]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ide/ide-io.c
Pull cpumask into release branch
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76 struct ide_taskfile *tf = &cmd->tf;
77 struct request *rq = cmd->rq;
78 u8 tf_cmd = tf->command;
79
80 tf->error = err;
81 tf->status = stat;
82
83 drive->hwif->tp_ops->tf_read(drive, cmd);
84
85 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
86 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
87 if (tf->lbal != 0xc4) {
88 printk(KERN_ERR "%s: head unload failed!\n",
89 drive->name);
90 ide_tf_dump(drive->name, tf);
91 } else
92 drive->dev_flags |= IDE_DFLAG_PARKED;
93 }
94
95 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
96 memcpy(rq->special, cmd, sizeof(*cmd));
97
98 if (cmd->tf_flags & IDE_TFLAG_DYN)
99 kfree(cmd);
100 }
101
102 /* obsolete, blk_rq_bytes() should be used instead */
103 unsigned int ide_rq_bytes(struct request *rq)
104 {
105 if (blk_pc_request(rq))
106 return rq->data_len;
107 else
108 return rq->hard_cur_sectors << 9;
109 }
110 EXPORT_SYMBOL_GPL(ide_rq_bytes);
111
112 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
113 {
114 ide_hwif_t *hwif = drive->hwif;
115 struct request *rq = hwif->rq;
116 int rc;
117
118 /*
119 * if failfast is set on a request, override number of sectors
120 * and complete the whole request right now
121 */
122 if (blk_noretry_request(rq) && error <= 0)
123 nr_bytes = rq->hard_nr_sectors << 9;
124
125 rc = ide_end_rq(drive, rq, error, nr_bytes);
126 if (rc == 0)
127 hwif->rq = NULL;
128
129 return rc;
130 }
131 EXPORT_SYMBOL(ide_complete_rq);
132
133 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
134 {
135 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
136 u8 media = drive->media;
137
138 drive->failed_pc = NULL;
139
140 if ((media == ide_floppy || media == ide_tape) && drv_req) {
141 rq->errors = 0;
142 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
143 } else {
144 if (media == ide_tape)
145 rq->errors = IDE_DRV_ERROR_GENERAL;
146 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
147 rq->errors = -EIO;
148 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
149 }
150 }
151
152 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
153 {
154 tf->nsect = drive->sect;
155 tf->lbal = drive->sect;
156 tf->lbam = drive->cyl;
157 tf->lbah = drive->cyl >> 8;
158 tf->device = (drive->head - 1) | drive->select;
159 tf->command = ATA_CMD_INIT_DEV_PARAMS;
160 }
161
162 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
163 {
164 tf->nsect = drive->sect;
165 tf->command = ATA_CMD_RESTORE;
166 }
167
168 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
169 {
170 tf->nsect = drive->mult_req;
171 tf->command = ATA_CMD_SET_MULTI;
172 }
173
174 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
175 {
176 special_t *s = &drive->special;
177 struct ide_cmd cmd;
178
179 memset(&cmd, 0, sizeof(cmd));
180 cmd.protocol = ATA_PROT_NODATA;
181
182 if (s->b.set_geometry) {
183 s->b.set_geometry = 0;
184 ide_tf_set_specify_cmd(drive, &cmd.tf);
185 } else if (s->b.recalibrate) {
186 s->b.recalibrate = 0;
187 ide_tf_set_restore_cmd(drive, &cmd.tf);
188 } else if (s->b.set_multmode) {
189 s->b.set_multmode = 0;
190 ide_tf_set_setmult_cmd(drive, &cmd.tf);
191 } else if (s->all) {
192 int special = s->all;
193 s->all = 0;
194 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
195 return ide_stopped;
196 }
197
198 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
199 IDE_TFLAG_CUSTOM_HANDLER;
200
201 do_rw_taskfile(drive, &cmd);
202
203 return ide_started;
204 }
205
206 /**
207 * do_special - issue some special commands
208 * @drive: drive the command is for
209 *
210 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
211 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
212 *
213 * It used to do much more, but has been scaled back.
