]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ide/ide-io.c
[PATCH] ide: preserve errors for failed requests
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/bitops.h>
57
58 void ide_softirq_done(struct request *rq)
59 {
60 request_queue_t *q = rq->q;
61
62 add_disk_randomness(rq->rq_disk);
63 end_that_request_chunk(rq, 1, rq->data_len);
64
65 spin_lock_irq(q->queue_lock);
66 end_that_request_last(rq, 1);
67 spin_unlock_irq(q->queue_lock);
68 }
69
70 int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate,
71 int nr_sectors)
72 {
73 unsigned int nbytes;
74 int ret = 1;
75
76 BUG_ON(!(rq->flags & REQ_STARTED));
77
78 /*
79 * if failfast is set on a request, override number of sectors and
80 * complete the whole request right now
81 */
82 if (blk_noretry_request(rq) && end_io_error(uptodate))
83 nr_sectors = rq->hard_nr_sectors;
84
85 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
86 rq->errors = -EIO;
87
88 /*
89 * decide whether to reenable DMA -- 3 is a random magic for now,
90 * if we DMA timeout more than 3 times, just stay in PIO
91 */
92 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
93 drive->state = 0;
94 HWGROUP(drive)->hwif->ide_dma_on(drive);
95 }
96
97 /*
98 * For partial completions (or non fs/pc requests), use the regular
99 * direct completion path. Same thing for requests that failed, to
100 * preserve the ->errors value we use the normal completion path
101 * for those
102 */
103 nbytes = nr_sectors << 9;
104 if (!rq->errors && rq_all_done(rq, nbytes)) {
105 rq->data_len = nbytes;
106 blkdev_dequeue_request(rq);
107 HWGROUP(drive)->rq = NULL;
108 blk_complete_request(rq);
109 ret = 0;
110 } else {
111 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
112 add_disk_randomness(rq->rq_disk);
113 blkdev_dequeue_request(rq);
114 HWGROUP(drive)->rq = NULL;
115 end_that_request_last(rq, uptodate);
116 ret = 0;
117 }
118 }
119
120 return ret;
121 }
122 EXPORT_SYMBOL(__ide_end_request);
123
124 /**
125 * ide_end_request - complete an IDE I/O
126 * @drive: IDE device for the I/O
127 * @uptodate:
128 * @nr_sectors: number of sectors completed
129 *
130 * This is our end_request wrapper function. We complete the I/O
131 * update random number input and dequeue the request, which if
132 * it was tagged may be out of order.
133 */
134
135 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
136 {
137 struct request *rq;
138 unsigned long flags;
139 int ret = 1;
140
141 /*
142 * room for locking improvements here, the calls below don't
143 * need the queue lock held at all
144 */
145 spin_lock_irqsave(&ide_lock, flags);
146 rq = HWGROUP(drive)->rq;
147
148 if (!nr_sectors)
149 nr_sectors = rq->hard_cur_sectors;
150
151 ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
152
153 spin_unlock_irqrestore(&ide_lock, flags);
154 return ret;
155 }
156 EXPORT_SYMBOL(ide_end_request);
157
158 /*
159 * Power Management state machine. This one is rather trivial for now,
160 * we should probably add more, like switching back to PIO on suspend
161 * to help some BIOSes, re-do the door locking on resume, etc...
162 */
163
164 enum {
165 ide_pm_flush_cache = ide_pm_state_start_suspend,
166 idedisk_pm_standby,
167
168 idedisk_pm_idle = ide_pm_state_start_resume,
169 ide_pm_restore_dma,
170 };
171
172 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
173 {
174 if (drive->media != ide_disk)
175 return;
176
177 switch (rq->pm->pm_step) {
178 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
179 if (rq->pm->pm_state == PM_EVENT_FREEZE)
180 rq->pm->pm_step = ide_pm_state_completed;
181 else
182 rq->pm->pm_step = idedisk_pm_standby;
183 break;
184 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
185 rq->pm->pm_step = ide_pm_state_completed;
186 break;
187 case idedisk_pm_idle: /* Resume step 1 (idle) complete */
188 rq->pm->pm_step = ide_pm_restore_dma;
189 break;
190 }
191 }
192
193 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
194 {
195 ide_task_t *args = rq->special;
196
197 memset(args, 0, sizeof(*args));
198
199 if (drive->media != ide_disk) {
200 /* skip idedisk_pm_idle for ATAPI devices */
201 if (rq->pm->pm_step == idedisk_pm_idle)
202 rq->pm->pm_step = ide_pm_restore_dma;
203 }
204
205 switch (rq->pm->pm_step) {
206 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
207 if (drive->media != ide_disk)
208 break;
209 /* Not supported? Switch to next step now. */
210 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
211 ide_complete_power_step(drive, rq, 0, 0);
212 return ide_stopped;
213 }
214 if (ide_id_has_flush_cache_ext(drive->id))
215 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
216 else
217 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
218 args->command_type = IDE_DRIVE_TASK_NO_DATA;
219 args->handler = &task_no_data_intr;
220 return do_rw_taskfile(drive, args);
221
222 case idedisk_pm_standby: /* Suspend step 2 (standby) */
223 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
224 args->command_type = IDE_DRIVE_TASK_NO_DATA;
225 args->handler = &task_no_data_intr;
226 return do_rw_taskfile(drive, args);
227
228 case idedisk_pm_idle: /* Resume step 1 (idle) */
229 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
230 args->command_type = IDE_DRIVE_TASK_NO_DATA;
231 args->handler = task_no_data_intr;
232 return do_rw_taskfile(drive, args);
233
234 case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */
235 /*
236 * Right now, all we do is call hwif->ide_dma_check(drive),
237 * we could be smarter and check for current xfer_speed
238 * in struct drive etc...
239 */
240 if ((drive->id->capability & 1) == 0)
241 break;
242 if (drive->hwif->ide_dma_check == NULL)
243 break;
244 drive->hwif->ide_dma_check(drive);
245 break;
246 }
247 rq->pm->pm_step = ide_pm_state_completed;
248 return ide_stopped;
249 }
250
251 /**
252 * ide_complete_pm_request - end the current Power Management request
253 * @drive: target drive
254 * @rq: request
255 *
256 * This function cleans up the current PM request and stops the queue
257 * if necessary.
