]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ide/ide-io.c
Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
80
81 tf->error = err;
82 tf->status = stat;
83
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 u8 data[2];
86
87 tp_ops->input_data(drive, cmd, data, 2);
88
89 tf->data = data[0];
90 tf->hob_data = data[1];
91 }
92
93 tp_ops->tf_read(drive, cmd);
94
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
99 drive->name);
100 ide_tf_dump(drive->name, tf);
101 } else
102 drive->dev_flags |= IDE_DFLAG_PARKED;
103 }
104
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
106 memcpy(rq->special, cmd, sizeof(*cmd));
107
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
109 kfree(cmd);
110 }
111
112 /* obsolete, blk_rq_bytes() should be used instead */
113 unsigned int ide_rq_bytes(struct request *rq)
114 {
115 if (blk_pc_request(rq))
116 return rq->data_len;
117 else
118 return rq->hard_cur_sectors << 9;
119 }
120 EXPORT_SYMBOL_GPL(ide_rq_bytes);
121
122 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
123 {
124 ide_hwif_t *hwif = drive->hwif;
125 struct request *rq = hwif->rq;
126 int rc;
127
128 /*
129 * if failfast is set on a request, override number of sectors
130 * and complete the whole request right now
131 */
132 if (blk_noretry_request(rq) && error <= 0)
133 nr_bytes = rq->hard_nr_sectors << 9;
134
135 rc = ide_end_rq(drive, rq, error, nr_bytes);
136 if (rc == 0)
137 hwif->rq = NULL;
138
139 return rc;
140 }
141 EXPORT_SYMBOL(ide_complete_rq);
142
143 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
144 {
145 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
146 u8 media = drive->media;
147
148 drive->failed_pc = NULL;
149
150 if ((media == ide_floppy || media == ide_tape) && drv_req) {
151 rq->errors = 0;
152 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
153 } else {
154 if (media == ide_tape)
155 rq->errors = IDE_DRV_ERROR_GENERAL;
156 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
157 rq->errors = -EIO;
158 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
159 }
160 }
161
162 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
163 {
164 tf->nsect = drive->sect;
165 tf->lbal = drive->sect;
166 tf->lbam = drive->cyl;
167 tf->lbah = drive->cyl >> 8;
168 tf->device = (drive->head - 1) | drive->select;
169 tf->command = ATA_CMD_INIT_DEV_PARAMS;
170 }
171
172 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
173 {
174 tf->nsect = drive->sect;
175 tf->command = ATA_CMD_RESTORE;
176 }
177
178 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
179 {
180 tf->nsect = drive->mult_req;
181 tf->command = ATA_CMD_SET_MULTI;
182 }
183
184 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
185 {
186 special_t *s = &drive->special;
187 struct ide_cmd cmd;
188
189 memset(&cmd, 0, sizeof(cmd));
190 cmd.protocol = ATA_PROT_NODATA;
191
192 if (s->b.set_geometry) {
193 s->b.set_geometry = 0;
194 ide_tf_set_specify_cmd(drive, &cmd.tf);
195 } else if (s->b.recalibrate) {
196 s->b.recalibrate = 0;
197 ide_tf_set_restore_cmd(drive, &cmd.tf);
198 } else if (s->b.set_multmode) {
199 s->b.set_multmode = 0;
200 ide_tf_set_setmult_cmd(drive, &cmd.tf);
201 } else if (s->all) {
202 int special = s->all;
203 s->all = 0;
204 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
205 return ide_stopped;
206 }
207
208 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
209 IDE_TFLAG_CUSTOM_HANDLER;
210
211 do_rw_taskfile(drive, &cmd);
212
213 return ide_started;
214 }
215
216 /**
217 * do_special - issue some special commands
218 * @drive: drive the command is for
219 *
220 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
221 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
222 *
223 * It used to do much more, but has been scaled back.
