4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
56 #include <asm/bitops.h>
58 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
59 int uptodate
, int nr_sectors
)
63 BUG_ON(!(rq
->flags
& REQ_STARTED
));
66 * if failfast is set on a request, override number of sectors and
67 * complete the whole request right now
69 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
70 nr_sectors
= rq
->hard_nr_sectors
;
72 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
76 * decide whether to reenable DMA -- 3 is a random magic for now,
77 * if we DMA timeout more than 3 times, just stay in PIO
79 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
81 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
84 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
85 add_disk_randomness(rq
->rq_disk
);
86 blkdev_dequeue_request(rq
);
87 HWGROUP(drive
)->rq
= NULL
;
88 end_that_request_last(rq
, uptodate
);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock
, flags
);
117 rq
= HWGROUP(drive
)->rq
;
120 nr_sectors
= rq
->hard_cur_sectors
;
122 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
);
124 spin_unlock_irqrestore(&ide_lock
, flags
);
127 EXPORT_SYMBOL(ide_end_request
);
130 * Power Management state machine. This one is rather trivial for now,
131 * we should probably add more, like switching back to PIO on suspend
132 * to help some BIOSes, re-do the door locking on resume, etc...
136 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
139 idedisk_pm_idle
= ide_pm_state_start_resume
,
143 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
145 struct request_pm_state
*pm
= rq
->end_io_data
;
147 if (drive
->media
!= ide_disk
)
150 switch (pm
->pm_step
) {
151 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
152 if (pm
->pm_state
== PM_EVENT_FREEZE
)
153 pm
->pm_step
= ide_pm_state_completed
;
155 pm
->pm_step
= idedisk_pm_standby
;
157 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
158 pm
->pm_step
= ide_pm_state_completed
;
160 case idedisk_pm_idle
: /* Resume step 1 (idle) complete */
161 pm
->pm_step
= ide_pm_restore_dma
;
166 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
168 struct request_pm_state
*pm
= rq
->end_io_data
;
169 ide_task_t
*args
= rq
->special
;
171 memset(args
, 0, sizeof(*args
));
173 if (drive
->media
!= ide_disk
) {
174 /* skip idedisk_pm_idle for ATAPI devices */
175 if (pm
->pm_step
== idedisk_pm_idle
)
176 pm
->pm_step
= ide_pm_restore_dma
;
179 switch (pm
->pm_step
) {
180 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
181 if (drive
->media
!= ide_disk
)
183 /* Not supported? Switch to next step now. */
184 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
185 ide_complete_power_step(drive
, rq
, 0, 0);
188 if (ide_id_has_flush_cache_ext(drive
->id
))
189 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
191 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
192 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
193 args
->handler
= &task_no_data_intr
;
194 return do_rw_taskfile(drive
, args
);
196 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
197 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
198 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
199 args
->handler
= &task_no_data_intr
;
200 return do_rw_taskfile(drive
, args
);
202 case idedisk_pm_idle
: /* Resume step 1 (idle) */
203 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
204 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
205 args
->handler
= task_no_data_intr
;
206 return do_rw_taskfile(drive
, args
);
208 case ide_pm_restore_dma
: /* Resume step 2 (restore DMA) */
210 * Right now, all we do is call hwif->ide_dma_check(drive),
211 * we could be smarter and check for current xfer_speed
212 * in struct drive etc...
214 if ((drive
->id
->capability
& 1) == 0)
216 if (drive
->hwif
->ide_dma_check
== NULL
)
218 drive
->hwif
->ide_dma_check(drive
);
221 pm
->pm_step
= ide_pm_state_completed
;
226 * ide_end_dequeued_request - complete an IDE I/O
227 * @drive: IDE device for the I/O
229 * @nr_sectors: number of sectors completed
231 * Complete an I/O that is no longer on the request queue. This
232 * typically occurs when we pull the request and issue a REQUEST_SENSE.
233 * We must still finish the old request but we must not tamper with the
234 * queue in the meantime.
236 * NOTE: This path does not handle barrier, but barrier is not supported
240 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
241 int uptodate
, int nr_sectors
)
246 spin_lock_irqsave(&ide_lock
, flags
);
248 BUG_ON(!(rq
->flags
& REQ_STARTED
));
251 * if failfast is set on a request, override number of sectors and
252 * complete the whole request right now
254 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
255 nr_sectors
= rq
->hard_nr_sectors
;
257 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
261 * decide whether to reenable DMA -- 3 is a random magic for now,
262 * if we DMA timeout more than 3 times, just stay in PIO
264 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
266 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
269 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
270 add_disk_randomness(rq
->rq_disk
);
271 if (blk_rq_tagged(rq
))
272 blk_queue_end_tag(drive
->queue
, rq
);
273 end_that_request_last(rq
, uptodate
);
276 spin_unlock_irqrestore(&ide_lock
, flags
);
279 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
283 * ide_complete_pm_request - end the current Power Management request
284 * @drive: target drive
287 * This function cleans up the current PM request and stops the queue
290 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
295 printk("%s: completing PM request, %s\n", drive
->name
,
296 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
298 spin_lock_irqsave(&ide_lock
, flags
);
299 if (blk_pm_suspend_request(rq
)) {
300 blk_stop_queue(drive
->queue
);
303 blk_start_queue(drive
->queue
);
305 blkdev_dequeue_request(rq
);
306 HWGROUP(drive
)->rq
= NULL
;
307 end_that_request_last(rq
, 1);
308 spin_unlock_irqrestore(&ide_lock
, flags
);
312 * FIXME: probably move this somewhere else, name is bad too :)
314 u64
ide_get_error_location(ide_drive_t
*drive
, char *args
)
325 if (ide_id_has_flush_cache_ext(drive
->id
)) {
326 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
327 HWIF(drive
)->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
328 high
= ide_read_24(drive
);
330 u8 cur
= HWIF(drive
)->INB(IDE_SELECT_REG
);
333 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
335 low
= hcyl
* drive
->head
* drive
->sect
;
336 low
+= lcyl
* drive
->sect
;
341 sector
= ((u64
) high
<< 24) | low
;
344 EXPORT_SYMBOL(ide_get_error_location
);
347 * ide_end_drive_cmd - end an explicit drive command
352 * Clean up after success/failure of an explicit drive command.
