]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/ide/ide-io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-kernels.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
89
90 if (ret == 0 && dequeue)
91 drive->hwif->rq = NULL;
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->rq;
111
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
117 }
118
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
128 *
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
133 *
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
136 */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
140 {
141 BUG_ON(!blk_rq_started(rq));
142
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 /**
148 * ide_end_drive_cmd - end an explicit drive command
149 * @drive: command
150 * @stat: status bits
151 * @err: error bits
152 *
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
156 *
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
159 */
160
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162 {
163 ide_hwif_t *hwif = drive->hwif;
164 struct request *rq = hwif->rq;
165
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
168
169 if (task) {
170 struct ide_taskfile *tf = &task->tf;
171
172 tf->error = err;
173 tf->status = stat;
174
175 drive->hwif->tp_ops->tf_read(drive, task);
176
177 if (task->tf_flags & IDE_TFLAG_DYN)
178 kfree(task);
179 }
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
182
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
186 return;
187 }
188
189 hwif->rq = NULL;
190
191 rq->errors = err;
192
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194 blk_rq_bytes(rq))))
195 BUG();
196 }
197 EXPORT_SYMBOL(ide_end_drive_cmd);
198
199 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200 {
201 if (rq->rq_disk) {
202 struct ide_driver *drv;
203
204 drv = *(struct ide_driver **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
206 } else
207 ide_end_request(drive, 0, 0);
208 }
209
210 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211 {
212 ide_hwif_t *hwif = drive->hwif;
213
214 if ((stat & ATA_BUSY) ||
215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216 /* other bits are useless when BUSY */
217 rq->errors |= ERROR_RESET;
218 } else if (stat & ATA_ERR) {
219 /* err has different meaning on cdrom and tape */
220 if (err == ATA_ABORTED) {
221 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224 return ide_stopped;
225 } else if ((err & BAD_CRC) == BAD_CRC) {
226 /* UDMA crc error, just retry the operation */
227 drive->crc_count++;
228 } else if (err & (ATA_BBK | ATA_UNC)) {
229 /* retries won't help these */
230 rq->errors = ERROR_MAX;
231 } else if (err & ATA_TRK0NF) {
232 /* help it find track zero */
233 rq->errors |= ERROR_RECAL;
234 }
235 }
236
237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239 int nsect = drive->mult_count ? drive->mult_count : 1;
240
241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242 }
243
244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245 ide_kill_rq(drive, rq);
246 return ide_stopped;
247 }
248
249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250 rq->errors |= ERROR_RESET;
251
252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253 ++rq->errors;
254 return ide_do_reset(drive);
255 }
256
257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258 drive->special.b.recalibrate = 1;
259
260 ++rq->errors;
261
262 return ide_stopped;
263 }
264
265 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266 {
267 ide_hwif_t *hwif = drive->hwif;
268
269 if ((stat & ATA_BUSY) ||
270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271 /* other bits are useless when BUSY */
272 rq->errors |= ERROR_RESET;
273 } else {
274 /* add decoding error stuff */
275 }
276
277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278 /* force an abort */
279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281 if (rq->errors >= ERROR_MAX) {
282 ide_kill_rq(drive, rq);
283 } else {
284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285 ++rq->errors;
286 return ide_do_reset(drive);
287 }
288 ++rq->errors;
289 }
290
291 return ide_stopped;
292 }
293
294 static ide_startstop_t
295 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296 {
297 if (drive->media == ide_disk)
298 return ide_ata_error(drive, rq, stat, err);
299 return ide_atapi_error(drive, rq, stat, err);
300 }
301
302 /**
303 * ide_error - handle an error on the IDE
304 * @drive: drive the error occurred on
305 * @msg: message to report
306 * @stat: status bits
307 *
308 * ide_error() takes action based on the error returned by the drive.
309 * For normal I/O that may well include retries. We deal with
310 * both new-style (taskfile) and old style command handling here.