258 */
259 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
260 {
261 unsigned long flags;
262
263 #ifdef DEBUG_PM
264 printk("%s: completing PM request, %s\n", drive->name,
265 blk_pm_suspend_request(rq) ? "suspend" : "resume");
266 #endif
267 spin_lock_irqsave(&ide_lock, flags);
268 if (blk_pm_suspend_request(rq)) {
269 blk_stop_queue(drive->queue);
270 } else {
271 drive->blocked = 0;
272 blk_start_queue(drive->queue);
273 }
274 blkdev_dequeue_request(rq);
275 HWGROUP(drive)->rq = NULL;
276 end_that_request_last(rq, 1);
277 spin_unlock_irqrestore(&ide_lock, flags);
278 }
279
280 /*
281 * FIXME: probably move this somewhere else, name is bad too :)
282 */
283 u64 ide_get_error_location(ide_drive_t *drive, char *args)
284 {
285 u32 high, low;
286 u8 hcyl, lcyl, sect;
287 u64 sector;
288
289 high = 0;
290 hcyl = args[5];
291 lcyl = args[4];
292 sect = args[3];
293
294 if (ide_id_has_flush_cache_ext(drive->id)) {
295 low = (hcyl << 16) | (lcyl << 8) | sect;
296 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
297 high = ide_read_24(drive);
298 } else {
299 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
300 if (cur & 0x40) {
301 high = cur & 0xf;
302 low = (hcyl << 16) | (lcyl << 8) | sect;
303 } else {
304 low = hcyl * drive->head * drive->sect;
305 low += lcyl * drive->sect;
306 low += sect - 1;
307 }
308 }
309
310 sector = ((u64) high << 24) | low;
311 return sector;
312 }
313 EXPORT_SYMBOL(ide_get_error_location);
314
315 /**
316 * ide_end_drive_cmd - end an explicit drive command
317 * @drive: command
318 * @stat: status bits
319 * @err: error bits
320 *
321 * Clean up after success/failure of an explicit drive command.
322 * These get thrown onto the queue so they are synchronized with
323 * real I/O operations on the drive.
324 *
325 * In LBA48 mode we have to read the register set twice to get
326 * all the extra information out.
327 */
328
329 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
330 {
331 ide_hwif_t *hwif = HWIF(drive);
332 unsigned long flags;
333 struct request *rq;
334
335 spin_lock_irqsave(&ide_lock, flags);
336 rq = HWGROUP(drive)->rq;
337 spin_unlock_irqrestore(&ide_lock, flags);
338
339 if (rq->flags & REQ_DRIVE_CMD) {
340 u8 *args = (u8 *) rq->buffer;
341 if (rq->errors == 0)
342 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
343
344 if (args) {
345 args[0] = stat;
346 args[1] = err;
347 args[2] = hwif->INB(IDE_NSECTOR_REG);
348 }
349 } else if (rq->flags & REQ_DRIVE_TASK) {
350 u8 *args = (u8 *) rq->buffer;
351 if (rq->errors == 0)
352 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
353
354 if (args) {
355 args[0] = stat;
356 args[1] = err;
357 args[2] = hwif->INB(IDE_NSECTOR_REG);
358 args[3] = hwif->INB(IDE_SECTOR_REG);
359 args[4] = hwif->INB(IDE_LCYL_REG);
360 args[5] = hwif->INB(IDE_HCYL_REG);
361 args[6] = hwif->INB(IDE_SELECT_REG);
362 }
363 } else if (rq->flags & REQ_DRIVE_TASKFILE) {
364 ide_task_t *args = (ide_task_t *) rq->special;
365 if (rq->errors == 0)
366 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
367
368 if (args) {
369 if (args->tf_in_flags.b.data) {
370 u16 data = hwif->INW(IDE_DATA_REG);
371 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
372 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
373 }
374 args->tfRegister[IDE_ERROR_OFFSET] = err;
375 /* be sure we're looking at the low order bits */
376 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
377 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
378 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
379 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
380 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
381 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
382 args->tfRegister[IDE_STATUS_OFFSET] = stat;
383
384 if (drive->addressing == 1) {
385 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
386 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
387 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
388 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
389 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
390 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
391 }
392 }
393 } else if (blk_pm_request(rq)) {
394 #ifdef DEBUG_PM
395 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
396 drive->name, rq->pm->pm_step, stat, err);
397 #endif
398 ide_complete_power_step(drive, rq, stat, err);
399 if (rq->pm->pm_step == ide_pm_state_completed)
400 ide_complete_pm_request(drive, rq);
401 return;
402 }
403
404 spin_lock_irqsave(&ide_lock, flags);
405 blkdev_dequeue_request(rq);
406 HWGROUP(drive)->rq = NULL;
407 rq->errors = err;
408 end_that_request_last(rq, !rq->errors);
409 spin_unlock_irqrestore(&ide_lock, flags);
410 }
411
412 EXPORT_SYMBOL(ide_end_drive_cmd);
413
414 /**
415 * try_to_flush_leftover_data - flush junk
416 * @drive: drive to flush
417 *
418 * try_to_flush_leftover_data() is invoked in response to a drive
419 * unexpectedly having its DRQ_STAT bit set. As an alternative to
420 * resetting the drive, this routine tries to clear the condition
421 * by read a sector's worth of data from the drive. Of course,
422 * this may not help if the drive is *waiting* for data from *us*.
423 */
424 static void try_to_flush_leftover_data (ide_drive_t *drive)
425 {
426 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
427
428 if (drive->media != ide_disk)
429 return;
430 while (i > 0) {
431 u32 buffer[16];
432 u32 wcount = (i > 16) ? 16 : i;
433
434 i -= wcount;
435 HWIF(drive)->ata_input_data(drive, buffer, wcount);
436 }
437 }
438
439 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
440 {
441 if (rq->rq_disk) {
442 ide_driver_t *drv;
443
444 drv = *(ide_driver_t **)rq->rq_disk->private_data;
445 drv->end_request(drive, 0, 0);
446 } else
447 ide_end_request(drive, 0, 0);
448 }
449
450 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
451 {
452 ide_hwif_t *hwif = drive->hwif;
453
454 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
455 /* other bits are useless when BUSY */
456 rq->errors |= ERROR_RESET;
457 } else if (stat & ERR_STAT) {
458 /* err has different meaning on cdrom and tape */
459 if (err == ABRT_ERR) {
460 if (drive->select.b.lba &&
461 /* some newer drives don't support WIN_SPECIFY */
462 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
463 return ide_stopped;
464 } else if ((err & BAD_CRC) == BAD_CRC) {
465 /* UDMA crc error, just retry the operation */
466 drive->crc_count++;
467 } else if (err & (BBD_ERR | ECC_ERR)) {
468 /* retries won't help these */
469 rq->errors = ERROR_MAX;
470 } else if (err & TRK0_ERR) {
471 /* help it find track zero */
472 rq->errors |= ERROR_RECAL;
473 }
474 }
475
476 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
477 try_to_flush_leftover_data(drive);
478
479 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
480 /* force an abort */
481 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
482
483 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
484 ide_kill_rq(drive, rq);
485 else {
486 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487 ++rq->errors;
488 return ide_do_reset(drive);
489 }
490 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
491 drive->special.b.recalibrate = 1;
492 ++rq->errors;
493 }
494 return ide_stopped;
495 }
496
497 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
498 {
499 ide_hwif_t *hwif = drive->hwif;
500
501 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
502 /* other bits are useless when BUSY */
503 rq->errors |= ERROR_RESET;
504 } else {
505 /* add decoding error stuff */
506 }
507
508 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
509 /* force an abort */
510 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
511
512 if (rq->errors >= ERROR_MAX) {
513 ide_kill_rq(drive, rq);
514 } else {
515 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
516 ++rq->errors;
517 return ide_do_reset(drive);
518 }
519 ++rq->errors;
520 }
521
522 return ide_stopped;
523 }
524
525 ide_startstop_t
526 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
527 {
528 if (drive->media == ide_disk)
529 return ide_ata_error(drive, rq, stat, err);
530 return ide_atapi_error(drive, rq, stat, err);
531 }
532
533 EXPORT_SYMBOL_GPL(__ide_error);
534
535 /**
536 * ide_error - handle an error on the IDE
537 * @drive: drive the error occurred on
538 * @msg: message to report
539 * @stat: status bits
540 *
541 * ide_error() takes action based on the error returned by the drive.