214 */
215
216 static ide_startstop_t do_special (ide_drive_t *drive)
217 {
218 special_t *s = &drive->special;
219
220 #ifdef DEBUG
221 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
222 #endif
223 if (drive->media == ide_disk)
224 return ide_disk_special(drive);
225
226 s->all = 0;
227 drive->mult_req = 0;
228 return ide_stopped;
229 }
230
231 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
232 {
233 ide_hwif_t *hwif = drive->hwif;
234 struct scatterlist *sg = hwif->sg_table;
235 struct request *rq = cmd->rq;
236
237 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
238 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
239 cmd->sg_nents = 1;
240 } else if (!rq->bio) {
241 sg_init_one(sg, rq->data, rq->data_len);
242 cmd->sg_nents = 1;
243 } else
244 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
245 }
246 EXPORT_SYMBOL_GPL(ide_map_sg);
247
248 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
249 {
250 cmd->nbytes = cmd->nleft = nr_bytes;
251 cmd->cursg_ofs = 0;
252 cmd->cursg = NULL;
253 }
254 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
255
256 /**
257 * execute_drive_command - issue special drive command
258 * @drive: the drive to issue the command on
259 * @rq: the request structure holding the command
260 *
261 * execute_drive_cmd() issues a special drive command, usually
262 * initiated by ioctl() from the external hdparm program. The
263 * command can be a drive command, drive task or taskfile
264 * operation. Weirdly you can call it with NULL to wait for
265 * all commands to finish. Don't do this as that is due to change
266 */
267
268 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
269 struct request *rq)
270 {
271 struct ide_cmd *cmd = rq->special;
272
273 if (cmd) {
274 if (cmd->protocol == ATA_PROT_PIO) {
275 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
276 ide_map_sg(drive, cmd);
277 }
278
279 return do_rw_taskfile(drive, cmd);
280 }
281
282 /*
283 * NULL is actually a valid way of waiting for
284 * all current requests to be flushed from the queue.
285 */
286 #ifdef DEBUG
287 printk("%s: DRIVE_CMD (null)\n", drive->name);
288 #endif
289 rq->errors = 0;
290 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
291
292 return ide_stopped;
293 }
294
295 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
296 {
297 u8 cmd = rq->cmd[0];
298
299 switch (cmd) {
300 case REQ_PARK_HEADS:
301 case REQ_UNPARK_HEADS:
302 return ide_do_park_unpark(drive, rq);
303 case REQ_DEVSET_EXEC:
304 return ide_do_devset(drive, rq);
305 case REQ_DRIVE_RESET:
306 return ide_do_reset(drive);
307 default:
308 BUG();
309 }
310 }
311
312 /**
313 * start_request - start of I/O and command issuing for IDE
314 *
315 * start_request() initiates handling of a new I/O request. It
316 * accepts commands and I/O (read/write) requests.
317 *
318 * FIXME: this function needs a rename
319 */
320
321 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
322 {
323 ide_startstop_t startstop;
324
325 BUG_ON(!blk_rq_started(rq));
326
327 #ifdef DEBUG
328 printk("%s: start_request: current=0x%08lx\n",
329 drive->hwif->name, (unsigned long) rq);
330 #endif
331
332 /* bail early if we've exceeded max_failures */
333 if (drive->max_failures && (drive->failures > drive->max_failures)) {
334 rq->cmd_flags |= REQ_FAILED;
335 goto kill_rq;
336 }
337
338 if (blk_pm_request(rq))
339 ide_check_pm_state(drive, rq);
340
341 SELECT_DRIVE(drive);
342 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
343 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
344 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
345 return startstop;
346 }
347 if (!drive->special.all) {
348 struct ide_driver *drv;
349
350 /*
351 * We reset the drive so we need to issue a SETFEATURES.
352 * Do it _after_ do_special() restored device parameters.
353 */
354 if (drive->current_speed == 0xff)
355 ide_config_drive_speed(drive, drive->desired_speed);
356
357 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
358 return execute_drive_cmd(drive, rq);
359 else if (blk_pm_request(rq)) {
360 struct request_pm_state *pm = rq->data;
361 #ifdef DEBUG_PM
362 printk("%s: start_power_step(step: %d)\n",
363 drive->name, pm->pm_step);
364 #endif
365 startstop = ide_start_power_step(drive, rq);
366 if (startstop == ide_stopped &&
367 pm->pm_step == IDE_PM_COMPLETED)
368 ide_complete_pm_rq(drive, rq);
369 return startstop;
370 } else if (!rq->rq_disk && blk_special_request(rq))
371 /*
372 * TODO: Once all ULDs have been modified to
373 * check for specific op codes rather than
374 * blindly accepting any special request, the
375 * check for ->rq_disk above may be replaced
376 * by a more suitable mechanism or even
377 * dropped entirely.