224 */
225
226 static ide_startstop_t do_special (ide_drive_t *drive)
227 {
228 special_t *s = &drive->special;
229
230 #ifdef DEBUG
231 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
232 #endif
233 if (drive->media == ide_disk)
234 return ide_disk_special(drive);
235
236 s->all = 0;
237 drive->mult_req = 0;
238 return ide_stopped;
239 }
240
241 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
242 {
243 ide_hwif_t *hwif = drive->hwif;
244 struct scatterlist *sg = hwif->sg_table;
245 struct request *rq = cmd->rq;
246
247 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
248 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
249 cmd->sg_nents = 1;
250 } else if (!rq->bio) {
251 sg_init_one(sg, rq->data, rq->data_len);
252 cmd->sg_nents = 1;
253 } else
254 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
255 }
256 EXPORT_SYMBOL_GPL(ide_map_sg);
257
258 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
259 {
260 cmd->nbytes = cmd->nleft = nr_bytes;
261 cmd->cursg_ofs = 0;
262 cmd->cursg = NULL;
263 }
264 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
265
266 /**
267 * execute_drive_command - issue special drive command
268 * @drive: the drive to issue the command on
269 * @rq: the request structure holding the command
270 *
271 * execute_drive_cmd() issues a special drive command, usually
272 * initiated by ioctl() from the external hdparm program. The
273 * command can be a drive command, drive task or taskfile
274 * operation. Weirdly you can call it with NULL to wait for
275 * all commands to finish. Don't do this as that is due to change
276 */
277
278 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
279 struct request *rq)
280 {
281 struct ide_cmd *cmd = rq->special;
282
283 if (cmd) {
284 if (cmd->protocol == ATA_PROT_PIO) {
285 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
286 ide_map_sg(drive, cmd);
287 }
288
289 return do_rw_taskfile(drive, cmd);
290 }
291
292 /*
293 * NULL is actually a valid way of waiting for
294 * all current requests to be flushed from the queue.
295 */
296 #ifdef DEBUG
297 printk("%s: DRIVE_CMD (null)\n", drive->name);
298 #endif
299 rq->errors = 0;
300 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
301
302 return ide_stopped;
303 }
304
305 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
306 {
307 u8 cmd = rq->cmd[0];
308
309 switch (cmd) {
310 case REQ_PARK_HEADS:
311 case REQ_UNPARK_HEADS:
312 return ide_do_park_unpark(drive, rq);
313 case REQ_DEVSET_EXEC:
314 return ide_do_devset(drive, rq);
315 case REQ_DRIVE_RESET:
316 return ide_do_reset(drive);
317 default:
318 BUG();
319 }
320 }
321
322 /**
323 * start_request - start of I/O and command issuing for IDE
324 *
325 * start_request() initiates handling of a new I/O request. It
326 * accepts commands and I/O (read/write) requests.
327 *
328 * FIXME: this function needs a rename
329 */
330
331 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
332 {
333 ide_startstop_t startstop;
334
335 BUG_ON(!blk_rq_started(rq));
336
337 #ifdef DEBUG
338 printk("%s: start_request: current=0x%08lx\n",
339 drive->hwif->name, (unsigned long) rq);
340 #endif
341
342 /* bail early if we've exceeded max_failures */
343 if (drive->max_failures && (drive->failures > drive->max_failures)) {
344 rq->cmd_flags |= REQ_FAILED;
345 goto kill_rq;
346 }
347
348 if (blk_pm_request(rq))
349 ide_check_pm_state(drive, rq);
350
351 drive->hwif->tp_ops->dev_select(drive);
352 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
353 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
354 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
355 return startstop;
356 }
357 if (!drive->special.all) {
358 struct ide_driver *drv;
359
360 /*
361 * We reset the drive so we need to issue a SETFEATURES.
362 * Do it _after_ do_special() restored device parameters.
363 */
364 if (drive->current_speed == 0xff)
365 ide_config_drive_speed(drive, drive->desired_speed);
366
367 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
368 return execute_drive_cmd(drive, rq);
369 else if (blk_pm_request(rq)) {
370 struct request_pm_state *pm = rq->data;
371 #ifdef DEBUG_PM
372 printk("%s: start_power_step(step: %d)\n",
373 drive->name, pm->pm_step);
374 #endif
375 startstop = ide_start_power_step(drive, rq);
376 if (startstop == ide_stopped &&
377 pm->pm_step == IDE_PM_COMPLETED)
378 ide_complete_pm_rq(drive, rq);
379 return startstop;
380 } else if (!rq->rq_disk && blk_special_request(rq))
381 /*
382 * TODO: Once all ULDs have been modified to
383 * check for specific op codes rather than
384 * blindly accepting any special request, the
385 * check for ->rq_disk above may be replaced
386 * by a more suitable mechanism or even
387 * dropped entirely.