311 * In the case of taskfile command handling there is work left to
312 * do
313 */
314
315 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
316 {
317 struct request *rq;
318 u8 err;
319
320 err = ide_dump_status(drive, msg, stat);
321
322 rq = drive->hwif->rq;
323 if (rq == NULL)
324 return ide_stopped;
325
326 /* retry only "normal" I/O: */
327 if (!blk_fs_request(rq)) {
328 rq->errors = 1;
329 ide_end_drive_cmd(drive, stat, err);
330 return ide_stopped;
331 }
332
333 return __ide_error(drive, rq, stat, err);
334 }
335 EXPORT_SYMBOL_GPL(ide_error);
336
337 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
338 {
339 tf->nsect = drive->sect;
340 tf->lbal = drive->sect;
341 tf->lbam = drive->cyl;
342 tf->lbah = drive->cyl >> 8;
343 tf->device = (drive->head - 1) | drive->select;
344 tf->command = ATA_CMD_INIT_DEV_PARAMS;
345 }
346
347 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
348 {
349 tf->nsect = drive->sect;
350 tf->command = ATA_CMD_RESTORE;
351 }
352
353 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
354 {
355 tf->nsect = drive->mult_req;
356 tf->command = ATA_CMD_SET_MULTI;
357 }
358
359 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
360 {
361 special_t *s = &drive->special;
362 ide_task_t args;
363
364 memset(&args, 0, sizeof(ide_task_t));
365 args.data_phase = TASKFILE_NO_DATA;
366
367 if (s->b.set_geometry) {
368 s->b.set_geometry = 0;
369 ide_tf_set_specify_cmd(drive, &args.tf);
370 } else if (s->b.recalibrate) {
371 s->b.recalibrate = 0;
372 ide_tf_set_restore_cmd(drive, &args.tf);
373 } else if (s->b.set_multmode) {
374 s->b.set_multmode = 0;
375 ide_tf_set_setmult_cmd(drive, &args.tf);
376 } else if (s->all) {
377 int special = s->all;
378 s->all = 0;
379 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
380 return ide_stopped;
381 }
382
383 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
384 IDE_TFLAG_CUSTOM_HANDLER;
385
386 do_rw_taskfile(drive, &args);
387
388 return ide_started;
389 }
390
391 /**
392 * do_special - issue some special commands
393 * @drive: drive the command is for
394 *
395 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
397 *
398 * It used to do much more, but has been scaled back.
399 */
400
401 static ide_startstop_t do_special (ide_drive_t *drive)
402 {
403 special_t *s = &drive->special;
404
405 #ifdef DEBUG
406 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
407 #endif
408 if (drive->media == ide_disk)
409 return ide_disk_special(drive);
410
411 s->all = 0;
412 drive->mult_req = 0;
413 return ide_stopped;
414 }
415
416 void ide_map_sg(ide_drive_t *drive, struct request *rq)
417 {
418 ide_hwif_t *hwif = drive->hwif;
419 struct scatterlist *sg = hwif->sg_table;
420
421 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
422 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
423 hwif->sg_nents = 1;
424 } else if (!rq->bio) {
425 sg_init_one(sg, rq->data, rq->data_len);
426 hwif->sg_nents = 1;
427 } else {
428 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
429 }
430 }
431
432 EXPORT_SYMBOL_GPL(ide_map_sg);
433
434 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
435 {
436 ide_hwif_t *hwif = drive->hwif;
437
438 hwif->nsect = hwif->nleft = rq->nr_sectors;
439 hwif->cursg_ofs = 0;
440 hwif->cursg = NULL;
441 }
442
443 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
444
445 /**
446 * execute_drive_command - issue special drive command
447 * @drive: the drive to issue the command on
448 * @rq: the request structure holding the command
449 *
450 * execute_drive_cmd() issues a special drive command, usually
451 * initiated by ioctl() from the external hdparm program. The
452 * command can be a drive command, drive task or taskfile
453 * operation. Weirdly you can call it with NULL to wait for
454 * all commands to finish. Don't do this as that is due to change
455 */
456
457 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
458 struct request *rq)
459 {
460 ide_hwif_t *hwif = drive->hwif;
461 ide_task_t *task = rq->special;
462
463 if (task) {
464 hwif->data_phase = task->data_phase;
465
466 switch (hwif->data_phase) {
467 case TASKFILE_MULTI_OUT:
468 case TASKFILE_OUT:
469 case TASKFILE_MULTI_IN:
470 case TASKFILE_IN:
471 ide_init_sg_cmd(drive, rq);
472 ide_map_sg(drive, rq);
473 default:
474 break;
475 }
476
477 return do_rw_taskfile(drive, task);
478 }
479
480 /*
481 * NULL is actually a valid way of waiting for
482 * all current requests to be flushed from the queue.