378 */
379 return ide_special_rq(drive, rq);
380
381 drv = *(struct ide_driver **)rq->rq_disk->private_data;
382
383 return drv->do_request(drive, rq, rq->sector);
384 }
385 return do_special(drive);
386 kill_rq:
387 ide_kill_rq(drive, rq);
388 return ide_stopped;
389 }
390
391 /**
392 * ide_stall_queue - pause an IDE device
393 * @drive: drive to stall
394 * @timeout: time to stall for (jiffies)
395 *
396 * ide_stall_queue() can be used by a drive to give excess bandwidth back
397 * to the port by sleeping for timeout jiffies.
398 */
399
400 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
401 {
402 if (timeout > WAIT_WORSTCASE)
403 timeout = WAIT_WORSTCASE;
404 drive->sleep = timeout + jiffies;
405 drive->dev_flags |= IDE_DFLAG_SLEEPING;
406 }
407 EXPORT_SYMBOL(ide_stall_queue);
408
409 static inline int ide_lock_port(ide_hwif_t *hwif)
410 {
411 if (hwif->busy)
412 return 1;
413
414 hwif->busy = 1;
415
416 return 0;
417 }
418
419 static inline void ide_unlock_port(ide_hwif_t *hwif)
420 {
421 hwif->busy = 0;
422 }
423
424 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
425 {
426 int rc = 0;
427
428 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
429 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
430 if (rc == 0) {
431 if (host->get_lock)
432 host->get_lock(ide_intr, hwif);
433 }
434 }
435 return rc;
436 }
437
438 static inline void ide_unlock_host(struct ide_host *host)
439 {
440 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
441 if (host->release_lock)
442 host->release_lock();
443 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
444 }
445 }
446
447 /*
448 * Issue a new request to a device.
449 */
450 void do_ide_request(struct request_queue *q)
451 {
452 ide_drive_t *drive = q->queuedata;
453 ide_hwif_t *hwif = drive->hwif;
454 struct ide_host *host = hwif->host;
455 struct request *rq = NULL;
456 ide_startstop_t startstop;
457
458 /*
459 * drive is doing pre-flush, ordered write, post-flush sequence. even
460 * though that is 3 requests, it must be seen as a single transaction.
461 * we must not preempt this drive until that is complete
462 */
463 if (blk_queue_flushing(q))
464 /*
465 * small race where queue could get replugged during
466 * the 3-request flush cycle, just yank the plug since
467 * we want it to finish asap
468 */
469 blk_remove_plug(q);
470
471 spin_unlock_irq(q->queue_lock);
472
473 if (ide_lock_host(host, hwif))
474 goto plug_device_2;
475
476 spin_lock_irq(&hwif->lock);
477
478 if (!ide_lock_port(hwif)) {
479 ide_hwif_t *prev_port;
480 repeat:
481 prev_port = hwif->host->cur_port;
482 hwif->rq = NULL;
483
484 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
485 if (time_before(drive->sleep, jiffies)) {
486 ide_unlock_port(hwif);
487 goto plug_device;
488 }
489 }
490
491 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
492 hwif != prev_port) {
493 /*
494 * set nIEN for previous port, drives in the
495 * quirk_list may not like intr setups/cleanups
496 */
497 if (prev_port && prev_port->cur_dev->quirk_list == 0)
498 prev_port->tp_ops->set_irq(prev_port, 0);
499
500 hwif->host->cur_port = hwif;
501 }
502 hwif->cur_dev = drive;
503 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
504
505 spin_unlock_irq(&hwif->lock);
506 spin_lock_irq(q->queue_lock);
507 /*
508 * we know that the queue isn't empty, but this can happen
509 * if the q->prep_rq_fn() decides to kill a request
510 */
511 rq = elv_next_request(drive->queue);
512 spin_unlock_irq(q->queue_lock);
513 spin_lock_irq(&hwif->lock);
514
515 if (!rq) {
516 ide_unlock_port(hwif);
517 goto out;
518 }
519
520 /*
521 * Sanity: don't accept a request that isn't a PM request
522 * if we are currently power managed. This is very important as
523 * blk_stop_queue() doesn't prevent the elv_next_request()
524 * above to return us whatever is in the queue. Since we call
525 * ide_do_request() ourselves, we end up taking requests while
526 * the queue is blocked...
