*
1423 * handle the unexpected interrupt
1424 */
1425 do {
1426 if (hwif->irq == irq) {
1427 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1428 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1429 /* Try to not flood the console with msgs */
1430 static unsigned long last_msgtime, count;
1431 ++count;
1432 if (time_after(jiffies, last_msgtime + HZ)) {
1433 last_msgtime = jiffies;
1434 printk(KERN_ERR "%s%s: unexpected interrupt, "
1435 "status=0x%02x, count=%ld\n",
1436 hwif->name,
1437 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1438 }
1439 }
1440 }
1441 } while ((hwif = hwif->next) != hwgroup->hwif);
1442 }
1443
1444 /**
1445 * ide_intr - default IDE interrupt handler
1446 * @irq: interrupt number
1447 * @dev_id: hwif group
1448 * @regs: unused weirdness from the kernel irq layer
1449 *
1450 * This is the default IRQ handler for the IDE layer. You should
1451 * not need to override it. If you do be aware it is subtle in
1452 * places
1453 *
1454 * hwgroup->hwif is the interface in the group currently performing
1455 * a command. hwgroup->drive is the drive and hwgroup->handler is
1456 * the IRQ handler to call. As we issue a command the handlers
1457 * step through multiple states, reassigning the handler to the
1458 * next step in the process. Unlike a smart SCSI controller IDE
1459 * expects the main processor to sequence the various transfer
1460 * stages. We also manage a poll timer to catch up with most
1461 * timeout situations. There are still a few where the handlers
1462 * don't ever decide to give up.
1463 *
1464 * The handler eventually returns ide_stopped to indicate the
1465 * request completed. At this point we issue the next request
1466 * on the hwgroup and the process begins again.
1467 */
1468
1469 irqreturn_t ide_intr (int irq, void *dev_id)
1470 {
1471 unsigned long flags;
1472 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1473 ide_hwif_t *hwif;
1474 ide_drive_t *drive;
1475 ide_handler_t *handler;
1476 ide_startstop_t startstop;
1477
1478 spin_lock_irqsave(&ide_lock, flags);
1479 hwif = hwgroup->hwif;
1480
1481 if (!ide_ack_intr(hwif)) {
1482 spin_unlock_irqrestore(&ide_lock, flags);
1483 return IRQ_NONE;
1484 }
1485
1486 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1487 /*
1488 * Not expecting an interrupt from this drive.
1489 * That means this could be:
1490 * (1) an interrupt from another PCI device
1491 * sharing the same PCI INT# as us.
1492 * or (2) a drive just entered sleep or standby mode,
1493 * and is interrupting to let us know.
1494 * or (3) a spurious interrupt of unknown origin.
1495 *
1496 * For PCI, we cannot tell the difference,
1497 * so in that case we just ignore it and hope it goes away.
1498 *
1499 * FIXME: unexpected_intr should be hwif-> then we can
1500 * remove all the ifdef PCI crap
1501 */
1502 #ifdef CONFIG_BLK_DEV_IDEPCI
1503 if (hwif->chipset != ide_pci)
1504 #endif /* CONFIG_BLK_DEV_IDEPCI */
1505 {
1506 /*
1507 * Probably not a shared PCI interrupt,
1508 * so we can safely try to do something about it:
1509 */
1510 unexpected_intr(irq, hwgroup);
1511 #ifdef CONFIG_BLK_DEV_IDEPCI
1512 } else {
1513 /*
1514 * Whack the status register, just in case
1515 * we have a leftover pending IRQ.
1516 */
1517 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1518 #endif /* CONFIG_BLK_DEV_IDEPCI */
1519 }
1520 spin_unlock_irqrestore(&ide_lock, flags);
1521 return IRQ_NONE;
1522 }
1523 drive = hwgroup->drive;
1524 if (!drive) {
1525 /*
1526 * This should NEVER happen, and there isn't much
1527 * we could do about it here.
1528 *
1529 * [Note - this can occur if the drive is hot unplugged]
1530 */
1531 spin_unlock_irqrestore(&ide_lock, flags);
1532 return IRQ_HANDLED;
1533 }
1534 if (!drive_is_ready(drive)) {
1535 /*
1536 * This happens regularly when we share a PCI IRQ with
1537 * another device. Unfortunately, it can also happen
1538 * with some buggy drives that trigger the IRQ before
1539 * their status register is up to date. Hopefully we have
1540 * enough advance overhead that the latter isn't a problem.
1541 */
1542 spin_unlock_irqrestore(&ide_lock, flags);
1543 return IRQ_NONE;
1544 }
1545 if (!hwgroup->busy) {
1546 hwgroup->busy = 1; /* paranoia */
1547 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1548 }
1549 hwgroup->handler = NULL;
1550 hwgroup->req_gen++;
1551 del_timer(&hwgroup->timer);
1552 spin_unlock(&ide_lock);
1553
1554 /* Some controllers might set DMA INTR no matter DMA or PIO;
1555 * bmdma status might need to be cleared even for
1556 * PIO interrupts to prevent spurious/lost irq.