483 */
484 #ifdef DEBUG
485 printk("%s: DRIVE_CMD (null)\n", drive->name);
486 #endif
487 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
488 ide_read_error(drive));
489
490 return ide_stopped;
491 }
492
493 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
494 int arg)
495 {
496 struct request_queue *q = drive->queue;
497 struct request *rq;
498 int ret = 0;
499
500 if (!(setting->flags & DS_SYNC))
501 return setting->set(drive, arg);
502
503 rq = blk_get_request(q, READ, __GFP_WAIT);
504 rq->cmd_type = REQ_TYPE_SPECIAL;
505 rq->cmd_len = 5;
506 rq->cmd[0] = REQ_DEVSET_EXEC;
507 *(int *)&rq->cmd[1] = arg;
508 rq->special = setting->set;
509
510 if (blk_execute_rq(q, NULL, rq, 0))
511 ret = rq->errors;
512 blk_put_request(rq);
513
514 return ret;
515 }
516 EXPORT_SYMBOL_GPL(ide_devset_execute);
517
518 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
519 {
520 u8 cmd = rq->cmd[0];
521
522 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
523 ide_task_t task;
524 struct ide_taskfile *tf = &task.tf;
525
526 memset(&task, 0, sizeof(task));
527 if (cmd == REQ_PARK_HEADS) {
528 drive->sleep = *(unsigned long *)rq->special;
529 drive->dev_flags |= IDE_DFLAG_SLEEPING;
530 tf->command = ATA_CMD_IDLEIMMEDIATE;
531 tf->feature = 0x44;
532 tf->lbal = 0x4c;
533 tf->lbam = 0x4e;
534 tf->lbah = 0x55;
535 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
536 } else /* cmd == REQ_UNPARK_HEADS */
537 tf->command = ATA_CMD_CHK_POWER;
538
539 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
540 task.rq = rq;
541 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
542 return do_rw_taskfile(drive, &task);
543 }
544
545 switch (cmd) {
546 case REQ_DEVSET_EXEC:
547 {
548 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
549
550 err = setfunc(drive, *(int *)&rq->cmd[1]);
551 if (err)
552 rq->errors = err;
553 else
554 err = 1;
555 ide_end_request(drive, err, 0);
556 return ide_stopped;
557 }
558 case REQ_DRIVE_RESET:
559 return ide_do_reset(drive);
560 default:
561 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
562 ide_end_request(drive, 0, 0);
563 return ide_stopped;
564 }
565 }
566
567 /**
568 * start_request - start of I/O and command issuing for IDE
569 *
570 * start_request() initiates handling of a new I/O request. It
571 * accepts commands and I/O (read/write) requests.
572 *
573 * FIXME: this function needs a rename
574 */
575
576 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
577 {
578 ide_startstop_t startstop;
579
580 BUG_ON(!blk_rq_started(rq));
581
582 #ifdef DEBUG
583 printk("%s: start_request: current=0x%08lx\n",
584 drive->hwif->name, (unsigned long) rq);
585 #endif
586
587 /* bail early if we've exceeded max_failures */
588 if (drive->max_failures && (drive->failures > drive->max_failures)) {
589 rq->cmd_flags |= REQ_FAILED;
590 goto kill_rq;
591 }
592
593 if (blk_pm_request(rq))
594 ide_check_pm_state(drive, rq);
595
596 SELECT_DRIVE(drive);
597 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
598 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
599 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
600 return startstop;
601 }
602 if (!drive->special.all) {
603 struct ide_driver *drv;
604
605 /*
606 * We reset the drive so we need to issue a SETFEATURES.