542 * For normal I/O that may well include retries. We deal with
543 * both new-style (taskfile) and old style command handling here.
544 * In the case of taskfile command handling there is work left to
545 * do
546 */
547
548 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
549 {
550 struct request *rq;
551 u8 err;
552
553 err = ide_dump_status(drive, msg, stat);
554
555 if ((rq = HWGROUP(drive)->rq) == NULL)
556 return ide_stopped;
557
558 /* retry only "normal" I/O: */
559 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
560 rq->errors = 1;
561 ide_end_drive_cmd(drive, stat, err);
562 return ide_stopped;
563 }
564
565 if (rq->rq_disk) {
566 ide_driver_t *drv;
567
568 drv = *(ide_driver_t **)rq->rq_disk->private_data;
569 return drv->error(drive, rq, stat, err);
570 } else
571 return __ide_error(drive, rq, stat, err);
572 }
573
574 EXPORT_SYMBOL_GPL(ide_error);
575
576 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
577 {
578 if (drive->media != ide_disk)
579 rq->errors |= ERROR_RESET;
580
581 ide_kill_rq(drive, rq);
582
583 return ide_stopped;
584 }
585
586 EXPORT_SYMBOL_GPL(__ide_abort);
587
588 /**
589 * ide_abort - abort pending IDE operations
590 * @drive: drive the error occurred on
591 * @msg: message to report
592 *
593 * ide_abort kills and cleans up when we are about to do a
594 * host initiated reset on active commands. Longer term we
595 * want handlers to have sensible abort handling themselves
596 *
597 * This differs fundamentally from ide_error because in
598 * this case the command is doing just fine when we
599 * blow it away.
600 */
601
602 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
603 {
604 struct request *rq;
605
606 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
607 return ide_stopped;
608
609 /* retry only "normal" I/O: */
610 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
611 rq->errors = 1;
612 ide_end_drive_cmd(drive, BUSY_STAT, 0);
613 return ide_stopped;
614 }
615
616 if (rq->rq_disk) {
617 ide_driver_t *drv;
618
619 drv = *(ide_driver_t **)rq->rq_disk->private_data;
620 return drv->abort(drive, rq);
621 } else
622 return __ide_abort(drive, rq);
623 }
624
625 /**
626 * ide_cmd - issue a simple drive command
627 * @drive: drive the command is for
628 * @cmd: command byte
629 * @nsect: sector byte
630 * @handler: handler for the command completion
631 *
632 * Issue a simple drive command with interrupts.
633 * The drive must be selected beforehand.
634 */
635
636 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
637 ide_handler_t *handler)
638 {
639 ide_hwif_t *hwif = HWIF(drive);
640 if (IDE_CONTROL_REG)
641 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
642 SELECT_MASK(drive,0);
643 hwif->OUTB(nsect,IDE_NSECTOR_REG);
644 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
645 }
646
647 /**
648 * drive_cmd_intr - drive command completion interrupt
649 * @drive: drive the completion interrupt occurred on
650 *
651 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
652 * We do any necessary data reading and then wait for the drive to
653 * go non busy. At that point we may read the error data and complete
654 * the request
655 */
656
657 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
658 {
659 struct request *rq = HWGROUP(drive)->rq;
660 ide_hwif_t *hwif = HWIF(drive);
661 u8 *args = (u8 *) rq->buffer;
662 u8 stat = hwif->INB(IDE_STATUS_REG);
663 int retries = 10;
664
665 local_irq_enable();
666 if ((stat & DRQ_STAT) && args && args[3]) {
667 u8 io_32bit = drive->io_32bit;
668 drive->io_32bit = 0;
669 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
670 drive->io_32bit = io_32bit;
671 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
672 udelay(100);
673 }
674
675 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
676 return ide_error(drive, "drive_cmd", stat);
677 /* calls ide_end_drive_cmd */
678 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
679 return ide_stopped;
680 }
681
682 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
683 {
684 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
685 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
686 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
687 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
688 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
689 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
690
691 task->handler = &set_geometry_intr;
692 }
693
694 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
695 {
696 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
697 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
698
699 task->handler = &recal_intr;
700 }
701
702 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
703 {
704 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
705 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
706
707 task->handler = &set_multmode_intr;
708 }
709
710 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
711 {
712 special_t *s = &drive->special;
713 ide_task_t args;
714
715 memset(&args, 0, sizeof(ide_task_t));
716 args.command_type = IDE_DRIVE_TASK_NO_DATA;
717
718 if (s->b.set_geometry) {
719 s->b.set_geometry = 0;
720 ide_init_specify_cmd(drive, &args);
721 } else if (s->b.recalibrate) {
722 s->b.recalibrate = 0;
723 ide_init_restore_cmd(drive, &args);
724 } else if (s->b.set_multmode) {
725 s->b.set_multmode = 0;
726 if (drive->mult_req > drive->id->max_multsect)
727 drive->mult_req = drive->id->max_multsect;
728 ide_init_setmult_cmd(drive, &args);
729 } else if (s->all) {
730 int special = s->all;
731 s->all = 0;
732 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
733 return ide_stopped;
734 }
735
736 do_rw_taskfile(drive, &args);
737
738 return ide_started;
739 }
740
741 /**
742 * do_special - issue some special commands
743 * @drive: drive the command is for
744 *
745 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
746 * commands to a drive. It used to do much more, but has been scaled
747 * back.
