4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
67 nr_bytes
= rq
->hard_nr_sectors
<< 9;
69 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
81 if (!end_that_request_chunk(rq
, uptodate
, nr_bytes
)) {
82 add_disk_randomness(rq
->rq_disk
);
84 if (!list_empty(&rq
->queuelist
))
85 blkdev_dequeue_request(rq
);
86 HWGROUP(drive
)->rq
= NULL
;
88 end_that_request_last(rq
, uptodate
);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
108 unsigned int nr_bytes
= nr_sectors
<< 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock
, flags
);
118 rq
= HWGROUP(drive
)->rq
;
121 if (blk_pc_request(rq
))
122 nr_bytes
= rq
->data_len
;
124 nr_bytes
= rq
->hard_cur_sectors
<< 9;
127 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
129 spin_unlock_irqrestore(&ide_lock
, flags
);
132 EXPORT_SYMBOL(ide_end_request
);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
144 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
149 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
151 struct request_pm_state
*pm
= rq
->data
;
153 if (drive
->media
!= ide_disk
)
156 switch (pm
->pm_step
) {
157 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
158 if (pm
->pm_state
== PM_EVENT_FREEZE
)
159 pm
->pm_step
= ide_pm_state_completed
;
161 pm
->pm_step
= idedisk_pm_standby
;
163 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
164 pm
->pm_step
= ide_pm_state_completed
;
166 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
167 pm
->pm_step
= idedisk_pm_idle
;
169 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
170 pm
->pm_step
= ide_pm_restore_dma
;
175 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
177 struct request_pm_state
*pm
= rq
->data
;
178 ide_task_t
*args
= rq
->special
;
180 memset(args
, 0, sizeof(*args
));
182 switch (pm
->pm_step
) {
183 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
184 if (drive
->media
!= ide_disk
)
186 /* Not supported? Switch to next step now. */
187 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
188 ide_complete_power_step(drive
, rq
, 0, 0);
191 if (ide_id_has_flush_cache_ext(drive
->id
))
192 args
->tf
.command
= WIN_FLUSH_CACHE_EXT
;
194 args
->tf
.command
= WIN_FLUSH_CACHE
;
197 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
198 args
->tf
.command
= WIN_STANDBYNOW1
;
201 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
202 ide_set_max_pio(drive
);
204 * skip idedisk_pm_idle for ATAPI devices
206 if (drive
->media
!= ide_disk
)
207 pm
->pm_step
= ide_pm_restore_dma
;
209 ide_complete_power_step(drive
, rq
, 0, 0);
212 case idedisk_pm_idle
: /* Resume step 2 (idle) */
213 args
->tf
.command
= WIN_IDLEIMMEDIATE
;
216 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
218 * Right now, all we do is call ide_set_dma(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
222 if (drive
->hwif
->dma_host_set
== NULL
)
225 * TODO: respect ->using_dma setting
230 pm
->pm_step
= ide_pm_state_completed
;
234 args
->tf_flags
= IDE_TFLAG_OUT_TF
| IDE_TFLAG_OUT_DEVICE
;
235 args
->data_phase
= TASKFILE_NO_DATA
;
236 return do_rw_taskfile(drive
, args
);
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
243 * @nr_sectors: number of sectors completed
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
250 * NOTE: This path does not handle barrier, but barrier is not supported
254 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
255 int uptodate
, int nr_sectors
)
260 spin_lock_irqsave(&ide_lock
, flags
);
261 BUG_ON(!blk_rq_started(rq
));
262 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
263 spin_unlock_irqrestore(&ide_lock
, flags
);
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
271 * ide_complete_pm_request - end the current Power Management request
272 * @drive: target drive
275 * This function cleans up the current PM request and stops the queue
278 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
283 printk("%s: completing PM request, %s\n", drive
->name
,
284 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
286 spin_lock_irqsave(&ide_lock
, flags
);
287 if (blk_pm_suspend_request(rq
)) {
288 blk_stop_queue(drive
->queue
);
291 blk_start_queue(drive
->queue
);
293 blkdev_dequeue_request(rq
);
294 HWGROUP(drive
)->rq
= NULL
;
295 end_that_request_last(rq
, 1);
296 spin_unlock_irqrestore(&ide_lock
, flags
);
299 void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
301 ide_hwif_t
*hwif
= drive
->hwif
;
302 struct ide_taskfile
*tf
= &task
->tf
;
304 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
305 u16 data
= hwif
->INW(IDE_DATA_REG
);
307 tf
->data
= data
& 0xff;
308 tf
->hob_data
= (data
>> 8) & 0xff;
311 /* be sure we're looking at the low order bits */
312 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
314 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
315 tf
->nsect
= hwif
->INB(IDE_NSECTOR_REG
);
316 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
317 tf
->lbal
= hwif
->INB(IDE_SECTOR_REG
);
318 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
319 tf
->lbam
= hwif
->INB(IDE_LCYL_REG
);
320 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
321 tf
->lbah
= hwif
->INB(IDE_HCYL_REG
);
322 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
323 tf
->device
= hwif
->INB(IDE_SELECT_REG
);
325 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
326 hwif
->OUTB(drive
->ctl
| 0x80, IDE_CONTROL_REG
);
328 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
329 tf
->hob_feature
= hwif
->INB(IDE_FEATURE_REG
);
330 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
331 tf
->hob_nsect
= hwif
->INB(IDE_NSECTOR_REG
);
332 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
333 tf
->hob_lbal
= hwif
->INB(IDE_SECTOR_REG
);
334 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
335 tf
->hob_lbam
= hwif
->INB(IDE_LCYL_REG
);
336 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
337 tf
->hob_lbah
= hwif
->INB(IDE_HCYL_REG
);
342 * ide_end_drive_cmd - end an explicit drive command
347 * Clean up after success/failure of an explicit drive command.