527 *
528 * We let requests forced at head of queue with ide-preempt
529 * though. I hope that doesn't happen too much, hopefully not
530 * unless the subdriver triggers such a thing in its own PM
531 * state machine.
532 */
533 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
534 blk_pm_request(rq) == 0 &&
535 (rq->cmd_flags & REQ_PREEMPT) == 0) {
536 /* there should be no pending command at this point */
537 ide_unlock_port(hwif);
538 goto plug_device;
539 }
540
541 hwif->rq = rq;
542
543 spin_unlock_irq(&hwif->lock);
544 startstop = start_request(drive, rq);
545 spin_lock_irq(&hwif->lock);
546
547 if (startstop == ide_stopped)
548 goto repeat;
549 } else
550 goto plug_device;
551 out:
552 spin_unlock_irq(&hwif->lock);
553 if (rq == NULL)
554 ide_unlock_host(host);
555 spin_lock_irq(q->queue_lock);
556 return;
557
558 plug_device:
559 spin_unlock_irq(&hwif->lock);
560 ide_unlock_host(host);
561 plug_device_2:
562 spin_lock_irq(q->queue_lock);
563
564 if (!elv_queue_empty(q))
565 blk_plug_device(q);
566 }
567
568 static void ide_plug_device(ide_drive_t *drive)
569 {
570 struct request_queue *q = drive->queue;
571 unsigned long flags;
572
573 spin_lock_irqsave(q->queue_lock, flags);
574 if (!elv_queue_empty(q))
575 blk_plug_device(q);
576 spin_unlock_irqrestore(q->queue_lock, flags);
577 }
578
579 static int drive_is_ready(ide_drive_t *drive)
580 {
581 ide_hwif_t *hwif = drive->hwif;
582 u8 stat = 0;
583
584 if (drive->waiting_for_dma)
585 return hwif->dma_ops->dma_test_irq(drive);
586
587 if (hwif->io_ports.ctl_addr &&
588 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
589 stat = hwif->tp_ops->read_altstatus(hwif);
590 else
591 /* Note: this may clear a pending IRQ!! */
592 stat = hwif->tp_ops->read_status(hwif);
593
594 if (stat & ATA_BUSY)
595 /* drive busy: definitely not interrupting */
596 return 0;
597
598 /* drive ready: *might* be interrupting */
599 return 1;
600 }
601
602 /**
603 * ide_timer_expiry - handle lack of an IDE interrupt
604 * @data: timer callback magic (hwif)
605 *
606 * An IDE command has timed out before the expected drive return
607 * occurred. At this point we attempt to clean up the current
608 * mess. If the current handler includes an expiry handler then
609 * we invoke the expiry handler, and providing it is happy the
610 * work is done. If that fails we apply generic recovery rules
611 * invoking the handler and checking the drive DMA status. We
612 * have an excessively incestuous relationship with the DMA
613 * logic that wants cleaning up.
614 */
615
616 void ide_timer_expiry (unsigned long data)
617 {
618 ide_hwif_t *hwif = (ide_hwif_t *)data;
619 ide_drive_t *uninitialized_var(drive);
620 ide_handler_t *handler;
621 unsigned long flags;
622 int wait = -1;
623 int plug_device = 0;
624
625 spin_lock_irqsave(&hwif->lock, flags);
626
627 handler = hwif->handler;
628
629 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
630 /*
631 * Either a marginal timeout occurred
632 * (got the interrupt just as timer expired),
633 * or we were "sleeping" to give other devices a chance.
634 * Either way, we don't really want to complain about anything.