748 */
749
750 static ide_startstop_t do_special (ide_drive_t *drive)
751 {
752 special_t *s = &drive->special;
753
754 #ifdef DEBUG
755 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
756 #endif
757 if (s->b.set_tune) {
758 s->b.set_tune = 0;
759 if (HWIF(drive)->tuneproc != NULL)
760 HWIF(drive)->tuneproc(drive, drive->tune_req);
761 return ide_stopped;
762 } else {
763 if (drive->media == ide_disk)
764 return ide_disk_special(drive);
765
766 s->all = 0;
767 drive->mult_req = 0;
768 return ide_stopped;
769 }
770 }
771
772 void ide_map_sg(ide_drive_t *drive, struct request *rq)
773 {
774 ide_hwif_t *hwif = drive->hwif;
775 struct scatterlist *sg = hwif->sg_table;
776
777 if (hwif->sg_mapped) /* needed by ide-scsi */
778 return;
779
780 if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
781 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
782 } else {
783 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
784 hwif->sg_nents = 1;
785 }
786 }
787
788 EXPORT_SYMBOL_GPL(ide_map_sg);
789
790 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
791 {
792 ide_hwif_t *hwif = drive->hwif;
793
794 hwif->nsect = hwif->nleft = rq->nr_sectors;
795 hwif->cursg = hwif->cursg_ofs = 0;
796 }
797
798 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
799
800 /**
801 * execute_drive_command - issue special drive command
802 * @drive: the drive to issue the command on
803 * @rq: the request structure holding the command
804 *
805 * execute_drive_cmd() issues a special drive command, usually
806 * initiated by ioctl() from the external hdparm program. The
807 * command can be a drive command, drive task or taskfile
808 * operation. Weirdly you can call it with NULL to wait for
809 * all commands to finish. Don't do this as that is due to change
810 */
811
812 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
813 struct request *rq)
814 {
815 ide_hwif_t *hwif = HWIF(drive);
816 if (rq->flags & REQ_DRIVE_TASKFILE) {
817 ide_task_t *args = rq->special;
818
819 if (!args)
820 goto done;
821
822 hwif->data_phase = args->data_phase;
823
824 switch (hwif->data_phase) {
825 case TASKFILE_MULTI_OUT:
826 case TASKFILE_OUT:
827 case TASKFILE_MULTI_IN:
828 case TASKFILE_IN:
829 ide_init_sg_cmd(drive, rq);
830 ide_map_sg(drive, rq);
831 default:
832 break;
833 }
834
835 if (args->tf_out_flags.all != 0)
836 return flagged_taskfile(drive, args);
837 return do_rw_taskfile(drive, args);
838 } else if (rq->flags & REQ_DRIVE_TASK) {
839 u8 *args = rq->buffer;
840 u8 sel;
841
842 if (!args)
843 goto done;
844 #ifdef DEBUG
845 printk("%s: DRIVE_TASK_CMD ", drive->name);
846 printk("cmd=0x%02x ", args[0]);
847 printk("fr=0x%02x ", args[1]);
848 printk("ns=0x%02x ", args[2]);
849 printk("sc=0x%02x ", args[3]);
850 printk("lcyl=0x%02x ", args[4]);
851 printk("hcyl=0x%02x ", args[5]);
852 printk("sel=0x%02x\n", args[6]);
853 #endif
854 hwif->OUTB(args[1], IDE_FEATURE_REG);
855 hwif->OUTB(args[3], IDE_SECTOR_REG);
856 hwif->OUTB(args[4], IDE_LCYL_REG);
857 hwif->OUTB(args[5], IDE_HCYL_REG);
858 sel = (args[6] & ~0x10);
859 if (drive->select.b.unit)
860 sel |= 0x10;
861 hwif->OUTB(sel, IDE_SELECT_REG);
862 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
863 return ide_started;
864 } else if (rq->flags & REQ_DRIVE_CMD) {
865 u8 *args = rq->buffer;
866
867 if (!args)
868 goto done;
869 #ifdef DEBUG
870 printk("%s: DRIVE_CMD ", drive->name);
871 printk("cmd=0x%02x ", args[0]);
872 printk("sc=0x%02x ", args[1]);
873 printk("fr=0x%02x ", args[2]);
874 printk("xx=0x%02x\n", args[3]);
875 #endif
876 if (args[0] == WIN_SMART) {
877 hwif->OUTB(0x4f, IDE_LCYL_REG);
878 hwif->OUTB(0xc2, IDE_HCYL_REG);
879 hwif->OUTB(args[2],IDE_FEATURE_REG);
880 hwif->OUTB(args[1],IDE_SECTOR_REG);
881 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
882 return ide_started;
883 }
884 hwif->OUTB(args[2],IDE_FEATURE_REG);
885 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
886 return ide_started;
887 }
888
889 done:
890 /*
891 * NULL is actually a valid way of waiting for
892 * all current requests to be flushed from the queue.
893 */
894 #ifdef DEBUG
895 printk("%s: DRIVE_CMD (null)\n", drive->name);
896 #endif
897 ide_end_drive_cmd(drive,
898 hwif->INB(IDE_STATUS_REG),
899 hwif->INB(IDE_ERROR_REG));
900 return ide_stopped;
901 }
902
903 /**
904 * start_request - start of I/O and command issuing for IDE
905 *
906 * start_request() initiates handling of a new I/O request. It
907 * accepts commands and I/O (read/write) requests. It also does
908 * the final remapping for weird stuff like EZDrive. Once
909 * device mapper can work sector level the EZDrive stuff can go away
910 *
911 * FIXME: this function needs a rename
912 */
913
914 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
915 {
916 ide_startstop_t startstop;
917 sector_t block;
918
919 BUG_ON(!(rq->flags & REQ_STARTED));
920
921 #ifdef DEBUG
922 printk("%s: start_request: current=0x%08lx\n",
923 HWIF(drive)->name, (unsigned long) rq);
924 #endif
925
926 /* bail early if we've exceeded max_failures */
927 if (drive->max_failures && (drive->failures > drive->max_failures)) {
928 goto kill_rq;
929 }
930
931 block = rq->sector;
932 if (blk_fs_request(rq) &&
933 (drive->media == ide_disk || drive->media == ide_floppy)) {
934 block += drive->sect0;
935 }
936 /* Yecch - this will shift the entire interval,
937 possibly killing some innocent following sector */
938 if (block == 0 && drive->remap_0_to_1 == 1)
939 block = 1; /* redirect MBR access to EZ-Drive partn table */
940
941 if (blk_pm_suspend_request(rq) &&
942 rq->pm->pm_step == ide_pm_state_start_suspend)
943 /* Mark drive blocked when starting the suspend sequence. */
944 drive->blocked = 1;
945 else if (blk_pm_resume_request(rq) &&
946 rq->pm->pm_step == ide_pm_state_start_resume) {
947 /*
948 * The first thing we do on wakeup is to wait for BSY bit to
949 * go away (with a looong timeout) as a drive on this hwif may
950 * just be POSTing itself.
