]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/ide/ide-io.c
ide: use ata_tf_protocols enums
[mirror_ubuntu-kernels.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61 int error = 0;
62
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
65
66 /*
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
69 */
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
72
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
75
76 /*
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
79 */
80 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
81 drive->retry_pio <= 3) {
82 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
83 ide_dma_on(drive);
84 }
85
86 if (!blk_end_request(rq, error, nr_bytes))
87 ret = 0;
88
89 if (ret == 0 && dequeue)
90 drive->hwif->rq = NULL;
91
92 return ret;
93 }
94
95 /**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108 unsigned int nr_bytes = nr_sectors << 9;
109 struct request *rq = drive->hwif->rq;
110
111 if (!nr_bytes) {
112 if (blk_pc_request(rq))
113 nr_bytes = rq->data_len;
114 else
115 nr_bytes = rq->hard_cur_sectors << 9;
116 }
117
118 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
119 }
120 EXPORT_SYMBOL(ide_end_request);
121
122 /**
123 * ide_end_dequeued_request - complete an IDE I/O
124 * @drive: IDE device for the I/O
125 * @uptodate:
126 * @nr_sectors: number of sectors completed
127 *
128 * Complete an I/O that is no longer on the request queue. This
129 * typically occurs when we pull the request and issue a REQUEST_SENSE.
130 * We must still finish the old request but we must not tamper with the
131 * queue in the meantime.
132 *
133 * NOTE: This path does not handle barrier, but barrier is not supported
134 * on ide-cd anyway.
135 */
136
137 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
138 int uptodate, int nr_sectors)
139 {
140 BUG_ON(!blk_rq_started(rq));
141
142 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
143 }
144 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
145
146 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
147 {
148 struct ide_taskfile *tf = &cmd->tf;
149 struct request *rq = cmd->rq;
150
151 tf->error = err;
152 tf->status = stat;
153
154 drive->hwif->tp_ops->tf_read(drive, cmd);
155
156 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
157 memcpy(rq->special, cmd, sizeof(*cmd));
158
159 if (cmd->tf_flags & IDE_TFLAG_DYN)
160 kfree(cmd);
161 }
162
163 void ide_complete_rq(ide_drive_t *drive, u8 err)
164 {
165 ide_hwif_t *hwif = drive->hwif;
166 struct request *rq = hwif->rq;
167
168 hwif->rq = NULL;
169
170 rq->errors = err;
171
172 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
173 blk_rq_bytes(rq))))
174 BUG();
175 }
176 EXPORT_SYMBOL(ide_complete_rq);
177
178 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
179 {
180 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
181 u8 media = drive->media;
182
183 drive->failed_pc = NULL;
184
185 if ((media == ide_floppy && drv_req) || media == ide_tape)
186 rq->errors = IDE_DRV_ERROR_GENERAL;
187
188 if ((media == ide_floppy || media == ide_tape) && drv_req)
189 ide_complete_rq(drive, 0);
190 else
191 ide_end_request(drive, 0, 0);
192 }
193
194 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
195 {
196 tf->nsect = drive->sect;
197 tf->lbal = drive->sect;
198 tf->lbam = drive->cyl;
199 tf->lbah = drive->cyl >> 8;
200 tf->device = (drive->head - 1) | drive->select;
201 tf->command = ATA_CMD_INIT_DEV_PARAMS;
202 }
203
204 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
205 {
206 tf->nsect = drive->sect;
207 tf->command = ATA_CMD_RESTORE;
208 }
209
210 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
211 {
212 tf->nsect = drive->mult_req;
213 tf->command = ATA_CMD_SET_MULTI;
214 }
215
216 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
217 {
218 special_t *s = &drive->special;
219 struct ide_cmd cmd;
220
221 memset(&cmd, 0, sizeof(cmd));
222 cmd.protocol = ATA_PROT_NODATA;
223
224 if (s->b.set_geometry) {
225 s->b.set_geometry = 0;
226 ide_tf_set_specify_cmd(drive, &cmd.tf);
227 } else if (s->b.recalibrate) {
228 s->b.recalibrate = 0;
229 ide_tf_set_restore_cmd(drive, &cmd.tf);
230 } else if (s->b.set_multmode) {
231 s->b.set_multmode = 0;
232 ide_tf_set_setmult_cmd(drive, &cmd.tf);
233 } else if (s->all) {
234 int special = s->all;
235 s->all = 0;
236 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
237 return ide_stopped;
238 }
239
240 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
241 IDE_TFLAG_CUSTOM_HANDLER;
242
243 do_rw_taskfile(drive, &cmd);
244
245 return ide_started;
246 }
247
248 /**
249 * do_special - issue some special commands
250 * @drive: drive the command is for
251 *
252 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
253 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
254 *
255 * It used to do much more, but has been scaled back.