635 */
636 } else {
637 ide_expiry_t *expiry = hwif->expiry;
638 ide_startstop_t startstop = ide_stopped;
639
640 drive = hwif->cur_dev;
641
642 if (expiry) {
643 wait = expiry(drive);
644 if (wait > 0) { /* continue */
645 /* reset timer */
646 hwif->timer.expires = jiffies + wait;
647 hwif->req_gen_timer = hwif->req_gen;
648 add_timer(&hwif->timer);
649 spin_unlock_irqrestore(&hwif->lock, flags);
650 return;
651 }
652 }
653 hwif->handler = NULL;
654 hwif->expiry = NULL;
655 /*
656 * We need to simulate a real interrupt when invoking
657 * the handler() function, which means we need to
658 * globally mask the specific IRQ:
659 */
660 spin_unlock(&hwif->lock);
661 /* disable_irq_nosync ?? */
662 disable_irq(hwif->irq);
663 /* local CPU only, as if we were handling an interrupt */
664 local_irq_disable();
665 if (hwif->polling) {
666 startstop = handler(drive);
667 } else if (drive_is_ready(drive)) {
668 if (drive->waiting_for_dma)
669 hwif->dma_ops->dma_lost_irq(drive);
670 if (hwif->ack_intr)
671 hwif->ack_intr(hwif);
672 printk(KERN_WARNING "%s: lost interrupt\n",
673 drive->name);
674 startstop = handler(drive);
675 } else {
676 if (drive->waiting_for_dma)
677 startstop = ide_dma_timeout_retry(drive, wait);
678 else
679 startstop = ide_error(drive, "irq timeout",
680 hwif->tp_ops->read_status(hwif));
681 }
682 spin_lock_irq(&hwif->lock);
683 enable_irq(hwif->irq);
684 if (startstop == ide_stopped) {
685 ide_unlock_port(hwif);
686 plug_device = 1;
687 }
688 }
689 spin_unlock_irqrestore(&hwif->lock, flags);
690
691 if (plug_device) {
692 ide_unlock_host(hwif->host);
693 ide_plug_device(drive);
694 }
695 }
696
697 /**
698 * unexpected_intr - handle an unexpected IDE interrupt
699 * @irq: interrupt line
700 * @hwif: port being processed
701 *
702 * There's nothing really useful we can do with an unexpected interrupt,
703 * other than reading the status register (to clear it), and logging it.
704 * There should be no way that an irq can happen before we're ready for it,
705 * so we needn't worry much about losing an "important" interrupt here.
706 *
707 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
708 * the drive enters "idle", "standby", or "sleep" mode, so if the status
709 * looks "good", we just ignore the interrupt completely.
710 *
711 * This routine assumes __cli() is in effect when called.
712 *
713 * If an unexpected interrupt happens on irq15 while we are handling irq14
714 * and if the two interfaces are "serialized" (CMD640), then it looks like
715 * we could screw up by interfering with a new request being set up for
716 * irq15.
717 *
718 * In reality, this is a non-issue. The new command is not sent unless
719 * the drive is ready to accept one, in which case we know the drive is
720 * not trying to interrupt us. And ide_set_handler() is always invoked
721 * before completing the issuance of any new drive command, so we will not
722 * be accidentally invoked as a result of any valid command completion
723 * interrupt.
724 */
725
726 static void unexpected_intr(int irq, ide_hwif_t *hwif)
727 {
728 u8 stat = hwif->tp_ops->read_status(hwif);
729
730 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
731 /* Try to not flood the console with msgs */
732 static unsigned long last_msgtime, count;
733 ++count;
734
735 if (time_after(jiffies, last_msgtime + HZ)) {
736 last_msgtime = jiffies;
737 printk(KERN_ERR "%s: unexpected interrupt, "
738 "status=0x%02x, count=%ld\n",
739 hwif->name, stat, count);
740 }
741 }
742 }
743
744 /**
745 * ide_intr - default IDE interrupt handler
746 * @irq: interrupt number
747 * @dev_id: hwif
748 * @regs: unused weirdness from the kernel irq layer
749 *
750 * This is the default IRQ handler for the IDE layer. You should
751 * not need to override it. If you do be aware it is subtle in
752 * places
753 *
754 * hwif is the interface in the group currently performing
755 * a command. hwif->cur_dev is the drive and hwif->handler is
756 * the IRQ handler to call. As we issue a command the handlers
757 * step through multiple states, reassigning the handler to the
758 * next step in the process. Unlike a smart SCSI controller IDE
759 * expects the main processor to sequence the various transfer
760 * stages. We also manage a poll timer to catch up with most
761 * timeout situations. There are still a few where the handlers
762 * don't ever decide to give up.
