]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ide/ide-io.c
f8d8642903daf1f2569055c9a80386f7d88513c9
[mirror_ubuntu-artful-kernel.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!__blk_end_request(rq, error, nr_bytes)) {
88 if (dequeue)
89 HWGROUP(drive)->rq = NULL;
90 ret = 0;
91 }
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq;
111 unsigned long flags;
112 int ret = 1;
113
114 /*
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
117 */
118 spin_lock_irqsave(&ide_lock, flags);
119 rq = HWGROUP(drive)->rq;
120
121 if (!nr_bytes) {
122 if (blk_pc_request(rq))
123 nr_bytes = rq->data_len;
124 else
125 nr_bytes = rq->hard_cur_sectors << 9;
126 }
127
128 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130 spin_unlock_irqrestore(&ide_lock, flags);
131 return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136 {
137 struct request_pm_state *pm = rq->data;
138
139 if (drive->media != ide_disk)
140 return;
141
142 switch (pm->pm_step) {
143 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
144 if (pm->pm_state == PM_EVENT_FREEZE)
145 pm->pm_step = IDE_PM_COMPLETED;
146 else
147 pm->pm_step = IDE_PM_STANDBY;
148 break;
149 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
150 pm->pm_step = IDE_PM_COMPLETED;
151 break;
152 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
153 pm->pm_step = IDE_PM_IDLE;
154 break;
155 case IDE_PM_IDLE: /* Resume step 2 (idle)*/
156 pm->pm_step = IDE_PM_RESTORE_DMA;
157 break;
158 }
159 }
160
161 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162 {
163 struct request_pm_state *pm = rq->data;
164 ide_task_t *args = rq->special;
165
166 memset(args, 0, sizeof(*args));
167
168 switch (pm->pm_step) {
169 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
170 if (drive->media != ide_disk)
171 break;
172 /* Not supported? Switch to next step now. */
173 if (ata_id_flush_enabled(drive->id) == 0 ||
174 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175 ide_complete_power_step(drive, rq, 0, 0);
176 return ide_stopped;
177 }
178 if (ata_id_flush_ext_enabled(drive->id))
179 args->tf.command = ATA_CMD_FLUSH_EXT;
180 else
181 args->tf.command = ATA_CMD_FLUSH;
182 goto out_do_tf;
183 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
184 args->tf.command = ATA_CMD_STANDBYNOW1;
185 goto out_do_tf;
186 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
187 ide_set_max_pio(drive);
188 /*
189 * skip IDE_PM_IDLE for ATAPI devices
190 */
191 if (drive->media != ide_disk)
192 pm->pm_step = IDE_PM_RESTORE_DMA;
193 else
194 ide_complete_power_step(drive, rq, 0, 0);
195 return ide_stopped;
196 case IDE_PM_IDLE: /* Resume step 2 (idle) */
197 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198 goto out_do_tf;
199 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */
200 /*
201 * Right now, all we do is call ide_set_dma(drive),
202 * we could be smarter and check for current xfer_speed
203 * in struct drive etc...
204 */
205 if (drive->hwif->dma_ops == NULL)
206 break;
207 /*
208 * TODO: respect IDE_DFLAG_USING_DMA
209 */
210 ide_set_dma(drive);
211 break;
212 }
213
214 pm->pm_step = IDE_PM_COMPLETED;
215 return ide_stopped;
216
217 out_do_tf:
218 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219 args->data_phase = TASKFILE_NO_DATA;
220 return do_rw_taskfile(drive, args);
221 }
222
223 /**
224 * ide_end_dequeued_request - complete an IDE I/O
225 * @drive: IDE device for the I/O
226 * @uptodate:
227 * @nr_sectors: number of sectors completed
228 *
229 * Complete an I/O that is no longer on the request queue. This
230 * typically occurs when we pull the request and issue a REQUEST_SENSE.
231 * We must still finish the old request but we must not tamper with the
232 * queue in the meantime.
233 *
234 * NOTE: This path does not handle barrier, but barrier is not supported
235 * on ide-cd anyway.
236 */
237
238 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239 int uptodate, int nr_sectors)
240 {
241 unsigned long flags;
242 int ret;
243
244 spin_lock_irqsave(&ide_lock, flags);
245 BUG_ON(!blk_rq_started(rq));
246 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247 spin_unlock_irqrestore(&ide_lock, flags);
248
249 return ret;
250 }
251 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
252
253
254 /**
255 * ide_complete_pm_request - end the current Power Management request
256 * @drive: target drive
257 * @rq: request
258 *
259 * This function cleans up the current PM request and stops the queue
260 * if necessary.
261 */
262 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
263 {
264 unsigned long flags;
265
266 #ifdef DEBUG_PM
267 printk("%s: completing PM request, %s\n", drive->name,
268 blk_pm_suspend_request(rq) ? "suspend" : "resume");
269 #endif
270 spin_lock_irqsave(&ide_lock, flags);
271 if (blk_pm_suspend_request(rq)) {
272 blk_stop_queue(drive->queue);
273 } else {
274 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275 blk_start_queue(drive->queue);
276 }
277 HWGROUP(drive)->rq = NULL;
278 if (__blk_end_request(rq, 0, 0))
279 BUG();
280 spin_unlock_irqrestore(&ide_lock, flags);
281 }
282
283 /**
284 * ide_end_drive_cmd - end an explicit drive command
285 * @drive: command
286 * @stat: status bits
287 * @err: error bits
288 *
289 * Clean up after success/failure of an explicit drive command.
290 * These get thrown onto the queue so they are synchronized with
291 * real I/O operations on the drive.
292 *
293 * In LBA48 mode we have to read the register set twice to get
294 * all the extra information out.