256 */
257
258 static ide_startstop_t do_special (ide_drive_t *drive)
259 {
260 special_t *s = &drive->special;
261
262 #ifdef DEBUG
263 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
264 #endif
265 if (drive->media == ide_disk)
266 return ide_disk_special(drive);
267
268 s->all = 0;
269 drive->mult_req = 0;
270 return ide_stopped;
271 }
272
273 void ide_map_sg(ide_drive_t *drive, struct request *rq)
274 {
275 ide_hwif_t *hwif = drive->hwif;
276 struct ide_cmd *cmd = &hwif->cmd;
277 struct scatterlist *sg = hwif->sg_table;
278
279 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
280 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
281 cmd->sg_nents = 1;
282 } else if (!rq->bio) {
283 sg_init_one(sg, rq->data, rq->data_len);
284 cmd->sg_nents = 1;
285 } else
286 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
287 }
288 EXPORT_SYMBOL_GPL(ide_map_sg);
289
290 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
291 {
292 cmd->nsect = cmd->nleft = nsect;
293 cmd->cursg_ofs = 0;
294 cmd->cursg = NULL;
295 }
296 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
297
298 /**
299 * execute_drive_command - issue special drive command
300 * @drive: the drive to issue the command on
301 * @rq: the request structure holding the command
302 *
303 * execute_drive_cmd() issues a special drive command, usually
304 * initiated by ioctl() from the external hdparm program. The
305 * command can be a drive command, drive task or taskfile
306 * operation. Weirdly you can call it with NULL to wait for
307 * all commands to finish. Don't do this as that is due to change
308 */
309
310 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
311 struct request *rq)
312 {
313 struct ide_cmd *cmd = rq->special;
314
315 if (cmd) {
316 if (cmd->protocol == ATA_PROT_PIO) {
317 ide_init_sg_cmd(cmd, rq->nr_sectors);
318 ide_map_sg(drive, rq);
319 }
320
321 return do_rw_taskfile(drive, cmd);
322 }
323
324 /*
325 * NULL is actually a valid way of waiting for
326 * all current requests to be flushed from the queue.
327 */
328 #ifdef DEBUG
329 printk("%s: DRIVE_CMD (null)\n", drive->name);
330 #endif
331 ide_complete_rq(drive, 0);
332
333 return ide_stopped;
334 }
335
336 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
337 {
338 u8 cmd = rq->cmd[0];
339
340 switch (cmd) {
341 case REQ_PARK_HEADS:
342 case REQ_UNPARK_HEADS:
343 return ide_do_park_unpark(drive, rq);
344 case REQ_DEVSET_EXEC:
345 return ide_do_devset(drive, rq);
346 case REQ_DRIVE_RESET:
347 return ide_do_reset(drive);
348 default:
349 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
350 ide_end_request(drive, 0, 0);
351 return ide_stopped;
352 }
353 }
354
355 /**
356 * start_request - start of I/O and command issuing for IDE
357 *
358 * start_request() initiates handling of a new I/O request. It
359 * accepts commands and I/O (read/write) requests.
360 *
361 * FIXME: this function needs a rename
362 */
363
364 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
365 {
366 ide_startstop_t startstop;
367
368 BUG_ON(!blk_rq_started(rq));
369
370 #ifdef DEBUG
371 printk("%s: start_request: current=0x%08lx\n",
372 drive->hwif->name, (unsigned long) rq);
373 #endif
374
375 /* bail early if we've exceeded max_failures */
376 if (drive->max_failures && (drive->failures > drive->max_failures)) {
377 rq->cmd_flags |= REQ_FAILED;
378 goto kill_rq;
379 }
380
381 if (blk_pm_request(rq))
382 ide_check_pm_state(drive, rq);
383
384 SELECT_DRIVE(drive);
385 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
386 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
387 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
388 return startstop;
389 }
390 if (!drive->special.all) {
391 struct ide_driver *drv;
392
393 /*
394 * We reset the drive so we need to issue a SETFEATURES.