388 */
389 return ide_special_rq(drive, rq);
390
391 drv = *(struct ide_driver **)rq->rq_disk->private_data;
392
393 return drv->do_request(drive, rq, rq->sector);
394 }
395 return do_special(drive);
396 kill_rq:
397 ide_kill_rq(drive, rq);
398 return ide_stopped;
399 }
400
401 /**
402 * ide_stall_queue - pause an IDE device
403 * @drive: drive to stall
404 * @timeout: time to stall for (jiffies)
405 *
406 * ide_stall_queue() can be used by a drive to give excess bandwidth back
407 * to the port by sleeping for timeout jiffies.
408 */
409
410 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
411 {
412 if (timeout > WAIT_WORSTCASE)
413 timeout = WAIT_WORSTCASE;
414 drive->sleep = timeout + jiffies;
415 drive->dev_flags |= IDE_DFLAG_SLEEPING;
416 }
417 EXPORT_SYMBOL(ide_stall_queue);
418
419 static inline int ide_lock_port(ide_hwif_t *hwif)
420 {
421 if (hwif->busy)
422 return 1;
423
424 hwif->busy = 1;
425
426 return 0;
427 }
428
429 static inline void ide_unlock_port(ide_hwif_t *hwif)
430 {
431 hwif->busy = 0;
432 }
433
434 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
435 {
436 int rc = 0;
437
438 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
439 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
440 if (rc == 0) {
441 if (host->get_lock)
442 host->get_lock(ide_intr, hwif);
443 }
444 }
445 return rc;
446 }
447
448 static inline void ide_unlock_host(struct ide_host *host)
449 {
450 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
451 if (host->release_lock)
452 host->release_lock();
453 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
454 }
455 }
456
457 /*
458 * Issue a new request to a device.
459 */
460 void do_ide_request(struct request_queue *q)
461 {
462 ide_drive_t *drive = q->queuedata;
463 ide_hwif_t *hwif = drive->hwif;
464 struct ide_host *host = hwif->host;
465 struct request *rq = NULL;
466 ide_startstop_t startstop;
467
468 /*
469 * drive is doing pre-flush, ordered write, post-flush sequence. even
470 * though that is 3 requests, it must be seen as a single transaction.
471 * we must not preempt this drive until that is complete
472 */
473 if (blk_queue_flushing(q))
474 /*
475 * small race where queue could get replugged during
476 * the 3-request flush cycle, just yank the plug since
477 * we want it to finish asap
478 */
479 blk_remove_plug(q);
480
481 spin_unlock_irq(q->queue_lock);
482
483 if (ide_lock_host(host, hwif))
484 goto plug_device_2;
485
486 spin_lock_irq(&hwif->lock);
487
488 if (!ide_lock_port(hwif)) {
489 ide_hwif_t *prev_port;
490 repeat:
491 prev_port = hwif->host->cur_port;
492 hwif->rq = NULL;
493
494 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
495 time_after(drive->sleep, jiffies)) {
496 ide_unlock_port(hwif);
497 goto plug_device;
498 }
499
500 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
501 hwif != prev_port) {
502 /*
503 * set nIEN for previous port, drives in the
504 * quirk_list may not like intr setups/cleanups
505 */
506 if (prev_port && prev_port->cur_dev->quirk_list == 0)
507 prev_port->tp_ops->write_devctl(prev_port,
508 ATA_NIEN |
509 ATA_DEVCTL_OBS);
510
511 hwif->host->cur_port = hwif;
512 }
513 hwif->cur_dev = drive;
514 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
515
516 spin_unlock_irq(&hwif->lock);
517 spin_lock_irq(q->queue_lock);
518 /*
519 * we know that the queue isn't empty, but this can happen
520 * if the q->prep_rq_fn() decides to kill a request
521 */
522 rq = elv_next_request(drive->queue);
523 spin_unlock_irq(q->queue_lock);
524 spin_lock_irq(&hwif->lock);
525
526 if (!rq) {
527 ide_unlock_port(hwif);
528 goto out;
529 }
530
531 /*
532 * Sanity: don't accept a request that isn't a PM request
533 * if we are currently power managed. This is very important as
534 * blk_stop_queue() doesn't prevent the elv_next_request()
535 * above to return us whatever is in the queue. Since we call
536 * ide_do_request() ourselves, we end up taking requests while
537 * the queue is blocked...