1557 */
1558 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1559 /* ide_dma_end() needs bmdma status for error checking.
1560 * So, skip clearing bmdma status here and leave it
1561 * to ide_dma_end() if this is dma interrupt.
1562 */
1563 hwif->ide_dma_clear_irq(drive);
1564
1565 if (drive->unmask)
1566 local_irq_enable_in_hardirq();
1567 /* service this interrupt, may set handler for next interrupt */
1568 startstop = handler(drive);
1569 spin_lock_irq(&ide_lock);
1570
1571 /*
1572 * Note that handler() may have set things up for another
1573 * interrupt to occur soon, but it cannot happen until
1574 * we exit from this routine, because it will be the
1575 * same irq as is currently being serviced here, and Linux
1576 * won't allow another of the same (on any CPU) until we return.
1577 */
1578 drive->service_time = jiffies - drive->service_start;
1579 if (startstop == ide_stopped) {
1580 if (hwgroup->handler == NULL) { /* paranoia */
1581 hwgroup->busy = 0;
1582 ide_do_request(hwgroup, hwif->irq);
1583 } else {
1584 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1585 "on exit\n", drive->name);
1586 }
1587 }
1588 spin_unlock_irqrestore(&ide_lock, flags);
1589 return IRQ_HANDLED;
1590 }
1591
1592 /**
1593 * ide_init_drive_cmd - initialize a drive command request
1594 * @rq: request object
1595 *
1596 * Initialize a request before we fill it in and send it down to
1597 * ide_do_drive_cmd. Commands must be set up by this function. Right
1598 * now it doesn't do a lot, but if that changes abusers will have a
1599 * nasty surprise.
1600 */
1601
1602 void ide_init_drive_cmd (struct request *rq)
1603 {
1604 memset(rq, 0, sizeof(*rq));
1605 rq->ref_count = 1;
1606 }
1607
1608 EXPORT_SYMBOL(ide_init_drive_cmd);
1609
1610 /**
1611 * ide_do_drive_cmd - issue IDE special command
1612 * @drive: device to issue command
1613 * @rq: request to issue
1614 * @action: action for processing
1615 *
1616 * This function issues a special IDE device request
1617 * onto the request queue.
1618 *
1619 * If action is ide_wait, then the rq is queued at the end of the
1620 * request queue, and the function sleeps until it has been processed.
1621 * This is for use when invoked from an ioctl handler.
1622 *
1623 * If action is ide_preempt, then the rq is queued at the head of
1624 * the request queue, displacing the currently-being-processed
1625 * request and this function returns immediately without waiting
1626 * for the new rq to be completed. This is VERY DANGEROUS, and is
1627 * intended for careful use by the ATAPI tape/cdrom driver code.
1628 *
1629 * If action is ide_end, then the rq is queued at the end of the
1630 * request queue, and the function returns immediately without waiting
1631 * for the new rq to be completed. This is again intended for careful
1632 * use by the ATAPI tape/cdrom driver code.
1633 */
1634
1635 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1636 {
1637 unsigned long flags;
1638 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1639 DECLARE_COMPLETION_ONSTACK(wait);
1640 int where = ELEVATOR_INSERT_BACK, err;
1641 int must_wait = (action == ide_wait || action == ide_head_wait);
1642
1643 rq->errors = 0;
1644
1645 /*
1646 * we need to hold an extra reference to request for safe inspection
1647 * after completion
1648 */
1649 if (must_wait) {
1650 rq->ref_count++;
1651 rq->end_io_data = &wait;
1652 rq->end_io = blk_end_sync_rq;
1653 }
1654
1655 spin_lock_irqsave(&ide_lock, flags);
1656 if (action == ide_preempt)
1657 hwgroup->rq = NULL;
1658 if (action == ide_preempt || action == ide_head_wait) {
1659 where = ELEVATOR_INSERT_FRONT;
1660 rq->cmd_flags |= REQ_PREEMPT;
1661 }
1662 __elv_add_request(drive->queue, rq, where, 0);
1663 ide_do_request(hwgroup, IDE_NO_IRQ);
1664 spin_unlock_irqrestore(&ide_lock, flags);
1665
1666 err = 0;
1667 if (must_wait) {
1668 wait_for_completion(&wait);
1669 if (rq->errors)
1670 err = -EIO;
1671
1672 blk_put_request(rq);
1673 }
1674
1675 return err;
1676 }
1677
1678 EXPORT_SYMBOL(ide_do_drive_cmd);
1679
1680 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1681 {
1682 ide_task_t task;
1683
1684 memset(&task, 0, sizeof(task));
1685 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1686 IDE_TFLAG_OUT_FEATURE | tf_flags;
1687 task.tf.feature = dma; /* Use PIO/DMA */
1688 task.tf.lbam = bcount & 0xff;
1689 task.tf.lbah = (bcount >> 8) & 0xff;
1690
1691 ide_tf_load(drive, &task);
1692 }
1693
1694 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);