395 * Do it _after_ do_special() restored device parameters.
396 */
397 if (drive->current_speed == 0xff)
398 ide_config_drive_speed(drive, drive->desired_speed);
399
400 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
401 return execute_drive_cmd(drive, rq);
402 else if (blk_pm_request(rq)) {
403 struct request_pm_state *pm = rq->data;
404 #ifdef DEBUG_PM
405 printk("%s: start_power_step(step: %d)\n",
406 drive->name, pm->pm_step);
407 #endif
408 startstop = ide_start_power_step(drive, rq);
409 if (startstop == ide_stopped &&
410 pm->pm_step == IDE_PM_COMPLETED)
411 ide_complete_pm_rq(drive, rq);
412 return startstop;
413 } else if (!rq->rq_disk && blk_special_request(rq))
414 /*
415 * TODO: Once all ULDs have been modified to
416 * check for specific op codes rather than
417 * blindly accepting any special request, the
418 * check for ->rq_disk above may be replaced
419 * by a more suitable mechanism or even
420 * dropped entirely.
421 */
422 return ide_special_rq(drive, rq);
423
424 drv = *(struct ide_driver **)rq->rq_disk->private_data;
425
426 return drv->do_request(drive, rq, rq->sector);
427 }
428 return do_special(drive);
429 kill_rq:
430 ide_kill_rq(drive, rq);
431 return ide_stopped;
432 }
433
434 /**
435 * ide_stall_queue - pause an IDE device
436 * @drive: drive to stall
437 * @timeout: time to stall for (jiffies)
438 *
439 * ide_stall_queue() can be used by a drive to give excess bandwidth back
440 * to the port by sleeping for timeout jiffies.
441 */
442
443 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
444 {
445 if (timeout > WAIT_WORSTCASE)
446 timeout = WAIT_WORSTCASE;
447 drive->sleep = timeout + jiffies;
448 drive->dev_flags |= IDE_DFLAG_SLEEPING;
449 }
450 EXPORT_SYMBOL(ide_stall_queue);
451
452 static inline int ide_lock_port(ide_hwif_t *hwif)
453 {
454 if (hwif->busy)
455 return 1;
456
457 hwif->busy = 1;
458
459 return 0;
460 }
461
462 static inline void ide_unlock_port(ide_hwif_t *hwif)
463 {
464 hwif->busy = 0;
465 }
466
467 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
468 {
469 int rc = 0;
470
471 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
472 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
473 if (rc == 0) {
474 if (host->get_lock)
475 host->get_lock(ide_intr, hwif);
476 }
477 }
478 return rc;
479 }
480
481 static inline void ide_unlock_host(struct ide_host *host)
482 {
483 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
484 if (host->release_lock)
485 host->release_lock();
486 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
487 }
488 }
489
490 /*
491 * Issue a new request to a device.
492 */
493 void do_ide_request(struct request_queue *q)
494 {
495 ide_drive_t *drive = q->queuedata;
496 ide_hwif_t *hwif = drive->hwif;
497 struct ide_host *host = hwif->host;
498 struct request *rq = NULL;
499 ide_startstop_t startstop;
500
501 /*
502 * drive is doing pre-flush, ordered write, post-flush sequence. even
503 * though that is 3 requests, it must be seen as a single transaction.