538 *
539 * We let requests forced at head of queue with ide-preempt
540 * though. I hope that doesn't happen too much, hopefully not
541 * unless the subdriver triggers such a thing in its own PM
542 * state machine.
543 */
544 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
545 blk_pm_request(rq) == 0 &&
546 (rq->cmd_flags & REQ_PREEMPT) == 0) {
547 /* there should be no pending command at this point */
548 ide_unlock_port(hwif);
549 goto plug_device;
550 }
551
552 hwif->rq = rq;
553
554 spin_unlock_irq(&hwif->lock);
555 startstop = start_request(drive, rq);
556 spin_lock_irq(&hwif->lock);
557
558 if (startstop == ide_stopped)
559 goto repeat;
560 } else
561 goto plug_device;
562 out:
563 spin_unlock_irq(&hwif->lock);
564 if (rq == NULL)
565 ide_unlock_host(host);
566 spin_lock_irq(q->queue_lock);
567 return;
568
569 plug_device:
570 spin_unlock_irq(&hwif->lock);
571 ide_unlock_host(host);
572 plug_device_2:
573 spin_lock_irq(q->queue_lock);
574
575 if (!elv_queue_empty(q))
576 blk_plug_device(q);
577 }
578
579 static void ide_plug_device(ide_drive_t *drive)
580 {
581 struct request_queue *q = drive->queue;
582 unsigned long flags;
583
584 spin_lock_irqsave(q->queue_lock, flags);
585 if (!elv_queue_empty(q))
586 blk_plug_device(q);
587 spin_unlock_irqrestore(q->queue_lock, flags);
588 }
589
590 static int drive_is_ready(ide_drive_t *drive)
591 {
592 ide_hwif_t *hwif = drive->hwif;
593 u8 stat = 0;
594
595 if (drive->waiting_for_dma)
596 return hwif->dma_ops->dma_test_irq(drive);
597
598 if (hwif->io_ports.ctl_addr &&
599 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
600 stat = hwif->tp_ops->read_altstatus(hwif);
601 else
602 /* Note: this may clear a pending IRQ!! */
603 stat = hwif->tp_ops->read_status(hwif);
604
605 if (stat & ATA_BUSY)
606 /* drive busy: definitely not interrupting */
607 return 0;
608
609 /* drive ready: *might* be interrupting */
610 return 1;
611 }
612
613 /**
614 * ide_timer_expiry - handle lack of an IDE interrupt
615 * @data: timer callback magic (hwif)
616 *
617 * An IDE command has timed out before the expected drive return
618 * occurred. At this point we attempt to clean up the current
619 * mess. If the current handler includes an expiry handler then
620 * we invoke the expiry handler, and providing it is happy the
621 * work is done. If that fails we apply generic recovery rules
622 * invoking the handler and checking the drive DMA status. We
623 * have an excessively incestuous relationship with the DMA
624 * logic that wants cleaning up.
625 */
626
627 void ide_timer_expiry (unsigned long data)
628 {
629 ide_hwif_t *hwif = (ide_hwif_t *)data;
630 ide_drive_t *uninitialized_var(drive);
631 ide_handler_t *handler;
632 unsigned long flags;
633 int wait = -1;
634 int plug_device = 0;
635
636 spin_lock_irqsave(&hwif->lock, flags);
637
638 handler = hwif->handler;
639
640 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
641 /*
642 * Either a marginal timeout occurred
643 * (got the interrupt just as timer expired),
644 * or we were "sleeping" to give other devices a chance.
645 * Either way, we don't really want to complain about anything.