348 * These get thrown onto the queue so they are synchronized with
349 * real I/O operations on the drive.
351 * In LBA48 mode we have to read the register set twice to get
352 * all the extra information out.
355 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
357 ide_hwif_t
*hwif
= HWIF(drive
);
361 spin_lock_irqsave(&ide_lock
, flags
);
362 rq
= HWGROUP(drive
)->rq
;
363 spin_unlock_irqrestore(&ide_lock
, flags
);
365 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
366 u8
*args
= (u8
*) rq
->buffer
;
368 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
373 /* be sure we're looking at the low order bits */
374 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
375 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
377 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
378 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
380 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
383 struct ide_taskfile
*tf
= &args
->tf
;
388 args
->tf_flags
|= (IDE_TFLAG_IN_TF
|IDE_TFLAG_IN_DEVICE
);
389 if (args
->tf_flags
& IDE_TFLAG_LBA48
)
390 args
->tf_flags
|= IDE_TFLAG_IN_HOB
;
392 ide_tf_read(drive
, args
);
394 } else if (blk_pm_request(rq
)) {
395 struct request_pm_state
*pm
= rq
->data
;
397 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
398 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
400 ide_complete_power_step(drive
, rq
, stat
, err
);
401 if (pm
->pm_step
== ide_pm_state_completed
)
402 ide_complete_pm_request(drive
, rq
);
406 spin_lock_irqsave(&ide_lock
, flags
);
407 blkdev_dequeue_request(rq
);
408 HWGROUP(drive
)->rq
= NULL
;
410 end_that_request_last(rq
, !rq
->errors
);
411 spin_unlock_irqrestore(&ide_lock
, flags
);
414 EXPORT_SYMBOL(ide_end_drive_cmd
);
417 * try_to_flush_leftover_data - flush junk
418 * @drive: drive to flush
420 * try_to_flush_leftover_data() is invoked in response to a drive
421 * unexpectedly having its DRQ_STAT bit set. As an alternative to
422 * resetting the drive, this routine tries to clear the condition
423 * by read a sector's worth of data from the drive. Of course,
424 * this may not help if the drive is *waiting* for data from *us*.
426 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
428 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
430 if (drive
->media
!= ide_disk
)
434 u32 wcount
= (i
> 16) ? 16 : i
;
437 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
441 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
446 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
447 drv
->end_request(drive
, 0, 0);
449 ide_end_request(drive
, 0, 0);
452 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
454 ide_hwif_t
*hwif
= drive
->hwif
;
456 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
457 /* other bits are useless when BUSY */
458 rq
->errors
|= ERROR_RESET
;
459 } else if (stat
& ERR_STAT
) {
460 /* err has different meaning on cdrom and tape */
461 if (err
== ABRT_ERR
) {
462 if (drive
->select
.b
.lba
&&
463 /* some newer drives don't support WIN_SPECIFY */
464 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
466 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
467 /* UDMA crc error, just retry the operation */
469 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
470 /* retries won't help these */
471 rq
->errors
= ERROR_MAX
;
472 } else if (err
& TRK0_ERR
) {
473 /* help it find track zero */
474 rq
->errors
|= ERROR_RECAL
;
478 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
479 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0)
480 try_to_flush_leftover_data(drive
);
482 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
483 ide_kill_rq(drive
, rq
);
487 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
488 rq
->errors
|= ERROR_RESET
;
490 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
492 return ide_do_reset(drive
);
495 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
496 drive
->special
.b
.recalibrate
= 1;
503 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
505 ide_hwif_t
*hwif
= drive
->hwif
;
507 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
508 /* other bits are useless when BUSY */
509 rq
->errors
|= ERROR_RESET
;
511 /* add decoding error stuff */
514 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
516 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
518 if (rq
->errors
>= ERROR_MAX
) {
519 ide_kill_rq(drive
, rq
);
521 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
523 return ide_do_reset(drive
);
532 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
534 if (drive
->media
== ide_disk
)
535 return ide_ata_error(drive
, rq
, stat
, err
);
536 return ide_atapi_error(drive
, rq
, stat
, err
);
539 EXPORT_SYMBOL_GPL(__ide_error
);
542 * ide_error - handle an error on the IDE
543 * @drive: drive the error occurred on
544 * @msg: message to report
547 * ide_error() takes action based on the error returned by the drive.