607 * Do it _after_ do_special() restored device parameters.
608 */
609 if (drive->current_speed == 0xff)
610 ide_config_drive_speed(drive, drive->desired_speed);
611
612 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
613 return execute_drive_cmd(drive, rq);
614 else if (blk_pm_request(rq)) {
615 struct request_pm_state *pm = rq->data;
616 #ifdef DEBUG_PM
617 printk("%s: start_power_step(step: %d)\n",
618 drive->name, pm->pm_step);
619 #endif
620 startstop = ide_start_power_step(drive, rq);
621 if (startstop == ide_stopped &&
622 pm->pm_step == IDE_PM_COMPLETED)
623 ide_complete_pm_request(drive, rq);
624 return startstop;
625 } else if (!rq->rq_disk && blk_special_request(rq))
626 /*
627 * TODO: Once all ULDs have been modified to
628 * check for specific op codes rather than
629 * blindly accepting any special request, the
630 * check for ->rq_disk above may be replaced
631 * by a more suitable mechanism or even
632 * dropped entirely.
633 */
634 return ide_special_rq(drive, rq);
635
636 drv = *(struct ide_driver **)rq->rq_disk->private_data;
637
638 return drv->do_request(drive, rq, rq->sector);
639 }
640 return do_special(drive);
641 kill_rq:
642 ide_kill_rq(drive, rq);
643 return ide_stopped;
644 }
645
646 /**
647 * ide_stall_queue - pause an IDE device
648 * @drive: drive to stall
649 * @timeout: time to stall for (jiffies)
650 *
651 * ide_stall_queue() can be used by a drive to give excess bandwidth back
652 * to the port by sleeping for timeout jiffies.
653 */
654
655 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
656 {
657 if (timeout > WAIT_WORSTCASE)
658 timeout = WAIT_WORSTCASE;
659 drive->sleep = timeout + jiffies;
660 drive->dev_flags |= IDE_DFLAG_SLEEPING;
661 }
662 EXPORT_SYMBOL(ide_stall_queue);
663
664 static inline int ide_lock_port(ide_hwif_t *hwif)
665 {
666 if (hwif->busy)
667 return 1;
668
669 hwif->busy = 1;
670
671 return 0;
672 }
673
674 static inline void ide_unlock_port(ide_hwif_t *hwif)
675 {
676 hwif->busy = 0;
677 }
678
679 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
680 {
681 int rc = 0;
682
683 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
684 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
685 if (rc == 0) {
686 /* for atari only */
687 ide_get_lock(ide_intr, hwif);
688 }
689 }
690 return rc;
691 }
692
693 static inline void ide_unlock_host(struct ide_host *host)
694 {
695 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
696 /* for atari only */
697 ide_release_lock();
698 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
699 }
700 }
701
702 /*
703 * Issue a new request to a device.
704 */
705 void do_ide_request(struct request_queue *q)
706 {
707 ide_drive_t *drive = q->queuedata;
708 ide_hwif_t *hwif = drive->hwif;
709 struct ide_host *host = hwif->host;
710 struct request *rq = NULL;
711 ide_startstop_t startstop;
712
713 /*
714 * drive is doing pre-flush, ordered write, post-flush sequence. even
715 * though that is 3 requests, it must be seen as a single transaction.