504 * we must not preempt this drive until that is complete
505 */
506 if (blk_queue_flushing(q))
507 /*
508 * small race where queue could get replugged during
509 * the 3-request flush cycle, just yank the plug since
510 * we want it to finish asap
511 */
512 blk_remove_plug(q);
513
514 spin_unlock_irq(q->queue_lock);
515
516 if (ide_lock_host(host, hwif))
517 goto plug_device_2;
518
519 spin_lock_irq(&hwif->lock);
520
521 if (!ide_lock_port(hwif)) {
522 ide_hwif_t *prev_port;
523 repeat:
524 prev_port = hwif->host->cur_port;
525 hwif->rq = NULL;
526
527 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
528 if (time_before(drive->sleep, jiffies)) {
529 ide_unlock_port(hwif);
530 goto plug_device;
531 }
532 }
533
534 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
535 hwif != prev_port) {
536 /*
537 * set nIEN for previous port, drives in the
538 * quirk_list may not like intr setups/cleanups
539 */
540 if (prev_port && prev_port->cur_dev->quirk_list == 0)
541 prev_port->tp_ops->set_irq(prev_port, 0);
542
543 hwif->host->cur_port = hwif;
544 }
545 hwif->cur_dev = drive;
546 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
547
548 spin_unlock_irq(&hwif->lock);
549 spin_lock_irq(q->queue_lock);
550 /*
551 * we know that the queue isn't empty, but this can happen
552 * if the q->prep_rq_fn() decides to kill a request
553 */
554 rq = elv_next_request(drive->queue);
555 spin_unlock_irq(q->queue_lock);
556 spin_lock_irq(&hwif->lock);
557
558 if (!rq) {
559 ide_unlock_port(hwif);
560 goto out;
561 }
562
563 /*
564 * Sanity: don't accept a request that isn't a PM request
565 * if we are currently power managed. This is very important as
566 * blk_stop_queue() doesn't prevent the elv_next_request()
567 * above to return us whatever is in the queue. Since we call
568 * ide_do_request() ourselves, we end up taking requests while
569 * the queue is blocked...
570 *
571 * We let requests forced at head of queue with ide-preempt
572 * though. I hope that doesn't happen too much, hopefully not
573 * unless the subdriver triggers such a thing in its own PM
574 * state machine.
575 */
576 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
577 blk_pm_request(rq) == 0 &&
578 (rq->cmd_flags & REQ_PREEMPT) == 0) {
579 /* there should be no pending command at this point */
580 ide_unlock_port(hwif);
581 goto plug_device;
582 }
583
584 hwif->rq = rq;
585
586 spin_unlock_irq(&hwif->lock);
587 startstop = start_request(drive, rq);
588 spin_lock_irq(&hwif->lock);
589
590 if (startstop == ide_stopped)
591 goto repeat;
592 } else
593 goto plug_device;
594 out:
595 spin_unlock_irq(&hwif->lock);
596 if (rq == NULL)
597 ide_unlock_host(host);
598 spin_lock_irq(q->queue_lock);
599 return;
600
601 plug_device:
602 spin_unlock_irq(&hwif->lock);
603 ide_unlock_host(host);
604 plug_device_2:
605 spin_lock_irq(q->queue_lock);
606
607 if (!elv_queue_empty(q))
608 blk_plug_device(q);
609 }
610
611 static void ide_plug_device(ide_drive_t *drive)
612 {
613 struct request_queue *q = drive->queue;
614 unsigned long flags;
615
616 spin_lock_irqsave(q->queue_lock, flags);
617 if (!elv_queue_empty(q))
618 blk_plug_device(q);
619 spin_unlock_irqrestore(q->queue_lock, flags);
620 }
621
622 static int drive_is_ready(ide_drive_t *drive)
623 {
624 ide_hwif_t *hwif = drive->hwif;
625 u8 stat = 0;
626
627 if (drive->waiting_for_dma)
628 return hwif->dma_ops->dma_test_irq(drive);
629
630 if (hwif->io_ports.ctl_addr &&
631 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
632 stat = hwif->tp_ops->read_altstatus(hwif);
633 else
634 /* Note: this may clear a pending IRQ!! */
635 stat = hwif->tp_ops->read_status(hwif);
636
637 if (stat & ATA_BUSY)
638 /* drive busy: definitely not interrupting */
639 return 0;
640
641 /* drive ready: *might* be interrupting */
642 return 1;
643 }
644
645 /**
646 * ide_timer_expiry - handle lack of an IDE interrupt
647 * @data: timer callback magic (hwif)
648 *
649 * An IDE command has timed out before the expected drive return
650 * occurred. At this point we attempt to clean up the current
651 * mess. If the current handler includes an expiry handler then
652 * we invoke the expiry handler, and providing it is happy the
653 * work is done. If that fails we apply generic recovery rules
654 * invoking the handler and checking the drive DMA status. We
655 * have an excessively incestuous relationship with the DMA
656 * logic that wants cleaning up.
657 */
658
659 void ide_timer_expiry (unsigned long data)
660 {
661 ide_hwif_t *hwif = (ide_hwif_t *)data;
662 ide_drive_t *uninitialized_var(drive);
663 ide_handler_t *handler;
664 unsigned long flags;
665 int wait = -1;
666 int plug_device = 0;
667
668 spin_lock_irqsave(&hwif->lock, flags);
669
670 handler = hwif->handler;
671
672 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
673 /*
674 * Either a marginal timeout occurred
675 * (got the interrupt just as timer expired),
676 * or we were "sleeping" to give other devices a chance.