646 */
647 } else {
648 ide_expiry_t *expiry = hwif->expiry;
649 ide_startstop_t startstop = ide_stopped;
650
651 drive = hwif->cur_dev;
652
653 if (expiry) {
654 wait = expiry(drive);
655 if (wait > 0) { /* continue */
656 /* reset timer */
657 hwif->timer.expires = jiffies + wait;
658 hwif->req_gen_timer = hwif->req_gen;
659 add_timer(&hwif->timer);
660 spin_unlock_irqrestore(&hwif->lock, flags);
661 return;
662 }
663 }
664 hwif->handler = NULL;
665 hwif->expiry = NULL;
666 /*
667 * We need to simulate a real interrupt when invoking
668 * the handler() function, which means we need to
669 * globally mask the specific IRQ:
670 */
671 spin_unlock(&hwif->lock);
672 /* disable_irq_nosync ?? */
673 disable_irq(hwif->irq);
674 /* local CPU only, as if we were handling an interrupt */
675 local_irq_disable();
676 if (hwif->polling) {
677 startstop = handler(drive);
678 } else if (drive_is_ready(drive)) {
679 if (drive->waiting_for_dma)
680 hwif->dma_ops->dma_lost_irq(drive);
681 if (hwif->ack_intr)
682 hwif->ack_intr(hwif);
683 printk(KERN_WARNING "%s: lost interrupt\n",
684 drive->name);
685 startstop = handler(drive);
686 } else {
687 if (drive->waiting_for_dma)
688 startstop = ide_dma_timeout_retry(drive, wait);
689 else
690 startstop = ide_error(drive, "irq timeout",
691 hwif->tp_ops->read_status(hwif));
692 }
693 spin_lock_irq(&hwif->lock);
694 enable_irq(hwif->irq);
695 if (startstop == ide_stopped) {
696 ide_unlock_port(hwif);
697 plug_device = 1;
698 }
699 }
700 spin_unlock_irqrestore(&hwif->lock, flags);
701
702 if (plug_device) {
703 ide_unlock_host(hwif->host);
704 ide_plug_device(drive);
705 }
706 }
707
708 /**
709 * unexpected_intr - handle an unexpected IDE interrupt
710 * @irq: interrupt line
711 * @hwif: port being processed
712 *
713 * There's nothing really useful we can do with an unexpected interrupt,
714 * other than reading the status register (to clear it), and logging it.
715 * There should be no way that an irq can happen before we're ready for it,
716 * so we needn't worry much about losing an "important" interrupt here.
717 *
718 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
719 * the drive enters "idle", "standby", or "sleep" mode, so if the status
720 * looks "good", we just ignore the interrupt completely.
721 *
722 * This routine assumes __cli() is in effect when called.
723 *
724 * If an unexpected interrupt happens on irq15 while we are handling irq14
725 * and if the two interfaces are "serialized" (CMD640), then it looks like
726 * we could screw up by interfering with a new request being set up for
727 * irq15.
728 *
729 * In reality, this is a non-issue. The new command is not sent unless
730 * the drive is ready to accept one, in which case we know the drive is
731 * not trying to interrupt us. And ide_set_handler() is always invoked
732 * before completing the issuance of any new drive command, so we will not
733 * be accidentally invoked as a result of any valid command completion
734 * interrupt.
735 */
736
737 static void unexpected_intr(int irq, ide_hwif_t *hwif)
738 {
739 u8 stat = hwif->tp_ops->read_status(hwif);
740
741 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
742 /* Try to not flood the console with msgs */
743 static unsigned long last_msgtime, count;
744 ++count;
745
746 if (time_after(jiffies, last_msgtime + HZ)) {
747 last_msgtime = jiffies;
748 printk(KERN_ERR "%s: unexpected interrupt, "
749 "status=0x%02x, count=%ld\n",
750 hwif->name, stat, count);
751 }
752 }
753 }
754
755 /**
756 * ide_intr - default IDE interrupt handler
757 * @irq: interrupt number
758 * @dev_id: hwif
759 * @regs: unused weirdness from the kernel irq layer
760 *
761 * This is the default IRQ handler for the IDE layer. You should
762 * not need to override it. If you do be aware it is subtle in
763 * places
764 *
765 * hwif is the interface in the group currently performing
766 * a command. hwif->cur_dev is the drive and hwif->handler is
767 * the IRQ handler to call. As we issue a command the handlers
768 * step through multiple states, reassigning the handler to the
769 * next step in the process. Unlike a smart SCSI controller IDE
770 * expects the main processor to sequence the various transfer
771 * stages. We also manage a poll timer to catch up with most
772 * timeout situations. There are still a few where the handlers
773 * don't ever decide to give up.