353 * These get thrown onto the queue so they are synchronized with
354 * real I/O operations on the drive.
356 * In LBA48 mode we have to read the register set twice to get
357 * all the extra information out.
360 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
362 ide_hwif_t
*hwif
= HWIF(drive
);
366 spin_lock_irqsave(&ide_lock
, flags
);
367 rq
= HWGROUP(drive
)->rq
;
368 spin_unlock_irqrestore(&ide_lock
, flags
);
370 if (rq
->flags
& REQ_DRIVE_CMD
) {
371 u8
*args
= (u8
*) rq
->buffer
;
373 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
378 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
380 } else if (rq
->flags
& REQ_DRIVE_TASK
) {
381 u8
*args
= (u8
*) rq
->buffer
;
383 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
388 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
389 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
390 args
[4] = hwif
->INB(IDE_LCYL_REG
);
391 args
[5] = hwif
->INB(IDE_HCYL_REG
);
392 args
[6] = hwif
->INB(IDE_SELECT_REG
);
394 } else if (rq
->flags
& REQ_DRIVE_TASKFILE
) {
395 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
397 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
400 if (args
->tf_in_flags
.b
.data
) {
401 u16 data
= hwif
->INW(IDE_DATA_REG
);
402 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
403 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
405 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
406 /* be sure we're looking at the low order bits */
407 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
408 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
409 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
410 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
411 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
412 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
413 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
415 if (drive
->addressing
== 1) {
416 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
417 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
418 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
419 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
420 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
421 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
424 } else if (blk_pm_request(rq
)) {
425 struct request_pm_state
*pm
= rq
->end_io_data
;
427 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
428 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
430 ide_complete_power_step(drive
, rq
, stat
, err
);
431 if (pm
->pm_step
== ide_pm_state_completed
)
432 ide_complete_pm_request(drive
, rq
);
436 spin_lock_irqsave(&ide_lock
, flags
);
437 blkdev_dequeue_request(rq
);
438 HWGROUP(drive
)->rq
= NULL
;
440 end_that_request_last(rq
, !rq
->errors
);
441 spin_unlock_irqrestore(&ide_lock
, flags
);
444 EXPORT_SYMBOL(ide_end_drive_cmd
);
447 * try_to_flush_leftover_data - flush junk
448 * @drive: drive to flush
450 * try_to_flush_leftover_data() is invoked in response to a drive
451 * unexpectedly having its DRQ_STAT bit set. As an alternative to
452 * resetting the drive, this routine tries to clear the condition
453 * by read a sector's worth of data from the drive. Of course,
454 * this may not help if the drive is *waiting* for data from *us*.
456 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
458 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
460 if (drive
->media
!= ide_disk
)
464 u32 wcount
= (i
> 16) ? 16 : i
;
467 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
471 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
476 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
477 drv
->end_request(drive
, 0, 0);
479 ide_end_request(drive
, 0, 0);
482 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
484 ide_hwif_t
*hwif
= drive
->hwif
;
486 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
487 /* other bits are useless when BUSY */
488 rq
->errors
|= ERROR_RESET
;
489 } else if (stat
& ERR_STAT
) {
490 /* err has different meaning on cdrom and tape */
491 if (err
== ABRT_ERR
) {
492 if (drive
->select
.b
.lba
&&
493 /* some newer drives don't support WIN_SPECIFY */
494 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
496 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
497 /* UDMA crc error, just retry the operation */
499 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
500 /* retries won't help these */
501 rq
->errors
= ERROR_MAX
;
502 } else if (err
& TRK0_ERR
) {
503 /* help it find track zero */
504 rq
->errors
|= ERROR_RECAL
;
508 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
)
509 try_to_flush_leftover_data(drive
);
511 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
513 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
515 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
))
516 ide_kill_rq(drive
, rq
);
518 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
520 return ide_do_reset(drive
);
522 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
523 drive
->special
.b
.recalibrate
= 1;
529 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
531 ide_hwif_t
*hwif
= drive
->hwif
;
533 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
534 /* other bits are useless when BUSY */
535 rq
->errors
|= ERROR_RESET
;
537 /* add decoding error stuff */
540 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
542 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
544 if (rq
->errors
>= ERROR_MAX
) {
545 ide_kill_rq(drive
, rq
);
547 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
549 return ide_do_reset(drive
);
558 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
560 if (drive
->media
== ide_disk
)
561 return ide_ata_error(drive
, rq
, stat
, err
);
562 return ide_atapi_error(drive
, rq
, stat
, err
);
565 EXPORT_SYMBOL_GPL(__ide_error
);
568 * ide_error - handle an error on the IDE
569 * @drive: drive the error occurred on
570 * @msg: message to report
573 * ide_error() takes action based on the error returned by the drive.