677 * Either way, we don't really want to complain about anything.
678 */
679 } else {
680 ide_expiry_t *expiry = hwif->expiry;
681 ide_startstop_t startstop = ide_stopped;
682
683 drive = hwif->cur_dev;
684
685 if (expiry) {
686 wait = expiry(drive);
687 if (wait > 0) { /* continue */
688 /* reset timer */
689 hwif->timer.expires = jiffies + wait;
690 hwif->req_gen_timer = hwif->req_gen;
691 add_timer(&hwif->timer);
692 spin_unlock_irqrestore(&hwif->lock, flags);
693 return;
694 }
695 }
696 hwif->handler = NULL;
697 /*
698 * We need to simulate a real interrupt when invoking
699 * the handler() function, which means we need to
700 * globally mask the specific IRQ:
701 */
702 spin_unlock(&hwif->lock);
703 /* disable_irq_nosync ?? */
704 disable_irq(hwif->irq);
705 /* local CPU only, as if we were handling an interrupt */
706 local_irq_disable();
707 if (hwif->polling) {
708 startstop = handler(drive);
709 } else if (drive_is_ready(drive)) {
710 if (drive->waiting_for_dma)
711 hwif->dma_ops->dma_lost_irq(drive);
712 if (hwif->ack_intr)
713 hwif->ack_intr(hwif);
714 printk(KERN_WARNING "%s: lost interrupt\n",
715 drive->name);
716 startstop = handler(drive);
717 } else {
718 if (drive->waiting_for_dma)
719 startstop = ide_dma_timeout_retry(drive, wait);
720 else
721 startstop = ide_error(drive, "irq timeout",
722 hwif->tp_ops->read_status(hwif));
723 }
724 spin_lock_irq(&hwif->lock);
725 enable_irq(hwif->irq);
726 if (startstop == ide_stopped) {
727 ide_unlock_port(hwif);
728 plug_device = 1;
729 }
730 }
731 spin_unlock_irqrestore(&hwif->lock, flags);
732
733 if (plug_device) {
734 ide_unlock_host(hwif->host);
735 ide_plug_device(drive);
736 }
737 }
738
739 /**
740 * unexpected_intr - handle an unexpected IDE interrupt
741 * @irq: interrupt line
742 * @hwif: port being processed
743 *
744 * There's nothing really useful we can do with an unexpected interrupt,
745 * other than reading the status register (to clear it), and logging it.
746 * There should be no way that an irq can happen before we're ready for it,
747 * so we needn't worry much about losing an "important" interrupt here.
748 *
749 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
750 * the drive enters "idle", "standby", or "sleep" mode, so if the status
751 * looks "good", we just ignore the interrupt completely.
752 *
753 * This routine assumes __cli() is in effect when called.
754 *
755 * If an unexpected interrupt happens on irq15 while we are handling irq14
756 * and if the two interfaces are "serialized" (CMD640), then it looks like
757 * we could screw up by interfering with a new request being set up for
758 * irq15.
759 *
760 * In reality, this is a non-issue. The new command is not sent unless
761 * the drive is ready to accept one, in which case we know the drive is
762 * not trying to interrupt us. And ide_set_handler() is always invoked
763 * before completing the issuance of any new drive command, so we will not
764 * be accidentally invoked as a result of any valid command completion
765 * interrupt.
766 */
767
768 static void unexpected_intr(int irq, ide_hwif_t *hwif)
769 {
770 u8 stat = hwif->tp_ops->read_status(hwif);
771
772 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
773 /* Try to not flood the console with msgs */
774 static unsigned long last_msgtime, count;
775 ++count;
776
777 if (time_after(jiffies, last_msgtime + HZ)) {
778 last_msgtime = jiffies;
779 printk(KERN_ERR "%s: unexpected interrupt, "
780 "status=0x%02x, count=%ld\n",
781 hwif->name, stat, count);
782 }
783 }
784 }
785
786 /**
787 * ide_intr - default IDE interrupt handler
788 * @irq: interrupt number
789 * @dev_id: hwif
790 * @regs: unused weirdness from the kernel irq layer
791 *
792 * This is the default IRQ handler for the IDE layer. You should
793 * not need to override it. If you do be aware it is subtle in
794 * places
795 *
796 * hwif is the interface in the group currently performing
797 * a command. hwif->cur_dev is the drive and hwif->handler is
798 * the IRQ handler to call. As we issue a command the handlers
799 * step through multiple states, reassigning the handler to the
800 * next step in the process. Unlike a smart SCSI controller IDE
801 * expects the main processor to sequence the various transfer
802 * stages. We also manage a poll timer to catch up with most
803 * timeout situations. There are still a few where the handlers
804 * don't ever decide to give up.