951 * We do that before even selecting as the "other" device on
952 * the bus may be broken enough to walk on our toes at this
953 * point.
954 */
955 int rc;
956 #ifdef DEBUG_PM
957 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
958 #endif
959 rc = ide_wait_not_busy(HWIF(drive), 35000);
960 if (rc)
961 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
962 SELECT_DRIVE(drive);
963 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
964 rc = ide_wait_not_busy(HWIF(drive), 10000);
965 if (rc)
966 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
967 }
968
969 SELECT_DRIVE(drive);
970 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
971 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
972 return startstop;
973 }
974 if (!drive->special.all) {
975 ide_driver_t *drv;
976
977 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
978 return execute_drive_cmd(drive, rq);
979 else if (rq->flags & REQ_DRIVE_TASKFILE)
980 return execute_drive_cmd(drive, rq);
981 else if (blk_pm_request(rq)) {
982 #ifdef DEBUG_PM
983 printk("%s: start_power_step(step: %d)\n",
984 drive->name, rq->pm->pm_step);
985 #endif
986 startstop = ide_start_power_step(drive, rq);
987 if (startstop == ide_stopped &&
988 rq->pm->pm_step == ide_pm_state_completed)
989 ide_complete_pm_request(drive, rq);
990 return startstop;
991 }
992
993 drv = *(ide_driver_t **)rq->rq_disk->private_data;
994 return drv->do_request(drive, rq, block);
995 }
996 return do_special(drive);
997 kill_rq:
998 ide_kill_rq(drive, rq);
999 return ide_stopped;
1000 }
1001
1002 /**
1003 * ide_stall_queue - pause an IDE device
1004 * @drive: drive to stall
1005 * @timeout: time to stall for (jiffies)
1006 *
1007 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1008 * to the hwgroup by sleeping for timeout jiffies.
1009 */
1010
1011 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1012 {
1013 if (timeout > WAIT_WORSTCASE)
1014 timeout = WAIT_WORSTCASE;
1015 drive->sleep = timeout + jiffies;
1016 drive->sleeping = 1;
1017 }
1018
1019 EXPORT_SYMBOL(ide_stall_queue);
1020
1021 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1022
1023 /**
1024 * choose_drive - select a drive to service
1025 * @hwgroup: hardware group to select on
1026 *
1027 * choose_drive() selects the next drive which will be serviced.
1028 * This is necessary because the IDE layer can't issue commands
1029 * to both drives on the same cable, unlike SCSI.
1030 */
1031
1032 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1033 {
1034 ide_drive_t *drive, *best;
1035
1036 repeat:
1037 best = NULL;
1038 drive = hwgroup->drive;
1039
1040 /*
1041 * drive is doing pre-flush, ordered write, post-flush sequence. even
1042 * though that is 3 requests, it must be seen as a single transaction.
1043 * we must not preempt this drive until that is complete
1044 */
1045 if (blk_queue_flushing(drive->queue)) {
1046 /*
1047 * small race where queue could get replugged during
1048 * the 3-request flush cycle, just yank the plug since
1049 * we want it to finish asap
1050 */
1051 blk_remove_plug(drive->queue);
1052 return drive;
1053 }
1054
1055 do {
1056 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1057 && !elv_queue_empty(drive->queue)) {
1058 if (!best
1059 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1060 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1061 {
1062 if (!blk_queue_plugged(drive->queue))
1063 best = drive;
1064 }
1065 }
1066 } while ((drive = drive->next) != hwgroup->drive);
1067 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1068 long t = (signed long)(WAKEUP(best) - jiffies);
1069 if (t >= WAIT_MIN_SLEEP) {
1070 /*
1071 * We *may* have some time to spare, but first let's see if
1072 * someone can potentially benefit from our nice mood today..
1073 */
1074 drive = best->next;
1075 do {
1076 if (!drive->sleeping
1077 && time_before(jiffies - best->service_time, WAKEUP(drive))
1078 && time_before(WAKEUP(drive), jiffies + t))
1079 {
1080 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1081 goto repeat;
1082 }
1083 } while ((drive = drive->next) != best);
1084 }
1085 }
1086 return best;
1087 }
1088
1089 /*
1090 * Issue a new request to a drive from hwgroup
1091 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1092 *
1093 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1094 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1095 * may have both interfaces in a single hwgroup to "serialize" access.
1096 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1097 * together into one hwgroup for serialized access.
1098 *
1099 * Note also that several hwgroups can end up sharing a single IRQ,
1100 * possibly along with many other devices. This is especially common in
1101 * PCI-based systems with off-board IDE controller cards.
1102 *
1103 * The IDE driver uses the single global ide_lock spinlock to protect
1104 * access to the request queues, and to protect the hwgroup->busy flag.
1105 *
1106 * The first thread into the driver for a particular hwgroup sets the
1107 * hwgroup->busy flag to indicate that this hwgroup is now active,
1108 * and then initiates processing of the top request from the request queue.
1109 *
1110 * Other threads attempting entry notice the busy setting, and will simply
1111 * queue their new requests and exit immediately. Note that hwgroup->busy
1112 * remains set even when the driver is merely awaiting the next interrupt.
1113 * Thus, the meaning is "this hwgroup is busy processing a request".
1114 *
1115 * When processing of a request completes, the completing thread or IRQ-handler
1116 * will start the next request from the queue. If no more work remains,
1117 * the driver will clear the hwgroup->busy flag and exit.
1118 *
1119 * The ide_lock (spinlock) is used to protect all access to the
1120 * hwgroup->busy flag, but is otherwise not needed for most processing in
1121 * the driver. This makes the driver much more friendlier to shared IRQs
1122 * than previous designs, while remaining 100% (?) SMP safe and capable.
1123 */
1124 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1125 {
1126 ide_drive_t *drive;
1127 ide_hwif_t *hwif;
1128 struct request *rq;
1129 ide_startstop_t startstop;
1130 int loops = 0;
1131
1132 /* for atari only: POSSIBLY BROKEN HERE(?) */
1133 ide_get_lock(ide_intr, hwgroup);
1134
1135 /* caller must own ide_lock */
1136 BUG_ON(!irqs_disabled());
1137
1138 while (!hwgroup->busy) {
1139 hwgroup->busy = 1;
1140 drive = choose_drive(hwgroup);
1141 if (drive == NULL) {
1142 int sleeping = 0;
1143 unsigned long sleep = 0; /* shut up, gcc */
1144 hwgroup->rq = NULL;
1145 drive = hwgroup->drive;
1146 do {
1147 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1148 sleeping = 1;
1149 sleep = drive->sleep;
1150 }
1151 } while ((drive = drive->next) != hwgroup->drive);
1152 if (sleeping) {
1153 /*
1154 * Take a short snooze, and then wake up this hwgroup again.