574 * For normal I/O that may well include retries. We deal with
575 * both new-style (taskfile) and old style command handling here.
576 * In the case of taskfile command handling there is work left to
580 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
585 err
= ide_dump_status(drive
, msg
, stat
);
587 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
590 /* retry only "normal" I/O: */
591 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
| REQ_DRIVE_TASKFILE
)) {
593 ide_end_drive_cmd(drive
, stat
, err
);
600 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
601 return drv
->error(drive
, rq
, stat
, err
);
603 return __ide_error(drive
, rq
, stat
, err
);
606 EXPORT_SYMBOL_GPL(ide_error
);
608 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
610 if (drive
->media
!= ide_disk
)
611 rq
->errors
|= ERROR_RESET
;
613 ide_kill_rq(drive
, rq
);
618 EXPORT_SYMBOL_GPL(__ide_abort
);
621 * ide_abort - abort pending IDE operations
622 * @drive: drive the error occurred on
623 * @msg: message to report
625 * ide_abort kills and cleans up when we are about to do a
626 * host initiated reset on active commands. Longer term we
627 * want handlers to have sensible abort handling themselves
629 * This differs fundamentally from ide_error because in
630 * this case the command is doing just fine when we
634 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
638 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
641 /* retry only "normal" I/O: */
642 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
| REQ_DRIVE_TASKFILE
)) {
644 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
651 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
652 return drv
->abort(drive
, rq
);
654 return __ide_abort(drive
, rq
);
658 * ide_cmd - issue a simple drive command
659 * @drive: drive the command is for
661 * @nsect: sector byte
662 * @handler: handler for the command completion
664 * Issue a simple drive command with interrupts.
665 * The drive must be selected beforehand.
668 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
669 ide_handler_t
*handler
)
671 ide_hwif_t
*hwif
= HWIF(drive
);
673 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
674 SELECT_MASK(drive
,0);
675 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
676 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
680 * drive_cmd_intr - drive command completion interrupt
681 * @drive: drive the completion interrupt occurred on
683 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
684 * We do any necessary data reading and then wait for the drive to
685 * go non busy. At that point we may read the error data and complete
689 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
691 struct request
*rq
= HWGROUP(drive
)->rq
;
692 ide_hwif_t
*hwif
= HWIF(drive
);
693 u8
*args
= (u8
*) rq
->buffer
;
694 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
698 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
699 u8 io_32bit
= drive
->io_32bit
;
701 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
702 drive
->io_32bit
= io_32bit
;
703 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
707 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
708 return ide_error(drive
, "drive_cmd", stat
);
709 /* calls ide_end_drive_cmd */
710 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
714 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
716 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
717 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
718 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
719 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
720 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
721 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
723 task
->handler
= &set_geometry_intr
;
726 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
728 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
729 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
731 task
->handler
= &recal_intr
;
734 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
736 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
737 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
739 task
->handler
= &set_multmode_intr
;
742 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
744 special_t
*s
= &drive
->special
;
747 memset(&args
, 0, sizeof(ide_task_t
));
748 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
750 if (s
->b
.set_geometry
) {
751 s
->b
.set_geometry
= 0;
752 ide_init_specify_cmd(drive
, &args
);
753 } else if (s
->b
.recalibrate
) {
754 s
->b
.recalibrate
= 0;
755 ide_init_restore_cmd(drive
, &args
);
756 } else if (s
->b
.set_multmode
) {
757 s
->b
.set_multmode
= 0;
758 if (drive
->mult_req
> drive
->id
->max_multsect
)
759 drive
->mult_req
= drive
->id
->max_multsect
;
760 ide_init_setmult_cmd(drive
, &args
);
762 int special
= s
->all
;
764 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
768 do_rw_taskfile(drive
, &args
);
774 * do_special - issue some special commands
775 * @drive: drive the command is for
777 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
778 * commands to a drive. It used to do much more, but has been scaled
782 static ide_startstop_t
do_special (ide_drive_t
*drive
)
784 special_t
*s
= &drive
->special
;
787 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
791 if (HWIF(drive
)->tuneproc
!= NULL
)
792 HWIF(drive
)->tuneproc(drive
, drive
->tune_req
);
795 if (drive
->media
== ide_disk
)
796 return ide_disk_special(drive
);
804 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
806 ide_hwif_t
*hwif
= drive
->hwif
;
807 struct scatterlist
*sg
= hwif
->sg_table
;
809 if (hwif
->sg_mapped
) /* needed by ide-scsi */
812 if ((rq
->flags
& REQ_DRIVE_TASKFILE
) == 0) {
813 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
815 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
820 EXPORT_SYMBOL_GPL(ide_map_sg
);
822 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
824 ide_hwif_t
*hwif
= drive
->hwif
;
826 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
827 hwif
->cursg