548 * For normal I/O that may well include retries. We deal with
549 * both new-style (taskfile) and old style command handling here.
550 * In the case of taskfile command handling there is work left to
554 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
559 err
= ide_dump_status(drive
, msg
, stat
);
561 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
564 /* retry only "normal" I/O: */
565 if (!blk_fs_request(rq
)) {
567 ide_end_drive_cmd(drive
, stat
, err
);
574 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
575 return drv
->error(drive
, rq
, stat
, err
);
577 return __ide_error(drive
, rq
, stat
, err
);
580 EXPORT_SYMBOL_GPL(ide_error
);
582 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
584 if (drive
->media
!= ide_disk
)
585 rq
->errors
|= ERROR_RESET
;
587 ide_kill_rq(drive
, rq
);
592 EXPORT_SYMBOL_GPL(__ide_abort
);
595 * ide_abort - abort pending IDE operations
596 * @drive: drive the error occurred on
597 * @msg: message to report
599 * ide_abort kills and cleans up when we are about to do a
600 * host initiated reset on active commands. Longer term we
601 * want handlers to have sensible abort handling themselves
603 * This differs fundamentally from ide_error because in
604 * this case the command is doing just fine when we
608 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
612 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
615 /* retry only "normal" I/O: */
616 if (!blk_fs_request(rq
)) {
618 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
625 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
626 return drv
->abort(drive
, rq
);
628 return __ide_abort(drive
, rq
);
632 * drive_cmd_intr - drive command completion interrupt
633 * @drive: drive the completion interrupt occurred on
635 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
636 * We do any necessary data reading and then wait for the drive to
637 * go non busy. At that point we may read the error data and complete
641 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
643 struct request
*rq
= HWGROUP(drive
)->rq
;
644 ide_hwif_t
*hwif
= HWIF(drive
);
645 u8
*args
= (u8
*) rq
->buffer
;
646 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
649 local_irq_enable_in_hardirq();
650 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
&&
651 (stat
& DRQ_STAT
) && args
&& args
[3]) {
652 u8 io_32bit
= drive
->io_32bit
;
654 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
655 drive
->io_32bit
= io_32bit
;
656 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
660 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
661 return ide_error(drive
, "drive_cmd", stat
);
662 /* calls ide_end_drive_cmd */
663 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
667 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
669 tf
->nsect
= drive
->sect
;
670 tf
->lbal
= drive
->sect
;
671 tf
->lbam
= drive
->cyl
;
672 tf
->lbah
= drive
->cyl
>> 8;
673 tf
->device
= ((drive
->head
- 1) | drive
->select
.all
) & ~ATA_LBA
;
674 tf
->command
= WIN_SPECIFY
;
677 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
679 tf
->nsect
= drive
->sect
;
680 tf
->command
= WIN_RESTORE
;
683 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
685 tf
->nsect
= drive
->mult_req
;
686 tf
->command
= WIN_SETMULT
;
689 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
691 special_t
*s
= &drive
->special
;
694 memset(&args
, 0, sizeof(ide_task_t
));
695 args
.data_phase
= TASKFILE_NO_DATA
;
697 if (s
->b
.set_geometry
) {
698 s
->b
.set_geometry
= 0;
699 ide_tf_set_specify_cmd(drive
, &args
.tf
);
700 } else if (s
->b
.recalibrate
) {
701 s
->b
.recalibrate
= 0;
702 ide_tf_set_restore_cmd(drive
, &args
.tf
);
703 } else if (s
->b
.set_multmode
) {
704 s
->b
.set_multmode
= 0;
705 if (drive
->mult_req
> drive
->id
->max_multsect
)
706 drive
->mult_req
= drive
->id
->max_multsect
;
707 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
709 int special
= s
->all
;
711 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
715 args
.tf_flags
= IDE_TFLAG_OUT_TF
| IDE_TFLAG_OUT_DEVICE
|
716 IDE_TFLAG_CUSTOM_HANDLER
;
718 do_rw_taskfile(drive
, &args
);
724 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
726 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
735 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
738 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
741 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
748 * do_special - issue some special commands
749 * @drive: drive the command is for
751 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
752 * commands to a drive. It used to do much more, but has been scaled
756 static ide_startstop_t
do_special (ide_drive_t
*drive
)
758 special_t
*s
= &drive
->special
;
761 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
764 ide_hwif_t
*hwif
= drive
->hwif
;
765 u8 req_pio
= drive
->tune_req
;
769 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
771 if (hwif
->set_pio_mode
== NULL
)
775 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
777 if (req_pio
== 8 || req_pio
== 9) {
780 spin_lock_irqsave(&ide_lock
, flags
);
781 hwif
->set_pio_mode(drive
, req_pio
);
782 spin_unlock_irqrestore(&ide_lock
, flags
);
784 hwif
->set_pio_mode(drive
, req_pio
);
786 int keep_dma
= drive
->using_dma
;
788 ide_set_pio(drive
, req_pio
);
790 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
798 if (drive
->media
== ide_disk
)
799 return ide_disk_special(drive
);
807 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
809 ide_hwif_t
*hwif
= drive
->hwif
;
810 struct scatterlist
*sg