1155 * This gives other hwgroups on the same a chance to
1156 * play fairly with us, just in case there are big differences
1157 * in relative throughputs.. don't want to hog the cpu too much.
1158 */
1159 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1160 sleep = jiffies + WAIT_MIN_SLEEP;
1161 #if 1
1162 if (timer_pending(&hwgroup->timer))
1163 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1164 #endif
1165 /* so that ide_timer_expiry knows what to do */
1166 hwgroup->sleeping = 1;
1167 mod_timer(&hwgroup->timer, sleep);
1168 /* we purposely leave hwgroup->busy==1
1169 * while sleeping */
1170 } else {
1171 /* Ugly, but how can we sleep for the lock
1172 * otherwise? perhaps from tq_disk?
1173 */
1174
1175 /* for atari only */
1176 ide_release_lock();
1177 hwgroup->busy = 0;
1178 }
1179
1180 /* no more work for this hwgroup (for now) */
1181 return;
1182 }
1183 again:
1184 hwif = HWIF(drive);
1185 if (hwgroup->hwif->sharing_irq &&
1186 hwif != hwgroup->hwif &&
1187 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1188 /* set nIEN for previous hwif */
1189 SELECT_INTERRUPT(drive);
1190 }
1191 hwgroup->hwif = hwif;
1192 hwgroup->drive = drive;
1193 drive->sleeping = 0;
1194 drive->service_start = jiffies;
1195
1196 if (blk_queue_plugged(drive->queue)) {
1197 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1198 break;
1199 }
1200
1201 /*
1202 * we know that the queue isn't empty, but this can happen
1203 * if the q->prep_rq_fn() decides to kill a request
1204 */
1205 rq = elv_next_request(drive->queue);
1206 if (!rq) {
1207 hwgroup->busy = 0;
1208 break;
1209 }
1210
1211 /*
1212 * Sanity: don't accept a request that isn't a PM request
1213 * if we are currently power managed. This is very important as
1214 * blk_stop_queue() doesn't prevent the elv_next_request()
1215 * above to return us whatever is in the queue. Since we call
1216 * ide_do_request() ourselves, we end up taking requests while
1217 * the queue is blocked...
1218 *
1219 * We let requests forced at head of queue with ide-preempt
1220 * though. I hope that doesn't happen too much, hopefully not
1221 * unless the subdriver triggers such a thing in its own PM
1222 * state machine.
1223 *
1224 * We count how many times we loop here to make sure we service
1225 * all drives in the hwgroup without looping for ever
1226 */
1227 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1228 drive = drive->next ? drive->next : hwgroup->drive;
1229 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1230 goto again;
1231 /* We clear busy, there should be no pending ATA command at this point. */
1232 hwgroup->busy = 0;
1233 break;
1234 }
1235
1236 hwgroup->rq = rq;
1237
1238 /*
1239 * Some systems have trouble with IDE IRQs arriving while
1240 * the driver is still setting things up. So, here we disable
1241 * the IRQ used by this interface while the request is being started.
1242 * This may look bad at first, but pretty much the same thing
1243 * happens anyway when any interrupt comes in, IDE or otherwise
1244 * -- the kernel masks the IRQ while it is being handled.
1245 */
1246 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1247 disable_irq_nosync(hwif->irq);
1248 spin_unlock(&ide_lock);
1249 local_irq_enable();
1250 /* allow other IRQs while we start this request */
1251 startstop = start_request(drive, rq);
1252 spin_lock_irq(&ide_lock);
1253 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1254 enable_irq(hwif->irq);
1255 if (startstop == ide_stopped)
1256 hwgroup->busy = 0;
1257 }
1258 }
1259
1260 /*
1261 * Passes the stuff to ide_do_request
1262 */
1263 void do_ide_request(request_queue_t *q)
1264 {
1265 ide_drive_t *drive = q->queuedata;
1266
1267 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1268 }
1269
1270 /*
1271 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1272 * retry the current request in pio mode instead of risking tossing it
1273 * all away
1274 */
1275 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1276 {
1277 ide_hwif_t *hwif = HWIF(drive);
1278 struct request *rq;
1279 ide_startstop_t ret = ide_stopped;
1280
1281 /*
1282 * end current dma transaction
1283 */
1284
1285 if (error < 0) {
1286 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1287 (void)HWIF(drive)->ide_dma_end(drive);
1288 ret = ide_error(drive, "dma timeout error",
1289 hwif->INB(IDE_STATUS_REG));
1290 } else {
1291 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1292 (void) hwif->ide_dma_timeout(drive);
1293 }
1294
1295 /*
1296 * disable dma for now, but remember that we did so because of
1297 * a timeout -- we'll reenable after we finish this next request
1298 * (or rather the first chunk of it) in pio.
1299 */
1300 drive->retry_pio++;
1301 drive->state = DMA_PIO_RETRY;
1302 (void) hwif->ide_dma_off_quietly(drive);
1303
1304 /*
1305 * un-busy drive etc (hwgroup->busy is cleared on return) and
1306 * make sure request is sane
1307 */
1308 rq = HWGROUP(drive)->rq;
1309 HWGROUP(drive)->rq = NULL;
1310
1311 rq->errors = 0;
1312
1313 if (!rq->bio)
1314 goto out;
1315
1316 rq->sector = rq->bio->bi_sector;
1317 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1318 rq->hard_cur_sectors = rq->current_nr_sectors;
1319 rq->buffer = bio_data(rq->bio);
1320 out:
1321 return ret;
1322 }
1323
1324 /**
1325 * ide_timer_expiry - handle lack of an IDE interrupt
1326 * @data: timer callback magic (hwgroup)
1327 *
1328 * An IDE command has timed out before the expected drive return
1329 * occurred. At this point we attempt to clean up the current
1330 * mess. If the current handler includes an expiry handler then
1331 * we invoke the expiry handler, and providing it is happy the
1332 * work is done. If that fails we apply generic recovery rules
1333 * invoking the handler and checking the drive DMA status. We
1334 * have an excessively incestuous relationship with the DMA
1335 * logic that wants cleaning up.