= hwif
->cursg_ofs
= 0;
830 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
833 * execute_drive_command - issue special drive command
834 * @drive: the drive to issue the command on
835 * @rq: the request structure holding the command
837 * execute_drive_cmd() issues a special drive command, usually
838 * initiated by ioctl() from the external hdparm program. The
839 * command can be a drive command, drive task or taskfile
840 * operation. Weirdly you can call it with NULL to wait for
841 * all commands to finish. Don't do this as that is due to change
844 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
847 ide_hwif_t
*hwif
= HWIF(drive
);
848 if (rq
->flags
& REQ_DRIVE_TASKFILE
) {
849 ide_task_t
*args
= rq
->special
;
854 hwif
->data_phase
= args
->data_phase
;
856 switch (hwif
->data_phase
) {
857 case TASKFILE_MULTI_OUT
:
859 case TASKFILE_MULTI_IN
:
861 ide_init_sg_cmd(drive
, rq
);
862 ide_map_sg(drive
, rq
);
867 if (args
->tf_out_flags
.all
!= 0)
868 return flagged_taskfile(drive
, args
);
869 return do_rw_taskfile(drive
, args
);
870 } else if (rq
->flags
& REQ_DRIVE_TASK
) {
871 u8
*args
= rq
->buffer
;
877 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
878 printk("cmd=0x%02x ", args
[0]);
879 printk("fr=0x%02x ", args
[1]);
880 printk("ns=0x%02x ", args
[2]);
881 printk("sc=0x%02x ", args
[3]);
882 printk("lcyl=0x%02x ", args
[4]);
883 printk("hcyl=0x%02x ", args
[5]);
884 printk("sel=0x%02x\n", args
[6]);
886 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
887 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
888 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
889 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
890 sel
= (args
[6] & ~0x10);
891 if (drive
->select
.b
.unit
)
893 hwif
->OUTB(sel
, IDE_SELECT_REG
);
894 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
896 } else if (rq
->flags
& REQ_DRIVE_CMD
) {
897 u8
*args
= rq
->buffer
;
902 printk("%s: DRIVE_CMD ", drive
->name
);
903 printk("cmd=0x%02x ", args
[0]);
904 printk("sc=0x%02x ", args
[1]);
905 printk("fr=0x%02x ", args
[2]);
906 printk("xx=0x%02x\n", args
[3]);
908 if (args
[0] == WIN_SMART
) {
909 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
910 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
911 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
912 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
913 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
916 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
917 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
923 * NULL is actually a valid way of waiting for
924 * all current requests to be flushed from the queue.
927 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
929 ide_end_drive_cmd(drive
,
930 hwif
->INB(IDE_STATUS_REG
),
931 hwif
->INB(IDE_ERROR_REG
));
935 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
937 struct request_pm_state
*pm
= rq
->end_io_data
;
939 if (blk_pm_suspend_request(rq
) &&
940 pm
->pm_step
== ide_pm_state_start_suspend
)
941 /* Mark drive blocked when starting the suspend sequence. */
943 else if (blk_pm_resume_request(rq
) &&
944 pm
->pm_step
== ide_pm_state_start_resume
) {
946 * The first thing we do on wakeup is to wait for BSY bit to
947 * go away (with a looong timeout) as a drive on this hwif may
948 * just be POSTing itself.
949 * We do that before even selecting as the "other" device on
950 * the bus may be broken enough to walk on our toes at this
955 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
957 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
959 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
961 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
962 rc
= ide_wait_not_busy(HWIF(drive
), 10000);
964 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
969 * start_request - start of I/O and command issuing for IDE
971 * start_request() initiates handling of a new I/O request. It
972 * accepts commands and I/O (read/write) requests. It also does
973 * the final remapping for weird stuff like EZDrive. Once
974 * device mapper can work sector level the EZDrive stuff can go away
976 * FIXME: this function needs a rename
979 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
981 ide_startstop_t startstop
;
984 BUG_ON(!(rq
->flags
& REQ_STARTED
));
987 printk("%s: start_request: current=0x%08lx\n",
988 HWIF(drive
)->name
, (unsigned long) rq
);
991 /* bail early if we've exceeded max_failures */
992 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
997 if (blk_fs_request(rq
) &&
998 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
999 block
+= drive
->sect0
;
1001 /* Yecch - this will shift the entire interval,
1002 possibly killing some innocent following sector */
1003 if (block
== 0 && drive
->remap_0_to_1
== 1)
1004 block
= 1; /* redirect MBR access to EZ-Drive partn table */
1006 if (blk_pm_request(rq
))
1007 ide_check_pm_state(drive
, rq
);
1009 SELECT_DRIVE(drive
);
1010 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
1011 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
1014 if (!drive
->special
.all
) {
1017 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
))
1018 return execute_drive_cmd(drive
, rq
);
1019 else if (rq
->flags
& REQ_DRIVE_TASKFILE
)
1020 return execute_drive_cmd(drive
, rq
);
1021 else if (blk_pm_request(rq
)) {
1022 struct request_pm_state
*pm
= rq
->end_io_data
;
1024 printk("%s: start_power_step(step: %d)\n",
1025 drive
->name
, rq
->pm
->pm_step
);
1027 startstop
= ide_start_power_step(drive
, rq
);
1028 if (startstop
== ide_stopped
&&
1029 pm
->pm_step
== ide_pm_state_completed
)
1030 ide_complete_pm_request(drive
, rq
);
1034 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1035 return drv
->do_request(drive
, rq
, block
);
1037 return do_special(drive
);
1039 ide_kill_rq(drive
, rq
);
1044 * ide_stall_queue - pause an IDE device
1045 * @drive: drive to stall
1046 * @timeout: time to stall for (jiffies)
1048 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1049 * to the hwgroup by sleeping for timeout jiffies.