= hwif
->sg_table
;
812 if (hwif
->sg_mapped
) /* needed by ide-scsi */
815 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
816 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
818 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
823 EXPORT_SYMBOL_GPL(ide_map_sg
);
825 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
827 ide_hwif_t
*hwif
= drive
->hwif
;
829 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
834 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
837 * execute_drive_command - issue special drive command
838 * @drive: the drive to issue the command on
839 * @rq: the request structure holding the command
841 * execute_drive_cmd() issues a special drive command, usually
842 * initiated by ioctl() from the external hdparm program. The
843 * command can be a drive command, drive task or taskfile
844 * operation. Weirdly you can call it with NULL to wait for
845 * all commands to finish. Don't do this as that is due to change
848 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
851 ide_hwif_t
*hwif
= HWIF(drive
);
852 u8
*args
= rq
->buffer
;
854 struct ide_taskfile
*tf
= <ask
.tf
;
856 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
857 ide_task_t
*task
= rq
->special
;
862 hwif
->data_phase
= task
->data_phase
;
864 switch (hwif
->data_phase
) {
865 case TASKFILE_MULTI_OUT
:
867 case TASKFILE_MULTI_IN
:
869 ide_init_sg_cmd(drive
, rq
);
870 ide_map_sg(drive
, rq
);
875 return do_rw_taskfile(drive
, task
);
881 memset(<ask
, 0, sizeof(ltask
));
882 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
884 printk("%s: DRIVE_CMD\n", drive
->name
);
886 tf
->feature
= args
[2];
887 if (args
[0] == WIN_SMART
) {
892 ltask
.tf_flags
= IDE_TFLAG_OUT_TF
;
895 ltask
.tf_flags
= IDE_TFLAG_OUT_FEATURE
|
899 tf
->command
= args
[0];
900 ide_tf_load(drive
, <ask
);
901 ide_execute_command(drive
, args
[0], &drive_cmd_intr
, WAIT_WORSTCASE
, NULL
);
906 * NULL is actually a valid way of waiting for
907 * all current requests to be flushed from the queue.
910 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
912 ide_end_drive_cmd(drive
,
913 hwif
->INB(IDE_STATUS_REG
),
914 hwif
->INB(IDE_ERROR_REG
));
918 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
920 struct request_pm_state
*pm
= rq
->data
;
922 if (blk_pm_suspend_request(rq
) &&
923 pm
->pm_step
== ide_pm_state_start_suspend
)
924 /* Mark drive blocked when starting the suspend sequence. */
926 else if (blk_pm_resume_request(rq
) &&
927 pm
->pm_step
== ide_pm_state_start_resume
) {
929 * The first thing we do on wakeup is to wait for BSY bit to
930 * go away (with a looong timeout) as a drive on this hwif may
931 * just be POSTing itself.
932 * We do that before even selecting as the "other" device on
933 * the bus may be broken enough to walk on our toes at this
938 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
940 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
942 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
944 ide_set_irq(drive
, 1);
945 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
947 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
952 * start_request - start of I/O and command issuing for IDE
954 * start_request() initiates handling of a new I/O request. It
955 * accepts commands and I/O (read/write) requests. It also does
956 * the final remapping for weird stuff like EZDrive. Once
957 * device mapper can work sector level the EZDrive stuff can go away
959 * FIXME: this function needs a rename
962 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
964 ide_startstop_t startstop
;
967 BUG_ON(!blk_rq_started(rq
));
970 printk("%s: start_request: current=0x%08lx\n",
971 HWIF(drive
)->name
, (unsigned long) rq
);
974 /* bail early if we've exceeded max_failures */
975 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
976 rq
->cmd_flags
|= REQ_FAILED
;
981 if (blk_fs_request(rq
) &&
982 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
983 block
+= drive
->sect0
;
985 /* Yecch - this will shift the entire interval,
986 possibly killing some innocent following sector */
987 if (block
== 0 && drive
->remap_0_to_1
== 1)
988 block
= 1; /* redirect MBR access to EZ-Drive partn table */
990 if (blk_pm_request(rq
))
991 ide_check_pm_state(drive
, rq
);
994 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
995 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
998 if (!drive
->special
.all
) {
1002 * We reset the drive so we need to issue a SETFEATURES.
1003 * Do it _after_ do_special() restored device parameters.
1005 if (drive
->current_speed
== 0xff)
1006 ide_config_drive_speed(drive
, drive
->desired_speed
);
1008 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
1009 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
1010 return execute_drive_cmd(drive
, rq
);
1011 else if (blk_pm_request(rq
)) {
1012 struct request_pm_state
*pm
= rq
->data
;
1014 printk("%s: start_power_step(step: %d)\n",
1015 drive
->name
, rq
->pm
->pm_step
);
1017 startstop
= ide_start_power_step(drive
, rq
);
1018 if (startstop
== ide_stopped
&&
1019 pm
->pm_step
== ide_pm_state_completed
)
1020 ide_complete_pm_request(drive
, rq
);
1024 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1025 return drv
->do_request(drive
, rq
, block
);
1027 return do_special(drive
);
1029 ide_kill_rq(drive
, rq
);
1034 * ide_stall_queue - pause an IDE device
1035 * @drive: drive to stall
1036 * @timeout: time to stall for (jiffies)
1038 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1039 * to the hwgroup by sleeping for timeout jiffies.