716 * we must not preempt this drive until that is complete
717 */
718 if (blk_queue_flushing(q))
719 /*
720 * small race where queue could get replugged during
721 * the 3-request flush cycle, just yank the plug since
722 * we want it to finish asap
723 */
724 blk_remove_plug(q);
725
726 spin_unlock_irq(q->queue_lock);
727
728 if (ide_lock_host(host, hwif))
729 goto plug_device_2;
730
731 spin_lock_irq(&hwif->lock);
732
733 if (!ide_lock_port(hwif)) {
734 ide_hwif_t *prev_port;
735 repeat:
736 prev_port = hwif->host->cur_port;
737 hwif->rq = NULL;
738
739 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
740 if (time_before(drive->sleep, jiffies)) {
741 ide_unlock_port(hwif);
742 goto plug_device;
743 }
744 }
745
746 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
747 hwif != prev_port) {
748 /*
749 * set nIEN for previous port, drives in the
750 * quirk_list may not like intr setups/cleanups
751 */
752 if (prev_port && prev_port->cur_dev->quirk_list == 0)
753 prev_port->tp_ops->set_irq(prev_port, 0);
754
755 hwif->host->cur_port = hwif;
756 }
757 hwif->cur_dev = drive;
758 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
759
760 spin_unlock_irq(&hwif->lock);
761 spin_lock_irq(q->queue_lock);
762 /*
763 * we know that the queue isn't empty, but this can happen
764 * if the q->prep_rq_fn() decides to kill a request
765 */
766 rq = elv_next_request(drive->queue);
767 spin_unlock_irq(q->queue_lock);
768 spin_lock_irq(&hwif->lock);
769
770 if (!rq) {
771 ide_unlock_port(hwif);
772 goto out;
773 }
774
775 /*
776 * Sanity: don't accept a request that isn't a PM request
777 * if we are currently power managed. This is very important as
778 * blk_stop_queue() doesn't prevent the elv_next_request()
779 * above to return us whatever is in the queue. Since we call
780 * ide_do_request() ourselves, we end up taking requests while
781 * the queue is blocked...
782 *
783 * We let requests forced at head of queue with ide-preempt
784 * though. I hope that doesn't happen too much, hopefully not
785 * unless the subdriver triggers such a thing in its own PM
786 * state machine.
787 */
788 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
789 blk_pm_request(rq) == 0 &&
790 (rq->cmd_flags & REQ_PREEMPT) == 0) {
791 /* there should be no pending command at this point */
792 ide_unlock_port(hwif);
793 goto plug_device;
794 }
795
796 hwif->rq = rq;
797
798 spin_unlock_irq(&hwif->lock);
799 startstop = start_request(drive, rq);
800 spin_lock_irq(&hwif->lock);
801
802 if (startstop == ide_stopped)
803 goto repeat;
804 } else
805 goto plug_device;
806 out:
807 spin_unlock_irq(&hwif->lock);
808 if (rq == NULL)
809 ide_unlock_host(host);
810 spin_lock_irq(q->queue_lock);
811 return;
812
813 plug_device:
814 spin_unlock_irq(&hwif->lock);
815 ide_unlock_host(host);
816 plug_device_2:
817 spin_lock_irq(q->queue_lock);
818
819 if (!elv_queue_empty(q))
820 blk_plug_device(q);
821 }
822
823 /*
824 * un-busy the port etc, and clear any pending DMA status. we want to
825 * retry the current request in pio mode instead of risking tossing it
826 * all away
827 */
828 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
829 {
830 ide_hwif_t *hwif = drive->hwif;
831 struct request *rq;
832 ide_startstop_t ret = ide_stopped;
833
834 /*
835 * end current dma transaction
836 */
837
838 if (error < 0) {
839 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
840 (void)hwif->dma_ops->dma_end(drive);
841 ret = ide_error(drive, "dma timeout error",
842 hwif->tp_ops->read_status(hwif));
843 } else {
844 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
845 hwif->dma_ops->dma_timeout(drive);
846 }
847
848 /*
849 * disable dma for now, but remember that we did so because of
850 * a timeout -- we'll reenable after we finish this next request
851 * (or rather the first chunk of it) in pio.