763 *
764 * The handler eventually returns ide_stopped to indicate the
765 * request completed. At this point we issue the next request
766 * on the port and the process begins again.
767 */
768
769 irqreturn_t ide_intr (int irq, void *dev_id)
770 {
771 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
772 struct ide_host *host = hwif->host;
773 ide_drive_t *uninitialized_var(drive);
774 ide_handler_t *handler;
775 unsigned long flags;
776 ide_startstop_t startstop;
777 irqreturn_t irq_ret = IRQ_NONE;
778 int plug_device = 0;
779
780 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
781 if (hwif != host->cur_port)
782 goto out_early;
783 }
784
785 spin_lock_irqsave(&hwif->lock, flags);
786
787 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
788 goto out;
789
790 handler = hwif->handler;
791
792 if (handler == NULL || hwif->polling) {
793 /*
794 * Not expecting an interrupt from this drive.
795 * That means this could be:
796 * (1) an interrupt from another PCI device
797 * sharing the same PCI INT# as us.
798 * or (2) a drive just entered sleep or standby mode,
799 * and is interrupting to let us know.
800 * or (3) a spurious interrupt of unknown origin.
801 *
802 * For PCI, we cannot tell the difference,
803 * so in that case we just ignore it and hope it goes away.
804 */
805 if ((host->irq_flags & IRQF_SHARED) == 0) {
806 /*
807 * Probably not a shared PCI interrupt,
808 * so we can safely try to do something about it:
809 */
810 unexpected_intr(irq, hwif);
811 } else {
812 /*
813 * Whack the status register, just in case
814 * we have a leftover pending IRQ.
815 */
816 (void)hwif->tp_ops->read_status(hwif);
817 }
818 goto out;
819 }
820
821 drive = hwif->cur_dev;
822
823 if (!drive_is_ready(drive))
824 /*
825 * This happens regularly when we share a PCI IRQ with
826 * another device. Unfortunately, it can also happen
827 * with some buggy drives that trigger the IRQ before
828 * their status register is up to date. Hopefully we have
829 * enough advance overhead that the latter isn't a problem.
830 */
831 goto out;
832
833 hwif->handler = NULL;
834 hwif->expiry = NULL;
835 hwif->req_gen++;
836 del_timer(&hwif->timer);
837 spin_unlock(&hwif->lock);
838
839 if (hwif->port_ops && hwif->port_ops->clear_irq)
840 hwif->port_ops->clear_irq(drive);
841
842 if (drive->dev_flags & IDE_DFLAG_UNMASK)
843 local_irq_enable_in_hardirq();
844
845 /* service this interrupt, may set handler for next interrupt */
846 startstop = handler(drive);
847
848 spin_lock_irq(&hwif->lock);
849 /*
850 * Note that handler() may have set things up for another
851 * interrupt to occur soon, but it cannot happen until
852 * we exit from this routine, because it will be the
853 * same irq as is currently being serviced here, and Linux
854 * won't allow another of the same (on any CPU) until we return.
855 */
856 if (startstop == ide_stopped) {
857 BUG_ON(hwif->handler);
858 ide_unlock_port(hwif);
859 plug_device = 1;
860 }
861 irq_ret = IRQ_HANDLED;
862 out:
863 spin_unlock_irqrestore(&hwif->lock, flags);
864 out_early:
865 if (plug_device) {
866 ide_unlock_host(hwif->host);
867 ide_plug_device(drive);
868 }
869
870 return irq_ret;
871 }
872 EXPORT_SYMBOL_GPL(ide_intr);
873
874 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
875 {
876 ide_hwif_t *hwif = drive->hwif;
877 u8 buf[4] = { 0 };
878
879 while (len > 0) {
880 if (write)
881 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
882 else
883 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
884 len -= 4;
885 }
886 }
887 EXPORT_SYMBOL_GPL(ide_pad_transfer);