1042 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1044 if (timeout
> WAIT_WORSTCASE
)
1045 timeout
= WAIT_WORSTCASE
;
1046 drive
->sleep
= timeout
+ jiffies
;
1047 drive
->sleeping
= 1;
1050 EXPORT_SYMBOL(ide_stall_queue
);
1052 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1055 * choose_drive - select a drive to service
1056 * @hwgroup: hardware group to select on
1058 * choose_drive() selects the next drive which will be serviced.
1059 * This is necessary because the IDE layer can't issue commands
1060 * to both drives on the same cable, unlike SCSI.
1063 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1065 ide_drive_t
*drive
, *best
;
1069 drive
= hwgroup
->drive
;
1072 * drive is doing pre-flush, ordered write, post-flush sequence. even
1073 * though that is 3 requests, it must be seen as a single transaction.
1074 * we must not preempt this drive until that is complete
1076 if (blk_queue_flushing(drive
->queue
)) {
1078 * small race where queue could get replugged during
1079 * the 3-request flush cycle, just yank the plug since
1080 * we want it to finish asap
1082 blk_remove_plug(drive
->queue
);
1087 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1088 && !elv_queue_empty(drive
->queue
)) {
1090 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1091 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1093 if (!blk_queue_plugged(drive
->queue
))
1097 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1098 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1099 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1100 if (t
>= WAIT_MIN_SLEEP
) {
1102 * We *may* have some time to spare, but first let's see if
1103 * someone can potentially benefit from our nice mood today..
1107 if (!drive
->sleeping
1108 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1109 && time_before(WAKEUP(drive
), jiffies
+ t
))
1111 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1114 } while ((drive
= drive
->next
) != best
);
1121 * Issue a new request to a drive from hwgroup
1122 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1124 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1125 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1126 * may have both interfaces in a single hwgroup to "serialize" access.
1127 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1128 * together into one hwgroup for serialized access.
1130 * Note also that several hwgroups can end up sharing a single IRQ,
1131 * possibly along with many other devices. This is especially common in
1132 * PCI-based systems with off-board IDE controller cards.
1134 * The IDE driver uses the single global ide_lock spinlock to protect
1135 * access to the request queues, and to protect the hwgroup->busy flag.
1137 * The first thread into the driver for a particular hwgroup sets the
1138 * hwgroup->busy flag to indicate that this hwgroup is now active,
1139 * and then initiates processing of the top request from the request queue.
1141 * Other threads attempting entry notice the busy setting, and will simply
1142 * queue their new requests and exit immediately. Note that hwgroup->busy
1143 * remains set even when the driver is merely awaiting the next interrupt.
1144 * Thus, the meaning is "this hwgroup is busy processing a request".
1146 * When processing of a request completes, the completing thread or IRQ-handler
1147 * will start the next request from the queue. If no more work remains,
1148 * the driver will clear the hwgroup->busy flag and exit.
1150 * The ide_lock (spinlock) is used to protect all access to the
1151 * hwgroup->busy flag, but is otherwise not needed for most processing in
1152 * the driver. This makes the driver much more friendlier to shared IRQs
1153 * than previous designs, while remaining 100% (?) SMP safe and capable.
1155 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1160 ide_startstop_t startstop
;
1163 /* for atari only: POSSIBLY BROKEN HERE(?) */
1164 ide_get_lock(ide_intr
, hwgroup
);
1166 /* caller must own ide_lock */
1167 BUG_ON(!irqs_disabled());
1169 while (!hwgroup
->busy
) {
1171 drive
= choose_drive(hwgroup
);
1172 if (drive
== NULL
) {
1174 unsigned long sleep
= 0; /* shut up, gcc */
1176 drive
= hwgroup
->drive
;
1178 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1180 sleep
= drive
->sleep
;
1182 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1185 * Take a short snooze, and then wake up this hwgroup again.
1186 * This gives other hwgroups on the same a chance to
1187 * play fairly with us, just in case there are big differences
1188 * in relative throughputs.. don't want to hog the cpu too much.
1190 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1191 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1193 if (timer_pending(&hwgroup
->timer
))
1194 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1196 /* so that ide_timer_expiry knows what to do */
1197 hwgroup
->sleeping
= 1;
1198 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1199 mod_timer(&hwgroup
->timer
, sleep
);
1200 /* we purposely leave hwgroup->busy==1
1203 /* Ugly, but how can we sleep for the lock
1204 * otherwise? perhaps from tq_disk?