295 */
296
297 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
298 {
299 unsigned long flags;
300 struct request *rq;
301
302 spin_lock_irqsave(&ide_lock, flags);
303 rq = HWGROUP(drive)->rq;
304 spin_unlock_irqrestore(&ide_lock, flags);
305
306 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307 ide_task_t *task = (ide_task_t *)rq->special;
308
309 if (rq->errors == 0)
310 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
311
312 if (task) {
313 struct ide_taskfile *tf = &task->tf;
314
315 tf->error = err;
316 tf->status = stat;
317
318 drive->hwif->tp_ops->tf_read(drive, task);
319
320 if (task->tf_flags & IDE_TFLAG_DYN)
321 kfree(task);
322 }
323 } else if (blk_pm_request(rq)) {
324 struct request_pm_state *pm = rq->data;
325 #ifdef DEBUG_PM
326 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327 drive->name, rq->pm->pm_step, stat, err);
328 #endif
329 ide_complete_power_step(drive, rq, stat, err);
330 if (pm->pm_step == IDE_PM_COMPLETED)
331 ide_complete_pm_request(drive, rq);
332 return;
333 }
334
335 spin_lock_irqsave(&ide_lock, flags);
336 HWGROUP(drive)->rq = NULL;
337 rq->errors = err;
338 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
339 blk_rq_bytes(rq))))
340 BUG();
341 spin_unlock_irqrestore(&ide_lock, flags);
342 }
343
344 EXPORT_SYMBOL(ide_end_drive_cmd);
345
346 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
347 {
348 if (rq->rq_disk) {
349 ide_driver_t *drv;
350
351 drv = *(ide_driver_t **)rq->rq_disk->private_data;
352 drv->end_request(drive, 0, 0);
353 } else
354 ide_end_request(drive, 0, 0);
355 }
356
357 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
358 {
359 ide_hwif_t *hwif = drive->hwif;
360
361 if ((stat & ATA_BUSY) ||
362 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363 /* other bits are useless when BUSY */
364 rq->errors |= ERROR_RESET;
365 } else if (stat & ATA_ERR) {
366 /* err has different meaning on cdrom and tape */
367 if (err == ATA_ABORTED) {
368 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
371 return ide_stopped;
372 } else if ((err & BAD_CRC) == BAD_CRC) {
373 /* UDMA crc error, just retry the operation */
374 drive->crc_count++;
375 } else if (err & (ATA_BBK | ATA_UNC)) {
376 /* retries won't help these */
377 rq->errors = ERROR_MAX;
378 } else if (err & ATA_TRK0NF) {
379 /* help it find track zero */
380 rq->errors |= ERROR_RECAL;
381 }
382 }
383
384 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386 int nsect = drive->mult_count ? drive->mult_count : 1;
387
388 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
389 }
390
391 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392 ide_kill_rq(drive, rq);
393 return ide_stopped;
394 }
395
396 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397 rq->errors |= ERROR_RESET;
398
399 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
400 ++rq->errors;
401 return ide_do_reset(drive);
402 }
403
404 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405 drive->special.b.recalibrate = 1;
406
407 ++rq->errors;
408
409 return ide_stopped;
410 }
411
412 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
413 {
414 ide_hwif_t *hwif = drive->hwif;
415
416 if ((stat & ATA_BUSY) ||
417 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418 /* other bits are useless when BUSY */
419 rq->errors |= ERROR_RESET;
420 } else {
421 /* add decoding error stuff */
422 }
423
424 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
425 /* force an abort */
426 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
427
428 if (rq->errors >= ERROR_MAX) {
429 ide_kill_rq(drive, rq);
430 } else {
431 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
432 ++rq->errors;
433 return ide_do_reset(drive);
434 }
435 ++rq->errors;
436 }
437
438 return ide_stopped;
439 }
440
441 ide_startstop_t
442 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443 {
444 if (drive->media == ide_disk)
445 return ide_ata_error(drive, rq, stat, err);
446 return ide_atapi_error(drive, rq, stat, err);
447 }
448
449 EXPORT_SYMBOL_GPL(__ide_error);
450
451 /**
452 * ide_error - handle an error on the IDE
453 * @drive: drive the error occurred on
454 * @msg: message to report
455 * @stat: status bits
456 *
457 * ide_error() takes action based on the error returned by the drive.
458 * For normal I/O that may well include retries. We deal with
459 * both new-style (taskfile) and old style command handling here.