1336 */
1337
1338 void ide_timer_expiry (unsigned long data)
1339 {
1340 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1341 ide_handler_t *handler;
1342 ide_expiry_t *expiry;
1343 unsigned long flags;
1344 unsigned long wait = -1;
1345
1346 spin_lock_irqsave(&ide_lock, flags);
1347
1348 if ((handler = hwgroup->handler) == NULL) {
1349 /*
1350 * Either a marginal timeout occurred
1351 * (got the interrupt just as timer expired),
1352 * or we were "sleeping" to give other devices a chance.
1353 * Either way, we don't really want to complain about anything.
1354 */
1355 if (hwgroup->sleeping) {
1356 hwgroup->sleeping = 0;
1357 hwgroup->busy = 0;
1358 }
1359 } else {
1360 ide_drive_t *drive = hwgroup->drive;
1361 if (!drive) {
1362 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1363 hwgroup->handler = NULL;
1364 } else {
1365 ide_hwif_t *hwif;
1366 ide_startstop_t startstop = ide_stopped;
1367 if (!hwgroup->busy) {
1368 hwgroup->busy = 1; /* paranoia */
1369 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1370 }
1371 if ((expiry = hwgroup->expiry) != NULL) {
1372 /* continue */
1373 if ((wait = expiry(drive)) > 0) {
1374 /* reset timer */
1375 hwgroup->timer.expires = jiffies + wait;
1376 add_timer(&hwgroup->timer);
1377 spin_unlock_irqrestore(&ide_lock, flags);
1378 return;
1379 }
1380 }
1381 hwgroup->handler = NULL;
1382 /*
1383 * We need to simulate a real interrupt when invoking
1384 * the handler() function, which means we need to
1385 * globally mask the specific IRQ:
1386 */
1387 spin_unlock(&ide_lock);
1388 hwif = HWIF(drive);
1389 #if DISABLE_IRQ_NOSYNC
1390 disable_irq_nosync(hwif->irq);
1391 #else
1392 /* disable_irq_nosync ?? */
1393 disable_irq(hwif->irq);
1394 #endif /* DISABLE_IRQ_NOSYNC */
1395 /* local CPU only,
1396 * as if we were handling an interrupt */
1397 local_irq_disable();
1398 if (hwgroup->polling) {
1399 startstop = handler(drive);
1400 } else if (drive_is_ready(drive)) {
1401 if (drive->waiting_for_dma)
1402 (void) hwgroup->hwif->ide_dma_lostirq(drive);
1403 (void)ide_ack_intr(hwif);
1404 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1405 startstop = handler(drive);
1406 } else {
1407 if (drive->waiting_for_dma) {
1408 startstop = ide_dma_timeout_retry(drive, wait);
1409 } else
1410 startstop =
1411 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1412 }
1413 drive->service_time = jiffies - drive->service_start;
1414 spin_lock_irq(&ide_lock);
1415 enable_irq(hwif->irq);
1416 if (startstop == ide_stopped)
1417 hwgroup->busy = 0;
1418 }
1419 }
1420 ide_do_request(hwgroup, IDE_NO_IRQ);
1421 spin_unlock_irqrestore(&ide_lock, flags);
1422 }
1423
1424 /**
1425 * unexpected_intr - handle an unexpected IDE interrupt
1426 * @irq: interrupt line
1427 * @hwgroup: hwgroup being processed
1428 *
1429 * There's nothing really useful we can do with an unexpected interrupt,
1430 * other than reading the status register (to clear it), and logging it.
1431 * There should be no way that an irq can happen before we're ready for it,
1432 * so we needn't worry much about losing an "important" interrupt here.
1433 *
1434 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1435 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1436 * looks "good", we just ignore the interrupt completely.
1437 *
1438 * This routine assumes __cli() is in effect when called.
1439 *
1440 * If an unexpected interrupt happens on irq15 while we are handling irq14
1441 * and if the two interfaces are "serialized" (CMD640), then it looks like
1442 * we could screw up by interfering with a new request being set up for
1443 * irq15.
1444 *
1445 * In reality, this is a non-issue. The new command is not sent unless
1446 * the drive is ready to accept one, in which case we know the drive is
1447 * not trying to interrupt us. And ide_set_handler() is always invoked
1448 * before completing the issuance of any new drive command, so we will not
1449 * be accidentally invoked as a result of any valid command completion
1450 * interrupt.
1451 *
1452 * Note that we must walk the entire hwgroup here. We know which hwif
1453 * is doing the current command, but we don't know which hwif burped
1454 * mysteriously.
1455 */
1456
1457 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1458 {
1459 u8 stat;
1460 ide_hwif_t *hwif = hwgroup->hwif;
1461
1462 /*
1463 * handle the unexpected interrupt
1464 */
1465 do {
1466 if (hwif->irq == irq) {
1467 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1468 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1469 /* Try to not flood the console with msgs */
1470 static unsigned long last_msgtime, count;
1471 ++count;
1472 if (time_after(jiffies, last_msgtime + HZ)) {
1473 last_msgtime = jiffies;
1474 printk(KERN_ERR "%s%s: unexpected interrupt, "
1475 "status=0x%02x, count=%ld\n",
1476 hwif->name,
1477 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1478 }
1479 }
1480 }
1481 } while ((hwif = hwif->next) != hwgroup->hwif);
1482 }
1483
1484 /**
1485 * ide_intr - default IDE interrupt handler
1486 * @irq: interrupt number
1487 * @dev_id: hwif group
1488 * @regs: unused weirdness from the kernel irq layer
1489 *
1490 * This is the default IRQ handler for the IDE layer. You should
1491 * not need to override it. If you do be aware it is subtle in
1492 * places
1493 *
1494 * hwgroup->hwif is the interface in the group currently performing
1495 * a command. hwgroup->drive is the drive and hwgroup->handler is
1496 * the IRQ handler to call. As we issue a command the handlers
1497 * step through multiple states, reassigning the handler to the
1498 * next step in the process. Unlike a smart SCSI controller IDE
1499 * expects the main processor to sequence the various transfer
1500 * stages. We also manage a poll timer to catch up with most
1501 * timeout situations. There are still a few where the handlers
1502 * don't ever decide to give up.
1503 *
1504 * The handler eventually returns ide_stopped to indicate the
1505 * request completed. At this point we issue the next request
1506 * on the hwgroup and the process begins again.
1507 */
1508
1509 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1510 {
1511 unsigned long flags;
1512 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1513 ide_hwif_t *hwif;
1514 ide_drive_t *drive;
1515 ide_handler_t *handler;
1516 ide_startstop_t startstop;
1517
1518 spin_lock_irqsave(&ide_lock, flags);
1519 hwif = hwgroup->hwif;
1520
1521 if (!ide_ack_intr(hwif)) {
1522 spin_unlock_irqrestore(&ide_lock, flags);
1523 return IRQ_NONE;
1524 }
1525
1526 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1527 /*
1528 * Not expecting an interrupt from this drive.