1207 /* for atari only */
1212 /* no more work for this hwgroup (for now) */
1217 if (hwgroup
->hwif
->sharing_irq
&& hwif
!= hwgroup
->hwif
) {
1219 * set nIEN for previous hwif, drives in the
1220 * quirk_list may not like intr setups/cleanups
1222 if (drive
->quirk_list
!= 1)
1223 ide_set_irq(drive
, 0);
1225 hwgroup
->hwif
= hwif
;
1226 hwgroup
->drive
= drive
;
1227 drive
->sleeping
= 0;
1228 drive
->service_start
= jiffies
;
1230 if (blk_queue_plugged(drive
->queue
)) {
1231 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1236 * we know that the queue isn't empty, but this can happen
1237 * if the q->prep_rq_fn() decides to kill a request
1239 rq
= elv_next_request(drive
->queue
);
1246 * Sanity: don't accept a request that isn't a PM request
1247 * if we are currently power managed. This is very important as
1248 * blk_stop_queue() doesn't prevent the elv_next_request()
1249 * above to return us whatever is in the queue. Since we call
1250 * ide_do_request() ourselves, we end up taking requests while
1251 * the queue is blocked...
1253 * We let requests forced at head of queue with ide-preempt
1254 * though. I hope that doesn't happen too much, hopefully not
1255 * unless the subdriver triggers such a thing in its own PM
1258 * We count how many times we loop here to make sure we service
1259 * all drives in the hwgroup without looping for ever
1261 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1262 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1263 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1265 /* We clear busy, there should be no pending ATA command at this point. */
1273 * Some systems have trouble with IDE IRQs arriving while
1274 * the driver is still setting things up. So, here we disable
1275 * the IRQ used by this interface while the request is being started.
1276 * This may look bad at first, but pretty much the same thing
1277 * happens anyway when any interrupt comes in, IDE or otherwise
1278 * -- the kernel masks the IRQ while it is being handled.
1280 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1281 disable_irq_nosync(hwif
->irq
);
1282 spin_unlock(&ide_lock
);
1283 local_irq_enable_in_hardirq();
1284 /* allow other IRQs while we start this request */
1285 startstop
= start_request(drive
, rq
);
1286 spin_lock_irq(&ide_lock
);
1287 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1288 enable_irq(hwif
->irq
);
1289 if (startstop
== ide_stopped
)
1295 * Passes the stuff to ide_do_request
1297 void do_ide_request(struct request_queue
*q
)
1299 ide_drive_t
*drive
= q
->queuedata
;
1301 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1305 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1306 * retry the current request in pio mode instead of risking tossing it
1309 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1311 ide_hwif_t
*hwif
= HWIF(drive
);
1313 ide_startstop_t ret
= ide_stopped
;
1316 * end current dma transaction
1320 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1321 (void)HWIF(drive
)->ide_dma_end(drive
);
1322 ret
= ide_error(drive
, "dma timeout error",
1323 hwif
->INB(IDE_STATUS_REG
));
1325 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1326 hwif
->dma_timeout(drive
);
1330 * disable dma for now, but remember that we did so because of
1331 * a timeout -- we'll reenable after we finish this next request
1332 * (or rather the first chunk of it) in pio.
1335 drive
->state
= DMA_PIO_RETRY
;
1336 ide_dma_off_quietly(drive
);
1339 * un-busy drive etc (hwgroup->busy is cleared on return) and
1340 * make sure request is sane
1342 rq
= HWGROUP(drive
)->rq
;
1347 HWGROUP(drive
)->rq
= NULL
;
1354 rq
->sector
= rq
->bio
->bi_sector
;
1355 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1356 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1357 rq
->buffer
= bio_data(rq
->bio
);
1363 * ide_timer_expiry - handle lack of an IDE interrupt
1364 * @data: timer callback magic (hwgroup)
1366 * An IDE command has timed out before the expected drive return
1367 * occurred. At this point we attempt to clean up the current
1368 * mess. If the current handler includes an expiry handler then
1369 * we invoke the expiry handler, and providing it is happy the
1370 * work is done. If that fails we apply generic recovery rules
1371 * invoking the handler and checking the drive DMA status. We
1372 * have an excessively incestuous relationship with the DMA
1373 * logic that wants cleaning up.
1376 void ide_timer_expiry (unsigned long data
)
1378 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1379 ide_handler_t
*handler
;
1380 ide_expiry_t
*expiry
;
1381 unsigned long flags
;
1382 unsigned long wait
= -1;
1384 spin_lock_irqsave(&ide_lock
, flags
);
1386 if (((handler
= hwgroup
->handler
) == NULL
) ||
1387 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1389 * Either a marginal timeout occurred
1390 * (got the interrupt just as timer expired),
1391 * or we were "sleeping" to give other devices a chance.
1392 * Either way, we don't really want to complain about anything.