460 * In the case of taskfile command handling there is work left to
461 * do
462 */
463
464 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
465 {
466 struct request *rq;
467 u8 err;
468
469 err = ide_dump_status(drive, msg, stat);
470
471 if ((rq = HWGROUP(drive)->rq) == NULL)
472 return ide_stopped;
473
474 /* retry only "normal" I/O: */
475 if (!blk_fs_request(rq)) {
476 rq->errors = 1;
477 ide_end_drive_cmd(drive, stat, err);
478 return ide_stopped;
479 }
480
481 if (rq->rq_disk) {
482 ide_driver_t *drv;
483
484 drv = *(ide_driver_t **)rq->rq_disk->private_data;
485 return drv->error(drive, rq, stat, err);
486 } else
487 return __ide_error(drive, rq, stat, err);
488 }
489
490 EXPORT_SYMBOL_GPL(ide_error);
491
492 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
493 {
494 tf->nsect = drive->sect;
495 tf->lbal = drive->sect;
496 tf->lbam = drive->cyl;
497 tf->lbah = drive->cyl >> 8;
498 tf->device = (drive->head - 1) | drive->select.all;
499 tf->command = ATA_CMD_INIT_DEV_PARAMS;
500 }
501
502 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
503 {
504 tf->nsect = drive->sect;
505 tf->command = ATA_CMD_RESTORE;
506 }
507
508 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
509 {
510 tf->nsect = drive->mult_req;
511 tf->command = ATA_CMD_SET_MULTI;
512 }
513
514 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
515 {
516 special_t *s = &drive->special;
517 ide_task_t args;
518
519 memset(&args, 0, sizeof(ide_task_t));
520 args.data_phase = TASKFILE_NO_DATA;
521
522 if (s->b.set_geometry) {
523 s->b.set_geometry = 0;
524 ide_tf_set_specify_cmd(drive, &args.tf);
525 } else if (s->b.recalibrate) {
526 s->b.recalibrate = 0;
527 ide_tf_set_restore_cmd(drive, &args.tf);
528 } else if (s->b.set_multmode) {
529 s->b.set_multmode = 0;
530 ide_tf_set_setmult_cmd(drive, &args.tf);
531 } else if (s->all) {
532 int special = s->all;
533 s->all = 0;
534 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
535 return ide_stopped;
536 }
537
538 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539 IDE_TFLAG_CUSTOM_HANDLER;
540
541 do_rw_taskfile(drive, &args);
542
543 return ide_started;
544 }
545
546 /*
547 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
548 */
549 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
550 {
551 switch (req_pio) {
552 case 202:
553 case 201:
554 case 200:
555 case 102:
556 case 101:
557 case 100:
558 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
559 case 9:
560 case 8:
561 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
562 case 7:
563 case 6:
564 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
565 default:
566 return 0;
567 }
568 }
569
570 /**
571 * do_special - issue some special commands
572 * @drive: drive the command is for
573 *
574 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
575 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
576 *
577 * It used to do much more, but has been scaled back.
578 */
579
580 static ide_startstop_t do_special (ide_drive_t *drive)
581 {
582 special_t *s = &drive->special;
583
584 #ifdef DEBUG
585 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
586 #endif
587 if (s->b.set_tune) {
588 ide_hwif_t *hwif = drive->hwif;
589 const struct ide_port_ops *port_ops = hwif->port_ops;
590 u8 req_pio = drive->tune_req;
591
592 s->b.set_tune = 0;
593
594 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
595 /*
596 * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
597 */
598 if (req_pio == 8 || req_pio == 9) {
599 unsigned long flags;
600
601 spin_lock_irqsave(&ide_lock, flags);
602 port_ops->set_pio_mode(drive, req_pio);
603 spin_unlock_irqrestore(&ide_lock, flags);
604 } else
605 port_ops->set_pio_mode(drive, req_pio);
606 } else {
607 int keep_dma =
608 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
609
610 ide_set_pio(drive, req_pio);
611
612 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
613 if (keep_dma)
614 ide_dma_on(drive);
615 }
616 }
617
618 return ide_stopped;
619 } else {
620 if (drive->media == ide_disk)
621 return ide_disk_special(drive);
622
623 s->all = 0;
624 drive->mult_req = 0;
625 return ide_stopped;
626 }
627 }
628
629 void ide_map_sg(ide_drive_t *drive, struct request *rq)
630 {
631 ide_hwif_t *hwif = drive->hwif;
632 struct scatterlist *sg = hwif->sg_table;
633
634 if (hwif->sg_mapped) /* needed by ide-scsi */
635 return;
636
637 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
638 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
639 } else {
640 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
641 hwif->sg_nents = 1;
642 }
643 }
644
645 EXPORT_SYMBOL_GPL(ide_map_sg);
646
647 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
648 {
649 ide_hwif_t *hwif = drive->hwif;
650
651 hwif->nsect = hwif->nleft = rq->nr_sectors;
652 hwif->cursg_ofs = 0;
653 hwif->cursg = NULL;
654 }
655
656 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
657
658 /**
659 * execute_drive_command - issue special drive command
660 * @drive: the drive to issue the command on
661 * @rq: the request structure holding the command
662 *
663 * execute_drive_cmd() issues a special drive command, usually
664 * initiated by ioctl() from the external hdparm program. The
665 * command can be a drive command, drive task or taskfile
666 * operation. Weirdly you can call it with NULL to wait for
667 * all commands to finish. Don't do this as that is due to change
668 */
669
670 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
671 struct request *rq)
672 {
673 ide_hwif_t *hwif = HWIF(drive);
674 ide_task_t *task = rq->special;
675
676 if (task) {
677 hwif->data_phase = task->data_phase;
678
679 switch (hwif->data_phase) {
680 case TASKFILE_MULTI_OUT:
681 case TASKFILE_OUT:
682 case TASKFILE_MULTI_IN:
683 case TASKFILE_IN:
684 ide_init_sg_cmd(drive, rq);
685 ide_map_sg(drive, rq);
686 default:
687 break;
688 }
689
690 return do_rw_taskfile(drive, task);
691 }
692
693 /*
694 * NULL is actually a valid way of waiting for
695 * all current requests to be flushed from the queue.