1052 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1054 if (timeout
> WAIT_WORSTCASE
)
1055 timeout
= WAIT_WORSTCASE
;
1056 drive
->sleep
= timeout
+ jiffies
;
1057 drive
->sleeping
= 1;
1060 EXPORT_SYMBOL(ide_stall_queue
);
1062 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1065 * choose_drive - select a drive to service
1066 * @hwgroup: hardware group to select on
1068 * choose_drive() selects the next drive which will be serviced.
1069 * This is necessary because the IDE layer can't issue commands
1070 * to both drives on the same cable, unlike SCSI.
1073 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1075 ide_drive_t
*drive
, *best
;
1079 drive
= hwgroup
->drive
;
1082 * drive is doing pre-flush, ordered write, post-flush sequence. even
1083 * though that is 3 requests, it must be seen as a single transaction.
1084 * we must not preempt this drive until that is complete
1086 if (blk_queue_flushing(drive
->queue
)) {
1088 * small race where queue could get replugged during
1089 * the 3-request flush cycle, just yank the plug since
1090 * we want it to finish asap
1092 blk_remove_plug(drive
->queue
);
1097 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1098 && !elv_queue_empty(drive
->queue
)) {
1100 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1101 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1103 if (!blk_queue_plugged(drive
->queue
))
1107 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1108 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1109 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1110 if (t
>= WAIT_MIN_SLEEP
) {
1112 * We *may* have some time to spare, but first let's see if
1113 * someone can potentially benefit from our nice mood today..
1117 if (!drive
->sleeping
1118 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1119 && time_before(WAKEUP(drive
), jiffies
+ t
))
1121 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1124 } while ((drive
= drive
->next
) != best
);
1131 * Issue a new request to a drive from hwgroup
1132 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1134 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1135 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1136 * may have both interfaces in a single hwgroup to "serialize" access.
1137 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1138 * together into one hwgroup for serialized access.
1140 * Note also that several hwgroups can end up sharing a single IRQ,
1141 * possibly along with many other devices. This is especially common in
1142 * PCI-based systems with off-board IDE controller cards.
1144 * The IDE driver uses the single global ide_lock spinlock to protect
1145 * access to the request queues, and to protect the hwgroup->busy flag.
1147 * The first thread into the driver for a particular hwgroup sets the
1148 * hwgroup->busy flag to indicate that this hwgroup is now active,
1149 * and then initiates processing of the top request from the request queue.
1151 * Other threads attempting entry notice the busy setting, and will simply
1152 * queue their new requests and exit immediately. Note that hwgroup->busy
1153 * remains set even when the driver is merely awaiting the next interrupt.
1154 * Thus, the meaning is "this hwgroup is busy processing a request".
1156 * When processing of a request completes, the completing thread or IRQ-handler
1157 * will start the next request from the queue. If no more work remains,
1158 * the driver will clear the hwgroup->busy flag and exit.
1160 * The ide_lock (spinlock) is used to protect all access to the
1161 * hwgroup->busy flag, but is otherwise not needed for most processing in
1162 * the driver. This makes the driver much more friendlier to shared IRQs
1163 * than previous designs, while remaining 100% (?) SMP safe and capable.
1165 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1170 ide_startstop_t startstop
;
1173 /* for atari only: POSSIBLY BROKEN HERE(?) */
1174 ide_get_lock(ide_intr
, hwgroup
);
1176 /* caller must own ide_lock */
1177 BUG_ON(!irqs_disabled());
1179 while (!hwgroup
->busy
) {
1181 drive
= choose_drive(hwgroup
);
1182 if (drive
== NULL
) {
1184 unsigned long sleep
= 0; /* shut up, gcc */
1186 drive
= hwgroup
->drive
;
1188 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1190 sleep
= drive
->sleep
;
1192 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1195 * Take a short snooze, and then wake up this hwgroup again.
1196 * This gives other hwgroups on the same a chance to
1197 * play fairly with us, just in case there are big differences
1198 * in relative throughputs.. don't want to hog the cpu too much.
1200 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1201 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1203 if (timer_pending(&hwgroup
->timer
))
1204 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1206 /* so that ide_timer_expiry knows what to do */
1207 hwgroup
->sleeping
= 1;
1208 mod_timer(&hwgroup
->timer
, sleep
);
1209 /* we purposely leave hwgroup->busy==1
1212 /* Ugly, but how can we sleep for the lock
1213 * otherwise? perhaps from tq_disk?