805 *
806 * The handler eventually returns ide_stopped to indicate the
807 * request completed. At this point we issue the next request
808 * on the port and the process begins again.
809 */
810
811 irqreturn_t ide_intr (int irq, void *dev_id)
812 {
813 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
814 struct ide_host *host = hwif->host;
815 ide_drive_t *uninitialized_var(drive);
816 ide_handler_t *handler;
817 unsigned long flags;
818 ide_startstop_t startstop;
819 irqreturn_t irq_ret = IRQ_NONE;
820 int plug_device = 0;
821
822 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
823 if (hwif != host->cur_port)
824 goto out_early;
825 }
826
827 spin_lock_irqsave(&hwif->lock, flags);
828
829 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
830 goto out;
831
832 handler = hwif->handler;
833
834 if (handler == NULL || hwif->polling) {
835 /*
836 * Not expecting an interrupt from this drive.
837 * That means this could be:
838 * (1) an interrupt from another PCI device
839 * sharing the same PCI INT# as us.
840 * or (2) a drive just entered sleep or standby mode,
841 * and is interrupting to let us know.
842 * or (3) a spurious interrupt of unknown origin.
843 *
844 * For PCI, we cannot tell the difference,
845 * so in that case we just ignore it and hope it goes away.
846 */
847 if ((host->irq_flags & IRQF_SHARED) == 0) {
848 /*
849 * Probably not a shared PCI interrupt,
850 * so we can safely try to do something about it:
851 */
852 unexpected_intr(irq, hwif);
853 } else {
854 /*
855 * Whack the status register, just in case
856 * we have a leftover pending IRQ.
857 */
858 (void)hwif->tp_ops->read_status(hwif);
859 }
860 goto out;
861 }
862
863 drive = hwif->cur_dev;
864
865 if (!drive_is_ready(drive))
866 /*
867 * This happens regularly when we share a PCI IRQ with
868 * another device. Unfortunately, it can also happen
869 * with some buggy drives that trigger the IRQ before
870 * their status register is up to date. Hopefully we have
871 * enough advance overhead that the latter isn't a problem.
872 */
873 goto out;
874
875 hwif->handler = NULL;
876 hwif->req_gen++;
877 del_timer(&hwif->timer);
878 spin_unlock(&hwif->lock);
879
880 if (hwif->port_ops && hwif->port_ops->clear_irq)
881 hwif->port_ops->clear_irq(drive);
882
883 if (drive->dev_flags & IDE_DFLAG_UNMASK)
884 local_irq_enable_in_hardirq();
885
886 /* service this interrupt, may set handler for next interrupt */
887 startstop = handler(drive);
888
889 spin_lock_irq(&hwif->lock);
890 /*
891 * Note that handler() may have set things up for another
892 * interrupt to occur soon, but it cannot happen until
893 * we exit from this routine, because it will be the
894 * same irq as is currently being serviced here, and Linux
895 * won't allow another of the same (on any CPU) until we return.
896 */
897 if (startstop == ide_stopped) {
898 BUG_ON(hwif->handler);
899 ide_unlock_port(hwif);
900 plug_device = 1;
901 }
902 irq_ret = IRQ_HANDLED;
903 out:
904 spin_unlock_irqrestore(&hwif->lock, flags);
905 out_early:
906 if (plug_device) {
907 ide_unlock_host(hwif->host);
908 ide_plug_device(drive);
909 }
910
911 return irq_ret;
912 }
913 EXPORT_SYMBOL_GPL(ide_intr);
914
915 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
916 {
917 ide_hwif_t *hwif = drive->hwif;
918 u8 buf[4] = { 0 };
919
920 while (len > 0) {
921 if (write)
922 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
923 else
924 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
925 len -= 4;
926 }
927 }
928 EXPORT_SYMBOL_GPL(ide_pad_transfer);