852 */
853 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
854 drive->retry_pio++;
855 ide_dma_off_quietly(drive);
856
857 /*
858 * un-busy drive etc and make sure request is sane
859 */
860
861 rq = hwif->rq;
862 if (!rq)
863 goto out;
864
865 hwif->rq = NULL;
866
867 rq->errors = 0;
868
869 if (!rq->bio)
870 goto out;
871
872 rq->sector = rq->bio->bi_sector;
873 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
874 rq->hard_cur_sectors = rq->current_nr_sectors;
875 rq->buffer = bio_data(rq->bio);
876 out:
877 return ret;
878 }
879
880 static void ide_plug_device(ide_drive_t *drive)
881 {
882 struct request_queue *q = drive->queue;
883 unsigned long flags;
884
885 spin_lock_irqsave(q->queue_lock, flags);
886 if (!elv_queue_empty(q))
887 blk_plug_device(q);
888 spin_unlock_irqrestore(q->queue_lock, flags);
889 }
890
891 /**
892 * ide_timer_expiry - handle lack of an IDE interrupt
893 * @data: timer callback magic (hwif)
894 *
895 * An IDE command has timed out before the expected drive return
896 * occurred. At this point we attempt to clean up the current
897 * mess. If the current handler includes an expiry handler then
898 * we invoke the expiry handler, and providing it is happy the
899 * work is done. If that fails we apply generic recovery rules
900 * invoking the handler and checking the drive DMA status. We
901 * have an excessively incestuous relationship with the DMA
902 * logic that wants cleaning up.
903 */
904
905 void ide_timer_expiry (unsigned long data)
906 {
907 ide_hwif_t *hwif = (ide_hwif_t *)data;
908 ide_drive_t *uninitialized_var(drive);
909 ide_handler_t *handler;
910 unsigned long flags;
911 unsigned long wait = -1;
912 int plug_device = 0;
913
914 spin_lock_irqsave(&hwif->lock, flags);
915
916 handler = hwif->handler;
917
918 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
919 /*
920 * Either a marginal timeout occurred
921 * (got the interrupt just as timer expired),
922 * or we were "sleeping" to give other devices a chance.
923 * Either way, we don't really want to complain about anything.
924 */
925 } else {
926 ide_expiry_t *expiry = hwif->expiry;
927 ide_startstop_t startstop = ide_stopped;
928
929 drive = hwif->cur_dev;
930
931 if (expiry) {
932 wait = expiry(drive);
933 if (wait > 0) { /* continue */
934 /* reset timer */
935 hwif->timer.expires = jiffies + wait;
936 hwif->req_gen_timer = hwif->req_gen;
937 add_timer(&hwif->timer);
938 spin_unlock_irqrestore(&hwif->lock, flags);
939 return;
940 }
941 }
942 hwif->handler = NULL;
943 /*
944 * We need to simulate a real interrupt when invoking
945 * the handler() function, which means we need to
946 * globally mask the specific IRQ:
947 */
948 spin_unlock(&hwif->lock);
949 /* disable_irq_nosync ?? */
950 disable_irq(hwif->irq);
951 /* local CPU only, as if we were handling an interrupt */
952 local_irq_disable();
953 if (hwif->polling) {
954 startstop = handler(drive);
955 } else if (drive_is_ready(drive)) {
956 if (drive->waiting_for_dma)
957 hwif->dma_ops->dma_lost_irq(drive);
958 (void)ide_ack_intr(hwif);
959 printk(KERN_WARNING "%s: lost interrupt\n",
960 drive->name);
961 startstop = handler(drive);
962 } else {
963 if (drive->waiting_for_dma)
964 startstop = ide_dma_timeout_retry(drive, wait);
965 else
966 startstop = ide_error(drive, "irq timeout",
967 hwif->tp_ops->read_status(hwif));
968 }
969 spin_lock_irq(&hwif->lock);
970 enable_irq(hwif->irq);
971 if (startstop == ide_stopped) {
972 ide_unlock_port(hwif);
973 plug_device = 1;
974 }
975 }
976 spin_unlock_irqrestore(&hwif->lock, flags);
977
978 if (plug_device) {
979 ide_unlock_host(hwif->host);
980 ide_plug_device(drive);
981 }
982 }
983
984 /**
985 * unexpected_intr - handle an unexpected IDE interrupt
986 * @irq: interrupt line
987 * @hwif: port being processed
988 *
989 * There's nothing really useful we can do with an unexpected interrupt,
990 * other than reading the status register (to clear it), and logging it.
991 * There should be no way that an irq can happen before we're ready for it,
992 * so we needn't worry much about losing an "important" interrupt here.
993 *
994 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
995 * the drive enters "idle", "standby", or "sleep" mode, so if the status
996 * looks "good", we just ignore the interrupt completely.
997 *
998 * This routine assumes __cli() is in effect when called.