696 */
697 #ifdef DEBUG
698 printk("%s: DRIVE_CMD (null)\n", drive->name);
699 #endif
700 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
701 ide_read_error(drive));
702
703 return ide_stopped;
704 }
705
706 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
707 int arg)
708 {
709 struct request_queue *q = drive->queue;
710 struct request *rq;
711 int ret = 0;
712
713 if (!(setting->flags & DS_SYNC))
714 return setting->set(drive, arg);
715
716 rq = blk_get_request(q, READ, GFP_KERNEL);
717 if (!rq)
718 return -ENOMEM;
719
720 rq->cmd_type = REQ_TYPE_SPECIAL;
721 rq->cmd_len = 5;
722 rq->cmd[0] = REQ_DEVSET_EXEC;
723 *(int *)&rq->cmd[1] = arg;
724 rq->special = setting->set;
725
726 if (blk_execute_rq(q, NULL, rq, 0))
727 ret = rq->errors;
728 blk_put_request(rq);
729
730 return ret;
731 }
732 EXPORT_SYMBOL_GPL(ide_devset_execute);
733
734 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
735 {
736 switch (rq->cmd[0]) {
737 case REQ_DEVSET_EXEC:
738 {
739 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
740
741 err = setfunc(drive, *(int *)&rq->cmd[1]);
742 if (err)
743 rq->errors = err;
744 else
745 err = 1;
746 ide_end_request(drive, err, 0);
747 return ide_stopped;
748 }
749 case REQ_DRIVE_RESET:
750 return ide_do_reset(drive);
751 default:
752 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
753 ide_end_request(drive, 0, 0);
754 return ide_stopped;
755 }
756 }
757
758 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
759 {
760 struct request_pm_state *pm = rq->data;
761
762 if (blk_pm_suspend_request(rq) &&
763 pm->pm_step == IDE_PM_START_SUSPEND)
764 /* Mark drive blocked when starting the suspend sequence. */
765 drive->dev_flags |= IDE_DFLAG_BLOCKED;
766 else if (blk_pm_resume_request(rq) &&
767 pm->pm_step == IDE_PM_START_RESUME) {
768 /*
769 * The first thing we do on wakeup is to wait for BSY bit to
770 * go away (with a looong timeout) as a drive on this hwif may
771 * just be POSTing itself.
772 * We do that before even selecting as the "other" device on
773 * the bus may be broken enough to walk on our toes at this
774 * point.
775 */
776 ide_hwif_t *hwif = drive->hwif;
777 int rc;
778 #ifdef DEBUG_PM
779 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
780 #endif
781 rc = ide_wait_not_busy(hwif, 35000);
782 if (rc)
783 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
784 SELECT_DRIVE(drive);
785 hwif->tp_ops->set_irq(hwif, 1);
786 rc = ide_wait_not_busy(hwif, 100000);
787 if (rc)
788 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
789 }
790 }
791
792 /**
793 * start_request - start of I/O and command issuing for IDE
794 *
795 * start_request() initiates handling of a new I/O request. It
796 * accepts commands and I/O (read/write) requests.
797 *
798 * FIXME: this function needs a rename
799 */
800
801 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
802 {
803 ide_startstop_t startstop;
804
805 BUG_ON(!blk_rq_started(rq));
806
807 #ifdef DEBUG
808 printk("%s: start_request: current=0x%08lx\n",
809 HWIF(drive)->name, (unsigned long) rq);
810 #endif
811
812 /* bail early if we've exceeded max_failures */
813 if (drive->max_failures && (drive->failures > drive->max_failures)) {
814 rq->cmd_flags |= REQ_FAILED;
815 goto kill_rq;
816 }
817
818 if (blk_pm_request(rq))
819 ide_check_pm_state(drive, rq);
820
821 SELECT_DRIVE(drive);
822 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
823 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
824 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
825 return startstop;
826 }
827 if (!drive->special.all) {
828 ide_driver_t *drv;
829
830 /*
831 * We reset the drive so we need to issue a SETFEATURES.
832 * Do it _after_ do_special() restored device parameters.
833 */
834 if (drive->current_speed == 0xff)
835 ide_config_drive_speed(drive, drive->desired_speed);
836
837 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
838 return execute_drive_cmd(drive, rq);
839 else if (blk_pm_request(rq)) {
840 struct request_pm_state *pm = rq->data;
841 #ifdef DEBUG_PM
842 printk("%s: start_power_step(step: %d)\n",
843 drive->name, rq->pm->pm_step);
844 #endif
845 startstop = ide_start_power_step(drive, rq);
846 if (startstop == ide_stopped &&
847 pm->pm_step == IDE_PM_COMPLETED)
848 ide_complete_pm_request(drive, rq);
849 return startstop;
850 } else if (!rq->rq_disk && blk_special_request(rq))
851 /*
852 * TODO: Once all ULDs have been modified to
853 * check for specific op codes rather than
854 * blindly accepting any special request, the
855 * check for ->rq_disk above may be replaced
856 * by a more suitable mechanism or even
857 * dropped entirely.
858 */
859 return ide_special_rq(drive, rq);
860
861 drv = *(ide_driver_t **)rq->rq_disk->private_data;
862
863 return drv->do_request(drive, rq, rq->sector);
864 }
865 return do_special(drive);
866 kill_rq:
867 ide_kill_rq(drive, rq);
868 return ide_stopped;
869 }
870
871 /**
872 * ide_stall_queue - pause an IDE device
873 * @drive: drive to stall
874 * @timeout: time to stall for (jiffies)
875 *
876 * ide_stall_queue() can be used by a drive to give excess bandwidth back
877 * to the hwgroup by sleeping for timeout jiffies.
878 */
879
880 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
881 {
882 if (timeout > WAIT_WORSTCASE)
883 timeout = WAIT_WORSTCASE;
884 drive->sleep = timeout + jiffies;
885 drive->dev_flags |= IDE_DFLAG_SLEEPING;
886 }
887
888 EXPORT_SYMBOL(ide_stall_queue);
889
890 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
891
892 /**
893 * choose_drive - select a drive to service
894 * @hwgroup: hardware group to select on
895 *
896 * choose_drive() selects the next drive which will be serviced.
897 * This is necessary because the IDE layer can't issue commands
898 * to both drives on the same cable, unlike SCSI.
899 */
900
901 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
902 {
903 ide_drive_t *drive, *best;
904
905 repeat:
906 best = NULL;
907 drive = hwgroup->drive;
908
909 /*
910 * drive is doing pre-flush, ordered write, post-flush sequence. even
911 * though that is 3 requests, it must be seen as a single transaction.