1529 * That means this could be:
1530 * (1) an interrupt from another PCI device
1531 * sharing the same PCI INT# as us.
1532 * or (2) a drive just entered sleep or standby mode,
1533 * and is interrupting to let us know.
1534 * or (3) a spurious interrupt of unknown origin.
1535 *
1536 * For PCI, we cannot tell the difference,
1537 * so in that case we just ignore it and hope it goes away.
1538 *
1539 * FIXME: unexpected_intr should be hwif-> then we can
1540 * remove all the ifdef PCI crap
1541 */
1542 #ifdef CONFIG_BLK_DEV_IDEPCI
1543 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1544 #endif /* CONFIG_BLK_DEV_IDEPCI */
1545 {
1546 /*
1547 * Probably not a shared PCI interrupt,
1548 * so we can safely try to do something about it:
1549 */
1550 unexpected_intr(irq, hwgroup);
1551 #ifdef CONFIG_BLK_DEV_IDEPCI
1552 } else {
1553 /*
1554 * Whack the status register, just in case
1555 * we have a leftover pending IRQ.
1556 */
1557 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1558 #endif /* CONFIG_BLK_DEV_IDEPCI */
1559 }
1560 spin_unlock_irqrestore(&ide_lock, flags);
1561 return IRQ_NONE;
1562 }
1563 drive = hwgroup->drive;
1564 if (!drive) {
1565 /*
1566 * This should NEVER happen, and there isn't much
1567 * we could do about it here.
1568 *
1569 * [Note - this can occur if the drive is hot unplugged]
1570 */
1571 spin_unlock_irqrestore(&ide_lock, flags);
1572 return IRQ_HANDLED;
1573 }
1574 if (!drive_is_ready(drive)) {
1575 /*
1576 * This happens regularly when we share a PCI IRQ with
1577 * another device. Unfortunately, it can also happen
1578 * with some buggy drives that trigger the IRQ before
1579 * their status register is up to date. Hopefully we have
1580 * enough advance overhead that the latter isn't a problem.
1581 */
1582 spin_unlock_irqrestore(&ide_lock, flags);
1583 return IRQ_NONE;
1584 }
1585 if (!hwgroup->busy) {
1586 hwgroup->busy = 1; /* paranoia */
1587 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1588 }
1589 hwgroup->handler = NULL;
1590 del_timer(&hwgroup->timer);
1591 spin_unlock(&ide_lock);
1592
1593 if (drive->unmask)
1594 local_irq_enable();
1595 /* service this interrupt, may set handler for next interrupt */
1596 startstop = handler(drive);
1597 spin_lock_irq(&ide_lock);
1598
1599 /*
1600 * Note that handler() may have set things up for another
1601 * interrupt to occur soon, but it cannot happen until
1602 * we exit from this routine, because it will be the
1603 * same irq as is currently being serviced here, and Linux
1604 * won't allow another of the same (on any CPU) until we return.
1605 */
1606 drive->service_time = jiffies - drive->service_start;
1607 if (startstop == ide_stopped) {
1608 if (hwgroup->handler == NULL) { /* paranoia */
1609 hwgroup->busy = 0;
1610 ide_do_request(hwgroup, hwif->irq);
1611 } else {
1612 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1613 "on exit\n", drive->name);
1614 }
1615 }
1616 spin_unlock_irqrestore(&ide_lock, flags);
1617 return IRQ_HANDLED;
1618 }
1619
1620 /**
1621 * ide_init_drive_cmd - initialize a drive command request
1622 * @rq: request object
1623 *
1624 * Initialize a request before we fill it in and send it down to
1625 * ide_do_drive_cmd. Commands must be set up by this function. Right
1626 * now it doesn't do a lot, but if that changes abusers will have a
1627 * nasty suprise.
1628 */
1629
1630 void ide_init_drive_cmd (struct request *rq)
1631 {
1632 memset(rq, 0, sizeof(*rq));
1633 rq->flags = REQ_DRIVE_CMD;
1634 rq->ref_count = 1;
1635 }
1636
1637 EXPORT_SYMBOL(ide_init_drive_cmd);
1638
1639 /**
1640 * ide_do_drive_cmd - issue IDE special command
1641 * @drive: device to issue command
1642 * @rq: request to issue
1643 * @action: action for processing
1644 *
1645 * This function issues a special IDE device request
1646 * onto the request queue.
1647 *
1648 * If action is ide_wait, then the rq is queued at the end of the
1649 * request queue, and the function sleeps until it has been processed.
1650 * This is for use when invoked from an ioctl handler.
1651 *
1652 * If action is ide_preempt, then the rq is queued at the head of
1653 * the request queue, displacing the currently-being-processed
1654 * request and this function returns immediately without waiting
1655 * for the new rq to be completed. This is VERY DANGEROUS, and is
1656 * intended for careful use by the ATAPI tape/cdrom driver code.
1657 *
1658 * If action is ide_end, then the rq is queued at the end of the
1659 * request queue, and the function returns immediately without waiting
1660 * for the new rq to be completed. This is again intended for careful
1661 * use by the ATAPI tape/cdrom driver code.
1662 */
1663
1664 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1665 {
1666 unsigned long flags;
1667 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1668 DECLARE_COMPLETION(wait);
1669 int where = ELEVATOR_INSERT_BACK, err;
1670 int must_wait = (action == ide_wait || action == ide_head_wait);
1671
1672 rq->errors = 0;
1673 rq->rq_status = RQ_ACTIVE;
1674
1675 /*
1676 * we need to hold an extra reference to request for safe inspection
1677 * after completion
1678 */
1679 if (must_wait) {
1680 rq->ref_count++;
1681 rq->waiting = &wait;
1682 rq->end_io = blk_end_sync_rq;
1683 }
1684
1685 spin_lock_irqsave(&ide_lock, flags);
1686 if (action == ide_preempt)
1687 hwgroup->rq = NULL;
1688 if (action == ide_preempt || action == ide_head_wait) {
1689 where = ELEVATOR_INSERT_FRONT;
1690 rq->flags |= REQ_PREEMPT;
1691 }
1692 __elv_add_request(drive->queue, rq, where, 0);
1693 ide_do_request(hwgroup, IDE_NO_IRQ);
1694 spin_unlock_irqrestore(&ide_lock, flags);
1695
1696 err = 0;
1697 if (must_wait) {
1698 wait_for_completion(&wait);
1699 rq->waiting = NULL;
1700 if (rq->errors)
1701 err = -EIO;
1702
1703 blk_put_request(rq);
1704 }
1705
1706 return err;
1707 }
1708
1709 EXPORT_SYMBOL(ide_do_drive_cmd);