999 *
1000 * If an unexpected interrupt happens on irq15 while we are handling irq14
1001 * and if the two interfaces are "serialized" (CMD640), then it looks like
1002 * we could screw up by interfering with a new request being set up for
1003 * irq15.
1004 *
1005 * In reality, this is a non-issue. The new command is not sent unless
1006 * the drive is ready to accept one, in which case we know the drive is
1007 * not trying to interrupt us. And ide_set_handler() is always invoked
1008 * before completing the issuance of any new drive command, so we will not
1009 * be accidentally invoked as a result of any valid command completion
1010 * interrupt.
1011 */
1012
1013 static void unexpected_intr(int irq, ide_hwif_t *hwif)
1014 {
1015 u8 stat = hwif->tp_ops->read_status(hwif);
1016
1017 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1018 /* Try to not flood the console with msgs */
1019 static unsigned long last_msgtime, count;
1020 ++count;
1021
1022 if (time_after(jiffies, last_msgtime + HZ)) {
1023 last_msgtime = jiffies;
1024 printk(KERN_ERR "%s: unexpected interrupt, "
1025 "status=0x%02x, count=%ld\n",
1026 hwif->name, stat, count);
1027 }
1028 }
1029 }
1030
1031 /**
1032 * ide_intr - default IDE interrupt handler
1033 * @irq: interrupt number
1034 * @dev_id: hwif
1035 * @regs: unused weirdness from the kernel irq layer
1036 *
1037 * This is the default IRQ handler for the IDE layer. You should
1038 * not need to override it. If you do be aware it is subtle in
1039 * places
1040 *
1041 * hwif is the interface in the group currently performing
1042 * a command. hwif->cur_dev is the drive and hwif->handler is
1043 * the IRQ handler to call. As we issue a command the handlers
1044 * step through multiple states, reassigning the handler to the
1045 * next step in the process. Unlike a smart SCSI controller IDE
1046 * expects the main processor to sequence the various transfer
1047 * stages. We also manage a poll timer to catch up with most
1048 * timeout situations. There are still a few where the handlers
1049 * don't ever decide to give up.
1050 *
1051 * The handler eventually returns ide_stopped to indicate the
1052 * request completed. At this point we issue the next request
1053 * on the port and the process begins again.
1054 */
1055
1056 irqreturn_t ide_intr (int irq, void *dev_id)
1057 {
1058 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1059 ide_drive_t *uninitialized_var(drive);
1060 ide_handler_t *handler;
1061 unsigned long flags;
1062 ide_startstop_t startstop;
1063 irqreturn_t irq_ret = IRQ_NONE;
1064 int plug_device = 0;
1065
1066 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1067 if (hwif != hwif->host->cur_port)
1068 goto out_early;
1069 }
1070
1071 spin_lock_irqsave(&hwif->lock, flags);
1072
1073 if (!ide_ack_intr(hwif))
1074 goto out;
1075
1076 handler = hwif->handler;
1077
1078 if (handler == NULL || hwif->polling) {
1079 /*
1080 * Not expecting an interrupt from this drive.
1081 * That means this could be:
1082 * (1) an interrupt from another PCI device
1083 * sharing the same PCI INT# as us.
1084 * or (2) a drive just entered sleep or standby mode,
1085 * and is interrupting to let us know.
1086 * or (3) a spurious interrupt of unknown origin.
1087 *
1088 * For PCI, we cannot tell the difference,
1089 * so in that case we just ignore it and hope it goes away.
1090 *
1091 * FIXME: unexpected_intr should be hwif-> then we can
1092 * remove all the ifdef PCI crap
1093 */
1094 #ifdef CONFIG_BLK_DEV_IDEPCI
1095 if (hwif->chipset != ide_pci)
1096 #endif /* CONFIG_BLK_DEV_IDEPCI */
1097 {
1098 /*
1099 * Probably not a shared PCI interrupt,
1100 * so we can safely try to do something about it:
1101 */
1102 unexpected_intr(irq, hwif);
1103 #ifdef CONFIG_BLK_DEV_IDEPCI
1104 } else {
1105 /*
1106 * Whack the status register, just in case
1107 * we have a leftover pending IRQ.