912 * we must not preempt this drive until that is complete
913 */
914 if (blk_queue_flushing(drive->queue)) {
915 /*
916 * small race where queue could get replugged during
917 * the 3-request flush cycle, just yank the plug since
918 * we want it to finish asap
919 */
920 blk_remove_plug(drive->queue);
921 return drive;
922 }
923
924 do {
925 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
926 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
927
928 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
929 !elv_queue_empty(drive->queue)) {
930 if (best == NULL ||
931 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
932 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
933 if (!blk_queue_plugged(drive->queue))
934 best = drive;
935 }
936 }
937 } while ((drive = drive->next) != hwgroup->drive);
938
939 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
940 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
941 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
942 long t = (signed long)(WAKEUP(best) - jiffies);
943 if (t >= WAIT_MIN_SLEEP) {
944 /*
945 * We *may* have some time to spare, but first let's see if
946 * someone can potentially benefit from our nice mood today..
947 */
948 drive = best->next;
949 do {
950 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
951 && time_before(jiffies - best->service_time, WAKEUP(drive))
952 && time_before(WAKEUP(drive), jiffies + t))
953 {
954 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
955 goto repeat;
956 }
957 } while ((drive = drive->next) != best);
958 }
959 }
960 return best;
961 }
962
963 /*
964 * Issue a new request to a drive from hwgroup
965 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
966 *
967 * A hwgroup is a serialized group of IDE interfaces. Usually there is
968 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
969 * may have both interfaces in a single hwgroup to "serialize" access.
970 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
971 * together into one hwgroup for serialized access.
972 *
973 * Note also that several hwgroups can end up sharing a single IRQ,
974 * possibly along with many other devices. This is especially common in
975 * PCI-based systems with off-board IDE controller cards.
976 *
977 * The IDE driver uses the single global ide_lock spinlock to protect
978 * access to the request queues, and to protect the hwgroup->busy flag.
979 *
980 * The first thread into the driver for a particular hwgroup sets the
981 * hwgroup->busy flag to indicate that this hwgroup is now active,
982 * and then initiates processing of the top request from the request queue.
983 *
984 * Other threads attempting entry notice the busy setting, and will simply
985 * queue their new requests and exit immediately. Note that hwgroup->busy
986 * remains set even when the driver is merely awaiting the next interrupt.
987 * Thus, the meaning is "this hwgroup is busy processing a request".
988 *
989 * When processing of a request completes, the completing thread or IRQ-handler
990 * will start the next request from the queue. If no more work remains,
991 * the driver will clear the hwgroup->busy flag and exit.
992 *
993 * The ide_lock (spinlock) is used to protect all access to the
994 * hwgroup->busy flag, but is otherwise not needed for most processing in
995 * the driver. This makes the driver much more friendlier to shared IRQs
996 * than previous designs, while remaining 100% (?) SMP safe and capable.
997 */
998 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
999 {
1000 ide_drive_t *drive;
1001 ide_hwif_t *hwif;
1002 struct request *rq;
1003 ide_startstop_t startstop;
1004 int loops = 0;
1005
1006 /* for atari only: POSSIBLY BROKEN HERE(?) */
1007 ide_get_lock(ide_intr, hwgroup);
1008
1009 /* caller must own ide_lock */
1010 BUG_ON(!irqs_disabled());
1011
1012 while (!hwgroup->busy) {
1013 hwgroup->busy = 1;
1014 drive = choose_drive(hwgroup);
1015 if (drive == NULL) {
1016 int sleeping = 0;
1017 unsigned long sleep = 0; /* shut up, gcc */
1018 hwgroup->rq = NULL;
1019 drive = hwgroup->drive;
1020 do {
1021 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1022 (sleeping == 0 ||
1023 time_before(drive->sleep, sleep))) {
1024 sleeping = 1;
1025 sleep = drive->sleep;
1026 }
1027 } while ((drive = drive->next) != hwgroup->drive);
1028 if (sleeping) {
1029 /*
1030 * Take a short snooze, and then wake up this hwgroup again.
1031 * This gives other hwgroups on the same a chance to
1032 * play fairly with us, just in case there are big differences
1033 * in relative throughputs.. don't want to hog the cpu too much.
1034 */
1035 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1036 sleep = jiffies + WAIT_MIN_SLEEP;
1037 #if 1
1038 if (timer_pending(&hwgroup->timer))
1039 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1040 #endif
1041 /* so that ide_timer_expiry knows what to do */
1042 hwgroup->sleeping = 1;
1043 hwgroup->req_gen_timer = hwgroup->req_gen;
1044 mod_timer(&hwgroup->timer, sleep);
1045 /* we purposely leave hwgroup->busy==1
1046 * while sleeping */
1047 } else {
1048 /* Ugly, but how can we sleep for the lock
1049 * otherwise? perhaps from tq_disk?
1050 */
1051
1052 /* for atari only */
1053 ide_release_lock();
1054 hwgroup->busy = 0;
1055 }
1056
1057 /* no more work for this hwgroup (for now) */
1058 return;
1059 }
1060 again:
1061 hwif = HWIF(drive);
1062 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1063 /*
1064 * set nIEN for previous hwif, drives in the
1065 * quirk_list may not like intr setups/cleanups
1066 */
1067 if (drive->quirk_list != 1)
1068 hwif->tp_ops->set_irq(hwif, 0);
1069 }
1070 hwgroup->hwif = hwif;
1071 hwgroup->drive = drive;
1072 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1073 drive->service_start = jiffies;
1074
1075 if (blk_queue_plugged(drive->queue)) {
1076 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1077 break;
1078 }
1079
1080 /*
1081 * we know that the queue isn't empty, but this can happen
1082 * if the q->prep_rq_fn() decides to kill a request
1083 */
1084 rq = elv_next_request(drive->queue);
1085 if (!rq) {
1086 hwgroup->busy = 0;
1087 break;
1088 }
1089
1090 /*
1091 * Sanity: don't accept a request that isn't a PM request
1092 * if we are currently power managed. This is very important as
1093 * blk_stop_queue() doesn't prevent the elv_next_request()
1094 * above to return us whatever is in the queue. Since we call
1095 * ide_do_request() ourselves, we end up taking requests while
1096 * the queue is blocked...