1216 /* for atari only */
1221 /* no more work for this hwgroup (for now) */
1226 if (hwgroup
->hwif
->sharing_irq
&&
1227 hwif
!= hwgroup
->hwif
&&
1228 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1229 /* set nIEN for previous hwif */
1230 SELECT_INTERRUPT(drive
);
1232 hwgroup
->hwif
= hwif
;
1233 hwgroup
->drive
= drive
;
1234 drive
->sleeping
= 0;
1235 drive
->service_start
= jiffies
;
1237 if (blk_queue_plugged(drive
->queue
)) {
1238 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1243 * we know that the queue isn't empty, but this can happen
1244 * if the q->prep_rq_fn() decides to kill a request
1246 rq
= elv_next_request(drive
->queue
);
1253 * Sanity: don't accept a request that isn't a PM request
1254 * if we are currently power managed. This is very important as
1255 * blk_stop_queue() doesn't prevent the elv_next_request()
1256 * above to return us whatever is in the queue. Since we call
1257 * ide_do_request() ourselves, we end up taking requests while
1258 * the queue is blocked...
1260 * We let requests forced at head of queue with ide-preempt
1261 * though. I hope that doesn't happen too much, hopefully not
1262 * unless the subdriver triggers such a thing in its own PM
1265 * We count how many times we loop here to make sure we service
1266 * all drives in the hwgroup without looping for ever
1268 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->flags
& REQ_PREEMPT
)) {
1269 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1270 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1272 /* We clear busy, there should be no pending ATA command at this point. */
1280 * Some systems have trouble with IDE IRQs arriving while
1281 * the driver is still setting things up. So, here we disable
1282 * the IRQ used by this interface while the request is being started.
1283 * This may look bad at first, but pretty much the same thing
1284 * happens anyway when any interrupt comes in, IDE or otherwise
1285 * -- the kernel masks the IRQ while it is being handled.
1287 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1288 disable_irq_nosync(hwif
->irq
);
1289 spin_unlock(&ide_lock
);
1291 /* allow other IRQs while we start this request */
1292 startstop
= start_request(drive
, rq
);
1293 spin_lock_irq(&ide_lock
);
1294 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1295 enable_irq(hwif
->irq
);
1296 if (startstop
== ide_stopped
)
1302 * Passes the stuff to ide_do_request
1304 void do_ide_request(request_queue_t
*q
)
1306 ide_drive_t
*drive
= q
->queuedata
;
1308 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1312 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1313 * retry the current request in pio mode instead of risking tossing it
1316 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1318 ide_hwif_t
*hwif
= HWIF(drive
);
1320 ide_startstop_t ret
= ide_stopped
;
1323 * end current dma transaction
1327 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1328 (void)HWIF(drive
)->ide_dma_end(drive
);
1329 ret
= ide_error(drive
, "dma timeout error",
1330 hwif
->INB(IDE_STATUS_REG
));
1332 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1333 (void) hwif
->ide_dma_timeout(drive
);
1337 * disable dma for now, but remember that we did so because of
1338 * a timeout -- we'll reenable after we finish this next request
1339 * (or rather the first chunk of it) in pio.
1342 drive
->state
= DMA_PIO_RETRY
;
1343 (void) hwif
->ide_dma_off_quietly(drive
);
1346 * un-busy drive etc (hwgroup->busy is cleared on return) and
1347 * make sure request is sane
1349 rq
= HWGROUP(drive
)->rq
;
1350 HWGROUP(drive
)->rq
= NULL
;
1357 rq
->sector
= rq
->bio
->bi_sector
;
1358 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1359 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1360 rq
->buffer
= bio_data(rq
->bio
);
1366 * ide_timer_expiry - handle lack of an IDE interrupt
1367 * @data: timer callback magic (hwgroup)
1369 * An IDE command has timed out before the expected drive return
1370 * occurred. At this point we attempt to clean up the current
1371 * mess. If the current handler includes an expiry handler then
1372 * we invoke the expiry handler, and providing it is happy the
1373 * work is done. If that fails we apply generic recovery rules
1374 * invoking the handler and checking the drive DMA status. We
1375 * have an excessively incestuous relationship with the DMA
1376 * logic that wants cleaning up.
1379 void ide_timer_expiry (unsigned long data
)
1381 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1382 ide_handler_t
*handler
;
1383 ide_expiry_t
*expiry
;
1384 unsigned long flags
;
1385 unsigned long wait
= -1;
1387 spin_lock_irqsave(&ide_lock
, flags
);
1389 if ((handler
= hwgroup
->handler
) == NULL
) {
1391 * Either a marginal timeout occurred
1392 * (got the interrupt just as timer expired),
1393 * or we were "sleeping" to give other devices a chance.
1394 * Either way, we don't really want to complain about anything.