1394 if (hwgroup
->sleeping
) {
1395 hwgroup
->sleeping
= 0;
1399 ide_drive_t
*drive
= hwgroup
->drive
;
1401 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1402 hwgroup
->handler
= NULL
;
1405 ide_startstop_t startstop
= ide_stopped
;
1406 if (!hwgroup
->busy
) {
1407 hwgroup
->busy
= 1; /* paranoia */
1408 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1410 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1412 if ((wait
= expiry(drive
)) > 0) {
1414 hwgroup
->timer
.expires
= jiffies
+ wait
;
1415 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1416 add_timer(&hwgroup
->timer
);
1417 spin_unlock_irqrestore(&ide_lock
, flags
);
1421 hwgroup
->handler
= NULL
;
1423 * We need to simulate a real interrupt when invoking
1424 * the handler() function, which means we need to
1425 * globally mask the specific IRQ:
1427 spin_unlock(&ide_lock
);
1429 /* disable_irq_nosync ?? */
1430 disable_irq(hwif
->irq
);
1432 * as if we were handling an interrupt */
1433 local_irq_disable();
1434 if (hwgroup
->polling
) {
1435 startstop
= handler(drive
);
1436 } else if (drive_is_ready(drive
)) {
1437 if (drive
->waiting_for_dma
)
1438 hwgroup
->hwif
->dma_lost_irq(drive
);
1439 (void)ide_ack_intr(hwif
);
1440 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1441 startstop
= handler(drive
);
1443 if (drive
->waiting_for_dma
) {
1444 startstop
= ide_dma_timeout_retry(drive
, wait
);
1447 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1449 drive
->service_time
= jiffies
- drive
->service_start
;
1450 spin_lock_irq(&ide_lock
);
1451 enable_irq(hwif
->irq
);
1452 if (startstop
== ide_stopped
)
1456 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1457 spin_unlock_irqrestore(&ide_lock
, flags
);
1461 * unexpected_intr - handle an unexpected IDE interrupt
1462 * @irq: interrupt line
1463 * @hwgroup: hwgroup being processed
1465 * There's nothing really useful we can do with an unexpected interrupt,
1466 * other than reading the status register (to clear it), and logging it.
1467 * There should be no way that an irq can happen before we're ready for it,
1468 * so we needn't worry much about losing an "important" interrupt here.
1470 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1471 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1472 * looks "good", we just ignore the interrupt completely.
1474 * This routine assumes __cli() is in effect when called.
1476 * If an unexpected interrupt happens on irq15 while we are handling irq14
1477 * and if the two interfaces are "serialized" (CMD640), then it looks like
1478 * we could screw up by interfering with a new request being set up for
1481 * In reality, this is a non-issue. The new command is not sent unless
1482 * the drive is ready to accept one, in which case we know the drive is
1483 * not trying to interrupt us. And ide_set_handler() is always invoked
1484 * before completing the issuance of any new drive command, so we will not
1485 * be accidentally invoked as a result of any valid command completion
1488 * Note that we must walk the entire hwgroup here. We know which hwif
1489 * is doing the current command, but we don't know which hwif burped
1493 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1496 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1499 * handle the unexpected interrupt
1502 if (hwif
->irq
== irq
) {
1503 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1504 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1505 /* Try to not flood the console with msgs */
1506 static unsigned long last_msgtime
, count
;
1508 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1509 last_msgtime
= jiffies
;
1510 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1511 "status=0x%02x, count=%ld\n",
1513 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1517 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1521 * ide_intr - default IDE interrupt handler
1522 * @irq: interrupt number
1523 * @dev_id: hwif group
1524 * @regs: unused weirdness from the kernel irq layer
1526 * This is the default IRQ handler for the IDE layer. You should
1527 * not need to override it. If you do be aware it is subtle in
1530 * hwgroup->hwif is the interface in the group currently performing
1531 * a command. hwgroup->drive is the drive and hwgroup->handler is
1532 * the IRQ handler to call. As we issue a command the handlers
1533 * step through multiple states, reassigning the handler to the
1534 * next step in the process. Unlike a smart SCSI controller IDE
1535 * expects the main processor to sequence the various transfer
1536 * stages. We also manage a poll timer to catch up with most
1537 * timeout situations. There are still a few where the handlers
1538 * don't ever decide to give up.
1540 * The handler eventually returns ide_stopped to indicate the
1541 * request completed. At this point we issue the next request
1542 * on the hwgroup and the process begins again.
1545 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1547 unsigned long flags
;
1548 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1551 ide_handler_t
*handler
;
1552 ide_startstop_t startstop
;
1554 spin_lock_irqsave(&ide_lock
, flags
);
1555 hwif
= hwgroup
->hwif
;
1557 if (!ide_ack_intr(hwif
)) {
1558 spin_unlock_irqrestore(&ide_lock
, flags
);
1562 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1564 * Not expecting an interrupt from this drive.
1565 * That means this could be:
1566 * (1) an interrupt from another PCI device
1567 * sharing the same PCI INT# as us.
1568 * or (2) a drive just entered sleep or standby mode,
1569 * and is interrupting to let us know.
1570 * or (3) a spurious interrupt of unknown origin.
1572 * For PCI, we cannot tell the difference,
1573 * so in that case we just ignore it and hope it goes away.
1575 * FIXME: unexpected_intr should be hwif-> then we can
1576 * remove all the ifdef PCI crap
1578 #ifdef CONFIG_BLK_DEV_IDEPCI
1579 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1580 #endif /* CONFIG_BLK_DEV_IDEPCI */
1583 * Probably not a shared PCI interrupt,
1584 * so we can safely try to do something about it:
1586 unexpected_intr(irq
, hwgroup
);
1587 #ifdef CONFIG_BLK_DEV_IDEPCI
1590 * Whack the status register, just in case
1591 * we have a leftover pending IRQ.