1097 *
1098 * We let requests forced at head of queue with ide-preempt
1099 * though. I hope that doesn't happen too much, hopefully not
1100 * unless the subdriver triggers such a thing in its own PM
1101 * state machine.
1102 *
1103 * We count how many times we loop here to make sure we service
1104 * all drives in the hwgroup without looping for ever
1105 */
1106 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1107 blk_pm_request(rq) == 0 &&
1108 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1109 drive = drive->next ? drive->next : hwgroup->drive;
1110 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1111 goto again;
1112 /* We clear busy, there should be no pending ATA command at this point. */
1113 hwgroup->busy = 0;
1114 break;
1115 }
1116
1117 hwgroup->rq = rq;
1118
1119 /*
1120 * Some systems have trouble with IDE IRQs arriving while
1121 * the driver is still setting things up. So, here we disable
1122 * the IRQ used by this interface while the request is being started.
1123 * This may look bad at first, but pretty much the same thing
1124 * happens anyway when any interrupt comes in, IDE or otherwise
1125 * -- the kernel masks the IRQ while it is being handled.
1126 */
1127 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1128 disable_irq_nosync(hwif->irq);
1129 spin_unlock(&ide_lock);
1130 local_irq_enable_in_hardirq();
1131 /* allow other IRQs while we start this request */
1132 startstop = start_request(drive, rq);
1133 spin_lock_irq(&ide_lock);
1134 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1135 enable_irq(hwif->irq);
1136 if (startstop == ide_stopped)
1137 hwgroup->busy = 0;
1138 }
1139 }
1140
1141 /*
1142 * Passes the stuff to ide_do_request
1143 */
1144 void do_ide_request(struct request_queue *q)
1145 {
1146 ide_drive_t *drive = q->queuedata;
1147
1148 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1149 }
1150
1151 /*
1152 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1153 * retry the current request in pio mode instead of risking tossing it
1154 * all away
1155 */
1156 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1157 {
1158 ide_hwif_t *hwif = HWIF(drive);
1159 struct request *rq;
1160 ide_startstop_t ret = ide_stopped;
1161
1162 /*
1163 * end current dma transaction
1164 */
1165
1166 if (error < 0) {
1167 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1168 (void)hwif->dma_ops->dma_end(drive);
1169 ret = ide_error(drive, "dma timeout error",
1170 hwif->tp_ops->read_status(hwif));
1171 } else {
1172 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1173 hwif->dma_ops->dma_timeout(drive);
1174 }
1175
1176 /*
1177 * disable dma for now, but remember that we did so because of
1178 * a timeout -- we'll reenable after we finish this next request
1179 * (or rather the first chunk of it) in pio.
1180 */
1181 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1182 drive->retry_pio++;
1183 ide_dma_off_quietly(drive);
1184
1185 /*
1186 * un-busy drive etc (hwgroup->busy is cleared on return) and
1187 * make sure request is sane
1188 */
1189 rq = HWGROUP(drive)->rq;
1190
1191 if (!rq)
1192 goto out;
1193
1194 HWGROUP(drive)->rq = NULL;
1195
1196 rq->errors = 0;
1197
1198 if (!rq->bio)
1199 goto out;
1200
1201 rq->sector = rq->bio->bi_sector;
1202 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1203 rq->hard_cur_sectors = rq->current_nr_sectors;
1204 rq->buffer = bio_data(rq->bio);
1205 out:
1206 return ret;
1207 }
1208
1209 /**
1210 * ide_timer_expiry - handle lack of an IDE interrupt
1211 * @data: timer callback magic (hwgroup)
1212 *
1213 * An IDE command has timed out before the expected drive return
1214 * occurred. At this point we attempt to clean up the current
1215 * mess. If the current handler includes an expiry handler then
1216 * we invoke the expiry handler, and providing it is happy the
1217 * work is done. If that fails we apply generic recovery rules
1218 * invoking the handler and checking the drive DMA status. We
1219 * have an excessively incestuous relationship with the DMA
1220 * logic that wants cleaning up.
1221 */
1222
1223 void ide_timer_expiry (unsigned long data)
1224 {
1225 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1226 ide_handler_t *handler;
1227 ide_expiry_t *expiry;
1228 unsigned long flags;
1229 unsigned long wait = -1;
1230
1231 spin_lock_irqsave(&ide_lock, flags);
1232
1233 if (((handler = hwgroup->handler) == NULL) ||
1234 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1235 /*
1236 * Either a marginal timeout occurred
1237 * (got the interrupt just as timer expired),
1238 * or we were "sleeping" to give other devices a chance.
1239 * Either way, we don't really want to complain about anything.