1108 */
1109 (void)hwif->tp_ops->read_status(hwif);
1110 #endif /* CONFIG_BLK_DEV_IDEPCI */
1111 }
1112 goto out;
1113 }
1114
1115 drive = hwif->cur_dev;
1116
1117 if (!drive_is_ready(drive))
1118 /*
1119 * This happens regularly when we share a PCI IRQ with
1120 * another device. Unfortunately, it can also happen
1121 * with some buggy drives that trigger the IRQ before
1122 * their status register is up to date. Hopefully we have
1123 * enough advance overhead that the latter isn't a problem.
1124 */
1125 goto out;
1126
1127 hwif->handler = NULL;
1128 hwif->req_gen++;
1129 del_timer(&hwif->timer);
1130 spin_unlock(&hwif->lock);
1131
1132 if (hwif->port_ops && hwif->port_ops->clear_irq)
1133 hwif->port_ops->clear_irq(drive);
1134
1135 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1136 local_irq_enable_in_hardirq();
1137
1138 /* service this interrupt, may set handler for next interrupt */
1139 startstop = handler(drive);
1140
1141 spin_lock_irq(&hwif->lock);
1142 /*
1143 * Note that handler() may have set things up for another
1144 * interrupt to occur soon, but it cannot happen until
1145 * we exit from this routine, because it will be the
1146 * same irq as is currently being serviced here, and Linux
1147 * won't allow another of the same (on any CPU) until we return.
1148 */
1149 if (startstop == ide_stopped) {
1150 BUG_ON(hwif->handler);
1151 ide_unlock_port(hwif);
1152 plug_device = 1;
1153 }
1154 irq_ret = IRQ_HANDLED;
1155 out:
1156 spin_unlock_irqrestore(&hwif->lock, flags);
1157 out_early:
1158 if (plug_device) {
1159 ide_unlock_host(hwif->host);
1160 ide_plug_device(drive);
1161 }
1162
1163 return irq_ret;
1164 }
1165
1166 /**
1167 * ide_do_drive_cmd - issue IDE special command
1168 * @drive: device to issue command
1169 * @rq: request to issue
1170 *
1171 * This function issues a special IDE device request
1172 * onto the request queue.
1173 *
1174 * the rq is queued at the head of the request queue, displacing
1175 * the currently-being-processed request and this function
1176 * returns immediately without waiting for the new rq to be
1177 * completed. This is VERY DANGEROUS, and is intended for
1178 * careful use by the ATAPI tape/cdrom driver code.
1179 */
1180
1181 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1182 {
1183 struct request_queue *q = drive->queue;
1184 unsigned long flags;
1185
1186 drive->hwif->rq = NULL;
1187
1188 spin_lock_irqsave(q->queue_lock, flags);
1189 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1190 spin_unlock_irqrestore(q->queue_lock, flags);
1191 }
1192 EXPORT_SYMBOL(ide_do_drive_cmd);
1193
1194 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1195 {
1196 ide_hwif_t *hwif = drive->hwif;
1197 ide_task_t task;
1198
1199 memset(&task, 0, sizeof(task));
1200 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1201 IDE_TFLAG_OUT_FEATURE | tf_flags;
1202 task.tf.feature = dma; /* Use PIO/DMA */
1203 task.tf.lbam = bcount & 0xff;
1204 task.tf.lbah = (bcount >> 8) & 0xff;
1205
1206 ide_tf_dump(drive->name, &task.tf);
1207 hwif->tp_ops->set_irq(hwif, 1);
1208 SELECT_MASK(drive, 0);
1209 hwif->tp_ops->tf_load(drive, &task);
1210 }
1211
1212 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1213
1214 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1215 {
1216 ide_hwif_t *hwif = drive->hwif;
1217 u8 buf[4] = { 0 };
1218
1219 while (len > 0) {
1220 if (write)
1221 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1222 else
1223 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1224 len -= 4;
1225 }
1226 }
1227 EXPORT_SYMBOL_GPL(ide_pad_transfer);