1396 if (hwgroup
->sleeping
) {
1397 hwgroup
->sleeping
= 0;
1401 ide_drive_t
*drive
= hwgroup
->drive
;
1403 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1404 hwgroup
->handler
= NULL
;
1407 ide_startstop_t startstop
= ide_stopped
;
1408 if (!hwgroup
->busy
) {
1409 hwgroup
->busy
= 1; /* paranoia */
1410 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1412 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1414 if ((wait
= expiry(drive
)) > 0) {
1416 hwgroup
->timer
.expires
= jiffies
+ wait
;
1417 add_timer(&hwgroup
->timer
);
1418 spin_unlock_irqrestore(&ide_lock
, flags
);
1422 hwgroup
->handler
= NULL
;
1424 * We need to simulate a real interrupt when invoking
1425 * the handler() function, which means we need to
1426 * globally mask the specific IRQ:
1428 spin_unlock(&ide_lock
);
1430 #if DISABLE_IRQ_NOSYNC
1431 disable_irq_nosync(hwif
->irq
);
1433 /* disable_irq_nosync ?? */
1434 disable_irq(hwif
->irq
);
1435 #endif /* DISABLE_IRQ_NOSYNC */
1437 * as if we were handling an interrupt */
1438 local_irq_disable();
1439 if (hwgroup
->polling
) {
1440 startstop
= handler(drive
);
1441 } else if (drive_is_ready(drive
)) {
1442 if (drive
->waiting_for_dma
)
1443 (void) hwgroup
->hwif
->ide_dma_lostirq(drive
);
1444 (void)ide_ack_intr(hwif
);
1445 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1446 startstop
= handler(drive
);
1448 if (drive
->waiting_for_dma
) {
1449 startstop
= ide_dma_timeout_retry(drive
, wait
);
1452 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1454 drive
->service_time
= jiffies
- drive
->service_start
;
1455 spin_lock_irq(&ide_lock
);
1456 enable_irq(hwif
->irq
);
1457 if (startstop
== ide_stopped
)
1461 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1462 spin_unlock_irqrestore(&ide_lock
, flags
);
1466 * unexpected_intr - handle an unexpected IDE interrupt
1467 * @irq: interrupt line
1468 * @hwgroup: hwgroup being processed
1470 * There's nothing really useful we can do with an unexpected interrupt,
1471 * other than reading the status register (to clear it), and logging it.
1472 * There should be no way that an irq can happen before we're ready for it,
1473 * so we needn't worry much about losing an "important" interrupt here.
1475 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1476 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1477 * looks "good", we just ignore the interrupt completely.
1479 * This routine assumes __cli() is in effect when called.
1481 * If an unexpected interrupt happens on irq15 while we are handling irq14
1482 * and if the two interfaces are "serialized" (CMD640), then it looks like
1483 * we could screw up by interfering with a new request being set up for
1486 * In reality, this is a non-issue. The new command is not sent unless
1487 * the drive is ready to accept one, in which case we know the drive is
1488 * not trying to interrupt us. And ide_set_handler() is always invoked
1489 * before completing the issuance of any new drive command, so we will not
1490 * be accidentally invoked as a result of any valid command completion
1493 * Note that we must walk the entire hwgroup here. We know which hwif
1494 * is doing the current command, but we don't know which hwif burped
1498 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1501 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1504 * handle the unexpected interrupt
1507 if (hwif
->irq
== irq
) {
1508 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1509 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1510 /* Try to not flood the console with msgs */
1511 static unsigned long last_msgtime
, count
;
1513 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1514 last_msgtime
= jiffies
;
1515 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1516 "status=0x%02x, count=%ld\n",
1518 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1522 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1526 * ide_intr - default IDE interrupt handler
1527 * @irq: interrupt number
1528 * @dev_id: hwif group
1529 * @regs: unused weirdness from the kernel irq layer
1531 * This is the default IRQ handler for the IDE layer. You should
1532 * not need to override it. If you do be aware it is subtle in
1535 * hwgroup->hwif is the interface in the group currently performing
1536 * a command. hwgroup->drive is the drive and hwgroup->handler is
1537 * the IRQ handler to call. As we issue a command the handlers
1538 * step through multiple states, reassigning the handler to the
1539 * next step in the process. Unlike a smart SCSI controller IDE
1540 * expects the main processor to sequence the various transfer
1541 * stages. We also manage a poll timer to catch up with most
1542 * timeout situations. There are still a few where the handlers
1543 * don't ever decide to give up.
1545 * The handler eventually returns ide_stopped to indicate the
1546 * request completed. At this point we issue the next request
1547 * on the hwgroup and the process begins again.
1550 irqreturn_t
ide_intr (int irq
, void *dev_id
, struct pt_regs
*regs
)
1552 unsigned long flags
;
1553 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1556 ide_handler_t
*handler
;
1557 ide_startstop_t startstop
;
1559 spin_lock_irqsave(&ide_lock
, flags
);
1560 hwif
= hwgroup
->hwif
;
1562 if (!ide_ack_intr(hwif
)) {
1563 spin_unlock_irqrestore(&ide_lock
, flags
);
1567 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1569 * Not expecting an interrupt from this drive.
1570 * That means this could be:
1571 * (1) an interrupt from another PCI device
1572 * sharing the same PCI INT# as us.
1573 * or (2) a drive just entered sleep or standby mode,
1574 * and is interrupting to let us know.