1240 */
1241 if (hwgroup->sleeping) {
1242 hwgroup->sleeping = 0;
1243 hwgroup->busy = 0;
1244 }
1245 } else {
1246 ide_drive_t *drive = hwgroup->drive;
1247 if (!drive) {
1248 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1249 hwgroup->handler = NULL;
1250 } else {
1251 ide_hwif_t *hwif;
1252 ide_startstop_t startstop = ide_stopped;
1253 if (!hwgroup->busy) {
1254 hwgroup->busy = 1; /* paranoia */
1255 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1256 }
1257 if ((expiry = hwgroup->expiry) != NULL) {
1258 /* continue */
1259 if ((wait = expiry(drive)) > 0) {
1260 /* reset timer */
1261 hwgroup->timer.expires = jiffies + wait;
1262 hwgroup->req_gen_timer = hwgroup->req_gen;
1263 add_timer(&hwgroup->timer);
1264 spin_unlock_irqrestore(&ide_lock, flags);
1265 return;
1266 }
1267 }
1268 hwgroup->handler = NULL;
1269 /*
1270 * We need to simulate a real interrupt when invoking
1271 * the handler() function, which means we need to
1272 * globally mask the specific IRQ:
1273 */
1274 spin_unlock(&ide_lock);
1275 hwif = HWIF(drive);
1276 /* disable_irq_nosync ?? */
1277 disable_irq(hwif->irq);
1278 /* local CPU only,
1279 * as if we were handling an interrupt */
1280 local_irq_disable();
1281 if (hwgroup->polling) {
1282 startstop = handler(drive);
1283 } else if (drive_is_ready(drive)) {
1284 if (drive->waiting_for_dma)
1285 hwif->dma_ops->dma_lost_irq(drive);
1286 (void)ide_ack_intr(hwif);
1287 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1288 startstop = handler(drive);
1289 } else {
1290 if (drive->waiting_for_dma) {
1291 startstop = ide_dma_timeout_retry(drive, wait);
1292 } else
1293 startstop =
1294 ide_error(drive, "irq timeout",
1295 hwif->tp_ops->read_status(hwif));
1296 }
1297 drive->service_time = jiffies - drive->service_start;
1298 spin_lock_irq(&ide_lock);
1299 enable_irq(hwif->irq);
1300 if (startstop == ide_stopped)
1301 hwgroup->busy = 0;
1302 }
1303 }
1304 ide_do_request(hwgroup, IDE_NO_IRQ);
1305 spin_unlock_irqrestore(&ide_lock, flags);
1306 }
1307
1308 /**
1309 * unexpected_intr - handle an unexpected IDE interrupt
1310 * @irq: interrupt line
1311 * @hwgroup: hwgroup being processed
1312 *
1313 * There's nothing really useful we can do with an unexpected interrupt,
1314 * other than reading the status register (to clear it), and logging it.
1315 * There should be no way that an irq can happen before we're ready for it,
1316 * so we needn't worry much about losing an "important" interrupt here.
1317 *
1318 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1319 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1320 * looks "good", we just ignore the interrupt completely.
1321 *
1322 * This routine assumes __cli() is in effect when called.
1323 *
1324 * If an unexpected interrupt happens on irq15 while we are handling irq14
1325 * and if the two interfaces are "serialized" (CMD640), then it looks like
1326 * we could screw up by interfering with a new request being set up for
1327 * irq15.
1328 *
1329 * In reality, this is a non-issue. The new command is not sent unless
1330 * the drive is ready to accept one, in which case we know the drive is
1331 * not trying to interrupt us. And ide_set_handler() is always invoked
1332 * before completing the issuance of any new drive command, so we will not
1333 * be accidentally invoked as a result of any valid command completion
1334 * interrupt.
1335 *
1336 * Note that we must walk the entire hwgroup here. We know which hwif
1337 * is doing the current command, but we don't know which hwif burped
1338 * mysteriously.
1339 */
1340
1341 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1342 {
1343 u8 stat;
1344 ide_hwif_t *hwif = hwgroup->hwif;
1345
1346 /*
1347 * handle the unexpected interrupt
1348 */
1349 do {
1350 if (hwif->irq == irq) {
1351 stat = hwif->tp_ops->read_status(hwif);
1352
1353 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1354 /* Try to not flood the console with msgs */
1355 static unsigned long last_msgtime, count;
1356 ++count;
1357 if (time_after(jiffies, last_msgtime + HZ)) {
1358 last_msgtime = jiffies;
1359 printk(KERN_ERR "%s%s: unexpected interrupt, "
1360 "status=0x%02x, count=%ld\n",
1361 hwif->name,
1362 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1363 }
1364 }
1365 }
1366 } while ((hwif = hwif->next) != hwgroup->hwif);
1367 }
1368
1369 /**
1370 * ide_intr - default IDE interrupt handler
1371 * @irq: interrupt number
1372 * @dev_id: hwif group
1373 * @regs: unused weirdness from the kernel irq layer
1374 *
1375 * This is the default IRQ handler for the IDE layer. You should
1376 * not need to override it. If you do be aware it is subtle in
1377 * places
1378 *
1379 * hwgroup->hwif is the interface in the group currently performing
1380 * a command. hwgroup->drive is the drive and hwgroup->handler is
1381 * the IRQ handler to call. As we issue a command the handlers
1382 * step through multiple states, reassigning the handler to the
1383 * next step in the process. Unlike a smart SCSI controller IDE
1384 * expects the main processor to sequence the various transfer
1385 * stages. We also manage a poll timer to catch up with most
1386 * timeout situations. There are still a few where the handlers
1387 * don't ever decide to give up.
1388 *
1389 * The handler eventually returns ide_stopped to indicate the
1390 * request completed. At this point we issue the next request
1391 * on the hwgroup and the process begins again.
1392 */
1393
1394 irqreturn_t ide_intr (int irq, void *dev_id)
1395 {
1396 unsigned long flags;
1397 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1398 ide_hwif_t *hwif;
1399 ide_drive_t *drive;
1400 ide_handler_t *handler;
1401 ide_startstop_t startstop;
1402
1403 spin_lock_irqsave(&ide_lock, flags);
1404 hwif = hwgroup->hwif;
1405
1406 if (!ide_ack_intr(hwif)) {
1407 spin_unlock_irqrestore(&ide_lock, flags);
1408 return IRQ_NONE;
1409 }
1410
1411 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1412 /*
1413 * Not expecting an interrupt from this drive.
1414 * That means this could be:
1415 * (1) an interrupt from another PCI device
1416 * sharing the same PCI INT# as us.
1417 * or (2) a drive just entered sleep or standby mode,
1418 * and is interrupting to let us know.