774 *
775 * The handler eventually returns ide_stopped to indicate the
776 * request completed. At this point we issue the next request
777 * on the port and the process begins again.
778 */
779
780 irqreturn_t ide_intr (int irq, void *dev_id)
781 {
782 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
783 struct ide_host *host = hwif->host;
784 ide_drive_t *uninitialized_var(drive);
785 ide_handler_t *handler;
786 unsigned long flags;
787 ide_startstop_t startstop;
788 irqreturn_t irq_ret = IRQ_NONE;
789 int plug_device = 0;
790
791 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
792 if (hwif != host->cur_port)
793 goto out_early;
794 }
795
796 spin_lock_irqsave(&hwif->lock, flags);
797
798 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
799 goto out;
800
801 handler = hwif->handler;
802
803 if (handler == NULL || hwif->polling) {
804 /*
805 * Not expecting an interrupt from this drive.
806 * That means this could be:
807 * (1) an interrupt from another PCI device
808 * sharing the same PCI INT# as us.
809 * or (2) a drive just entered sleep or standby mode,
810 * and is interrupting to let us know.
811 * or (3) a spurious interrupt of unknown origin.
812 *
813 * For PCI, we cannot tell the difference,
814 * so in that case we just ignore it and hope it goes away.
815 */
816 if ((host->irq_flags & IRQF_SHARED) == 0) {
817 /*
818 * Probably not a shared PCI interrupt,
819 * so we can safely try to do something about it:
820 */
821 unexpected_intr(irq, hwif);
822 } else {
823 /*
824 * Whack the status register, just in case
825 * we have a leftover pending IRQ.
826 */
827 (void)hwif->tp_ops->read_status(hwif);
828 }
829 goto out;
830 }
831
832 drive = hwif->cur_dev;
833
834 if (!drive_is_ready(drive))
835 /*
836 * This happens regularly when we share a PCI IRQ with
837 * another device. Unfortunately, it can also happen
838 * with some buggy drives that trigger the IRQ before
839 * their status register is up to date. Hopefully we have
840 * enough advance overhead that the latter isn't a problem.
841 */
842 goto out;
843
844 hwif->handler = NULL;
845 hwif->expiry = NULL;
846 hwif->req_gen++;
847 del_timer(&hwif->timer);
848 spin_unlock(&hwif->lock);
849
850 if (hwif->port_ops && hwif->port_ops->clear_irq)
851 hwif->port_ops->clear_irq(drive);
852
853 if (drive->dev_flags & IDE_DFLAG_UNMASK)
854 local_irq_enable_in_hardirq();
855
856 /* service this interrupt, may set handler for next interrupt */
857 startstop = handler(drive);
858
859 spin_lock_irq(&hwif->lock);
860 /*
861 * Note that handler() may have set things up for another
862 * interrupt to occur soon, but it cannot happen until
863 * we exit from this routine, because it will be the
864 * same irq as is currently being serviced here, and Linux
865 * won't allow another of the same (on any CPU) until we return.
866 */
867 if (startstop == ide_stopped) {
868 BUG_ON(hwif->handler);
869 ide_unlock_port(hwif);
870 plug_device = 1;
871 }
872 irq_ret = IRQ_HANDLED;
873 out:
874 spin_unlock_irqrestore(&hwif->lock, flags);
875 out_early:
876 if (plug_device) {
877 ide_unlock_host(hwif->host);
878 ide_plug_device(drive);
879 }
880
881 return irq_ret;
882 }
883 EXPORT_SYMBOL_GPL(ide_intr);
884
885 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
886 {
887 ide_hwif_t *hwif = drive->hwif;
888 u8 buf[4] = { 0 };
889
890 while (len > 0) {
891 if (write)
892 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
893 else
894 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
895 len -= 4;
896 }
897 }
898 EXPORT_SYMBOL_GPL(ide_pad_transfer);