1575 * or (3) a spurious interrupt of unknown origin.
1577 * For PCI, we cannot tell the difference,
1578 * so in that case we just ignore it and hope it goes away.
1580 * FIXME: unexpected_intr should be hwif-> then we can
1581 * remove all the ifdef PCI crap
1583 #ifdef CONFIG_BLK_DEV_IDEPCI
1584 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1585 #endif /* CONFIG_BLK_DEV_IDEPCI */
1588 * Probably not a shared PCI interrupt,
1589 * so we can safely try to do something about it:
1591 unexpected_intr(irq
, hwgroup
);
1592 #ifdef CONFIG_BLK_DEV_IDEPCI
1595 * Whack the status register, just in case
1596 * we have a leftover pending IRQ.
1598 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1599 #endif /* CONFIG_BLK_DEV_IDEPCI */
1601 spin_unlock_irqrestore(&ide_lock
, flags
);
1604 drive
= hwgroup
->drive
;
1607 * This should NEVER happen, and there isn't much
1608 * we could do about it here.
1610 * [Note - this can occur if the drive is hot unplugged]
1612 spin_unlock_irqrestore(&ide_lock
, flags
);
1615 if (!drive_is_ready(drive
)) {
1617 * This happens regularly when we share a PCI IRQ with
1618 * another device. Unfortunately, it can also happen
1619 * with some buggy drives that trigger the IRQ before
1620 * their status register is up to date. Hopefully we have
1621 * enough advance overhead that the latter isn't a problem.
1623 spin_unlock_irqrestore(&ide_lock
, flags
);
1626 if (!hwgroup
->busy
) {
1627 hwgroup
->busy
= 1; /* paranoia */
1628 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1630 hwgroup
->handler
= NULL
;
1631 del_timer(&hwgroup
->timer
);
1632 spin_unlock(&ide_lock
);
1636 /* service this interrupt, may set handler for next interrupt */
1637 startstop
= handler(drive
);
1638 spin_lock_irq(&ide_lock
);
1641 * Note that handler() may have set things up for another
1642 * interrupt to occur soon, but it cannot happen until
1643 * we exit from this routine, because it will be the
1644 * same irq as is currently being serviced here, and Linux
1645 * won't allow another of the same (on any CPU) until we return.
1647 drive
->service_time
= jiffies
- drive
->service_start
;
1648 if (startstop
== ide_stopped
) {
1649 if (hwgroup
->handler
== NULL
) { /* paranoia */
1651 ide_do_request(hwgroup
, hwif
->irq
);
1653 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1654 "on exit\n", drive
->name
);
1657 spin_unlock_irqrestore(&ide_lock
, flags
);
1662 * ide_init_drive_cmd - initialize a drive command request
1663 * @rq: request object
1665 * Initialize a request before we fill it in and send it down to
1666 * ide_do_drive_cmd. Commands must be set up by this function. Right
1667 * now it doesn't do a lot, but if that changes abusers will have a
1671 void ide_init_drive_cmd (struct request
*rq
)
1673 memset(rq
, 0, sizeof(*rq
));
1674 rq
->flags
= REQ_DRIVE_CMD
;
1678 EXPORT_SYMBOL(ide_init_drive_cmd
);
1681 * ide_do_drive_cmd - issue IDE special command
1682 * @drive: device to issue command
1683 * @rq: request to issue
1684 * @action: action for processing
1686 * This function issues a special IDE device request
1687 * onto the request queue.
1689 * If action is ide_wait, then the rq is queued at the end of the
1690 * request queue, and the function sleeps until it has been processed.
1691 * This is for use when invoked from an ioctl handler.
1693 * If action is ide_preempt, then the rq is queued at the head of
1694 * the request queue, displacing the currently-being-processed
1695 * request and this function returns immediately without waiting
1696 * for the new rq to be completed. This is VERY DANGEROUS, and is
1697 * intended for careful use by the ATAPI tape/cdrom driver code.
1699 * If action is ide_end, then the rq is queued at the end of the
1700 * request queue, and the function returns immediately without waiting
1701 * for the new rq to be completed. This is again intended for careful
1702 * use by the ATAPI tape/cdrom driver code.
1705 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1707 unsigned long flags
;
1708 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1709 DECLARE_COMPLETION(wait
);
1710 int where
= ELEVATOR_INSERT_BACK
, err
;
1711 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1714 rq
->rq_status
= RQ_ACTIVE
;
1717 * we need to hold an extra reference to request for safe inspection
1722 rq
->waiting
= &wait
;
1723 rq
->end_io
= blk_end_sync_rq
;
1726 spin_lock_irqsave(&ide_lock
, flags
);
1727 if (action
== ide_preempt
)
1729 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1730 where
= ELEVATOR_INSERT_FRONT
;
1731 rq
->flags
|= REQ_PREEMPT
;
1733 __elv_add_request(drive
->queue
, rq
, where
, 0);
1734 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1735 spin_unlock_irqrestore(&ide_lock
, flags
);
1739 wait_for_completion(&wait
);
1744 blk_put_request(rq
);
1750 EXPORT_SYMBOL(ide_do_drive_cmd
);