1593 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1594 #endif /* CONFIG_BLK_DEV_IDEPCI */
1596 spin_unlock_irqrestore(&ide_lock
, flags
);
1599 drive
= hwgroup
->drive
;
1602 * This should NEVER happen, and there isn't much
1603 * we could do about it here.
1605 * [Note - this can occur if the drive is hot unplugged]
1607 spin_unlock_irqrestore(&ide_lock
, flags
);
1610 if (!drive_is_ready(drive
)) {
1612 * This happens regularly when we share a PCI IRQ with
1613 * another device. Unfortunately, it can also happen
1614 * with some buggy drives that trigger the IRQ before
1615 * their status register is up to date. Hopefully we have
1616 * enough advance overhead that the latter isn't a problem.
1618 spin_unlock_irqrestore(&ide_lock
, flags
);
1621 if (!hwgroup
->busy
) {
1622 hwgroup
->busy
= 1; /* paranoia */
1623 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1625 hwgroup
->handler
= NULL
;
1627 del_timer(&hwgroup
->timer
);
1628 spin_unlock(&ide_lock
);
1630 /* Some controllers might set DMA INTR no matter DMA or PIO;
1631 * bmdma status might need to be cleared even for
1632 * PIO interrupts to prevent spurious/lost irq.
1634 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1635 /* ide_dma_end() needs bmdma status for error checking.
1636 * So, skip clearing bmdma status here and leave it
1637 * to ide_dma_end() if this is dma interrupt.
1639 hwif
->ide_dma_clear_irq(drive
);
1642 local_irq_enable_in_hardirq();
1643 /* service this interrupt, may set handler for next interrupt */
1644 startstop
= handler(drive
);
1645 spin_lock_irq(&ide_lock
);
1648 * Note that handler() may have set things up for another
1649 * interrupt to occur soon, but it cannot happen until
1650 * we exit from this routine, because it will be the
1651 * same irq as is currently being serviced here, and Linux
1652 * won't allow another of the same (on any CPU) until we return.
1654 drive
->service_time
= jiffies
- drive
->service_start
;
1655 if (startstop
== ide_stopped
) {
1656 if (hwgroup
->handler
== NULL
) { /* paranoia */
1658 ide_do_request(hwgroup
, hwif
->irq
);
1660 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1661 "on exit\n", drive
->name
);
1664 spin_unlock_irqrestore(&ide_lock
, flags
);
1669 * ide_init_drive_cmd - initialize a drive command request
1670 * @rq: request object
1672 * Initialize a request before we fill it in and send it down to
1673 * ide_do_drive_cmd. Commands must be set up by this function. Right
1674 * now it doesn't do a lot, but if that changes abusers will have a
1678 void ide_init_drive_cmd (struct request
*rq
)
1680 memset(rq
, 0, sizeof(*rq
));
1681 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1685 EXPORT_SYMBOL(ide_init_drive_cmd
);
1688 * ide_do_drive_cmd - issue IDE special command
1689 * @drive: device to issue command
1690 * @rq: request to issue
1691 * @action: action for processing
1693 * This function issues a special IDE device request
1694 * onto the request queue.
1696 * If action is ide_wait, then the rq is queued at the end of the
1697 * request queue, and the function sleeps until it has been processed.
1698 * This is for use when invoked from an ioctl handler.
1700 * If action is ide_preempt, then the rq is queued at the head of
1701 * the request queue, displacing the currently-being-processed
1702 * request and this function returns immediately without waiting
1703 * for the new rq to be completed. This is VERY DANGEROUS, and is
1704 * intended for careful use by the ATAPI tape/cdrom driver code.
1706 * If action is ide_end, then the rq is queued at the end of the
1707 * request queue, and the function returns immediately without waiting
1708 * for the new rq to be completed. This is again intended for careful
1709 * use by the ATAPI tape/cdrom driver code.
1712 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1714 unsigned long flags
;
1715 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1716 DECLARE_COMPLETION_ONSTACK(wait
);
1717 int where
= ELEVATOR_INSERT_BACK
, err
;
1718 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1723 * we need to hold an extra reference to request for safe inspection
1728 rq
->end_io_data
= &wait
;
1729 rq
->end_io
= blk_end_sync_rq
;
1732 spin_lock_irqsave(&ide_lock
, flags
);
1733 if (action
== ide_preempt
)
1735 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1736 where
= ELEVATOR_INSERT_FRONT
;
1737 rq
->cmd_flags
|= REQ_PREEMPT
;
1739 __elv_add_request(drive
->queue
, rq
, where
, 0);
1740 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1741 spin_unlock_irqrestore(&ide_lock
, flags
);
1745 wait_for_completion(&wait
);
1749 blk_put_request(rq
);
1755 EXPORT_SYMBOL(ide_do_drive_cmd
);
1757 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1761 memset(&task
, 0, sizeof(task
));
1762 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1763 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1764 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1765 task
.tf
.lbam
= bcount
& 0xff;
1766 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1768 ide_tf_load(drive
, &task
);
1771 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);