1419 * or (3) a spurious interrupt of unknown origin.
1420 *
1421 * For PCI, we cannot tell the difference,
1422 * so in that case we just ignore it and hope it goes away.
1423 *
1424 * FIXME: unexpected_intr should be hwif-> then we can
1425 * remove all the ifdef PCI crap
1426 */
1427 #ifdef CONFIG_BLK_DEV_IDEPCI
1428 if (hwif->chipset != ide_pci)
1429 #endif /* CONFIG_BLK_DEV_IDEPCI */
1430 {
1431 /*
1432 * Probably not a shared PCI interrupt,
1433 * so we can safely try to do something about it:
1434 */
1435 unexpected_intr(irq, hwgroup);
1436 #ifdef CONFIG_BLK_DEV_IDEPCI
1437 } else {
1438 /*
1439 * Whack the status register, just in case
1440 * we have a leftover pending IRQ.
1441 */
1442 (void)hwif->tp_ops->read_status(hwif);
1443 #endif /* CONFIG_BLK_DEV_IDEPCI */
1444 }
1445 spin_unlock_irqrestore(&ide_lock, flags);
1446 return IRQ_NONE;
1447 }
1448 drive = hwgroup->drive;
1449 if (!drive) {
1450 /*
1451 * This should NEVER happen, and there isn't much
1452 * we could do about it here.
1453 *
1454 * [Note - this can occur if the drive is hot unplugged]
1455 */
1456 spin_unlock_irqrestore(&ide_lock, flags);
1457 return IRQ_HANDLED;
1458 }
1459 if (!drive_is_ready(drive)) {
1460 /*
1461 * This happens regularly when we share a PCI IRQ with
1462 * another device. Unfortunately, it can also happen
1463 * with some buggy drives that trigger the IRQ before
1464 * their status register is up to date. Hopefully we have
1465 * enough advance overhead that the latter isn't a problem.
1466 */
1467 spin_unlock_irqrestore(&ide_lock, flags);
1468 return IRQ_NONE;
1469 }
1470 if (!hwgroup->busy) {
1471 hwgroup->busy = 1; /* paranoia */
1472 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1473 }
1474 hwgroup->handler = NULL;
1475 hwgroup->req_gen++;
1476 del_timer(&hwgroup->timer);
1477 spin_unlock(&ide_lock);
1478
1479 /* Some controllers might set DMA INTR no matter DMA or PIO;
1480 * bmdma status might need to be cleared even for
1481 * PIO interrupts to prevent spurious/lost irq.
1482 */
1483 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1484 /* ide_dma_end() needs bmdma status for error checking.
1485 * So, skip clearing bmdma status here and leave it
1486 * to ide_dma_end() if this is dma interrupt.
1487 */
1488 hwif->ide_dma_clear_irq(drive);
1489
1490 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1491 local_irq_enable_in_hardirq();
1492 /* service this interrupt, may set handler for next interrupt */
1493 startstop = handler(drive);
1494 spin_lock_irq(&ide_lock);
1495
1496 /*
1497 * Note that handler() may have set things up for another
1498 * interrupt to occur soon, but it cannot happen until
1499 * we exit from this routine, because it will be the
1500 * same irq as is currently being serviced here, and Linux
1501 * won't allow another of the same (on any CPU) until we return.
1502 */
1503 drive->service_time = jiffies - drive->service_start;
1504 if (startstop == ide_stopped) {
1505 if (hwgroup->handler == NULL) { /* paranoia */
1506 hwgroup->busy = 0;
1507 ide_do_request(hwgroup, hwif->irq);
1508 } else {
1509 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1510 "on exit\n", drive->name);
1511 }
1512 }
1513 spin_unlock_irqrestore(&ide_lock, flags);
1514 return IRQ_HANDLED;
1515 }
1516
1517 /**
1518 * ide_do_drive_cmd - issue IDE special command
1519 * @drive: device to issue command
1520 * @rq: request to issue
1521 *
1522 * This function issues a special IDE device request
1523 * onto the request queue.
1524 *
1525 * the rq is queued at the head of the request queue, displacing
1526 * the currently-being-processed request and this function
1527 * returns immediately without waiting for the new rq to be
1528 * completed. This is VERY DANGEROUS, and is intended for
1529 * careful use by the ATAPI tape/cdrom driver code.
1530 */
1531
1532 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1533 {
1534 unsigned long flags;
1535 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1536
1537 spin_lock_irqsave(&ide_lock, flags);
1538 hwgroup->rq = NULL;
1539 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1540 __generic_unplug_device(drive->queue);
1541 spin_unlock_irqrestore(&ide_lock, flags);
1542 }
1543
1544 EXPORT_SYMBOL(ide_do_drive_cmd);
1545
1546 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1547 {
1548 ide_hwif_t *hwif = drive->hwif;
1549 ide_task_t task;
1550
1551 memset(&task, 0, sizeof(task));
1552 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1553 IDE_TFLAG_OUT_FEATURE | tf_flags;
1554 task.tf.feature = dma; /* Use PIO/DMA */
1555 task.tf.lbam = bcount & 0xff;
1556 task.tf.lbah = (bcount >> 8) & 0xff;
1557
1558 ide_tf_dump(drive->name, &task.tf);
1559 hwif->tp_ops->set_irq(hwif, 1);
1560 SELECT_MASK(drive, 0);
1561 hwif->tp_ops->tf_load(drive, &task);
1562 }
1563
1564 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1565
1566 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1567 {
1568 ide_hwif_t *hwif = drive->hwif;
1569 u8 buf[4] = { 0 };
1570
1571 while (len > 0) {
1572 if (write)
1573 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1574 else
1575 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1576 len -= 4;
1577 }
1578 }
1579 EXPORT_SYMBOL_GPL(ide_pad_transfer);