]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/ide/ide-io.c
ide: remove IDE_ARCH_INTR (v2)
[mirror_ubuntu-kernels.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
89
90 if (ret == 0 && dequeue)
91 drive->hwif->rq = NULL;
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->rq;
111
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
117 }
118
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
128 *
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
133 *
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
136 */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
140 {
141 BUG_ON(!blk_rq_started(rq));
142
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 /**
148 * ide_end_drive_cmd - end an explicit drive command
149 * @drive: command
150 * @stat: status bits
151 * @err: error bits
152 *
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
156 *
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
159 */
160
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162 {
163 ide_hwif_t *hwif = drive->hwif;
164 struct request *rq = hwif->rq;
165
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
168
169 if (task) {
170 struct ide_taskfile *tf = &task->tf;
171
172 tf->error = err;
173 tf->status = stat;
174
175 drive->hwif->tp_ops->tf_read(drive, task);
176
177 if (task->tf_flags & IDE_TFLAG_DYN)
178 kfree(task);
179 }
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
182
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
186 return;
187 }
188
189 hwif->rq = NULL;
190
191 rq->errors = err;
192
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194 blk_rq_bytes(rq))))
195 BUG();
196 }
197 EXPORT_SYMBOL(ide_end_drive_cmd);
198
199 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200 {
201 if (rq->rq_disk) {
202 struct ide_driver *drv;
203
204 drv = *(struct ide_driver **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
206 } else
207 ide_end_request(drive, 0, 0);
208 }
209
210 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
211 {
212 tf->nsect = drive->sect;
213 tf->lbal = drive->sect;
214 tf->lbam = drive->cyl;
215 tf->lbah = drive->cyl >> 8;
216 tf->device = (drive->head - 1) | drive->select;
217 tf->command = ATA_CMD_INIT_DEV_PARAMS;
218 }
219
220 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
221 {
222 tf->nsect = drive->sect;
223 tf->command = ATA_CMD_RESTORE;
224 }
225
226 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
227 {
228 tf->nsect = drive->mult_req;
229 tf->command = ATA_CMD_SET_MULTI;
230 }
231
232 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
233 {
234 special_t *s = &drive->special;
235 ide_task_t args;
236
237 memset(&args, 0, sizeof(ide_task_t));
238 args.data_phase = TASKFILE_NO_DATA;
239
240 if (s->b.set_geometry) {
241 s->b.set_geometry = 0;
242 ide_tf_set_specify_cmd(drive, &args.tf);
243 } else if (s->b.recalibrate) {
244 s->b.recalibrate = 0;
245 ide_tf_set_restore_cmd(drive, &args.tf);
246 } else if (s->b.set_multmode) {
247 s->b.set_multmode = 0;
248 ide_tf_set_setmult_cmd(drive, &args.tf);
249 } else if (s->all) {
250 int special = s->all;
251 s->all = 0;
252 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
253 return ide_stopped;
254 }
255
256 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
257 IDE_TFLAG_CUSTOM_HANDLER;
258
259 do_rw_taskfile(drive, &args);
260
261 return ide_started;
262 }
263
264 /**
265 * do_special - issue some special commands
266 * @drive: drive the command is for
267 *
268 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
269 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
270 *
271 * It used to do much more, but has been scaled back.
272 */
273
274 static ide_startstop_t do_special (ide_drive_t *drive)
275 {
276 special_t *s = &drive->special;
277
278 #ifdef DEBUG
279 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
280 #endif
281 if (drive->media == ide_disk)
282 return ide_disk_special(drive);
283
284 s->all = 0;
285 drive->mult_req = 0;
286 return ide_stopped;
287 }
288
289 void ide_map_sg(ide_drive_t *drive, struct request *rq)
290 {
291 ide_hwif_t *hwif = drive->hwif;
292 struct scatterlist *sg = hwif->sg_table;
293
294 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
295 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
296 hwif->sg_nents = 1;
297 } else if (!rq->bio) {
298 sg_init_one(sg, rq->data, rq->data_len);
299 hwif->sg_nents = 1;
300 } else {
301 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
302 }
303 }
304
305 EXPORT_SYMBOL_GPL(ide_map_sg);
306
307 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
308 {
309 ide_hwif_t *hwif = drive->hwif;
310
311 hwif->nsect = hwif->nleft = rq->nr_sectors;
312 hwif->cursg_ofs = 0;
313 hwif->cursg = NULL;
314 }
315
316 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
317
318 /**
319 * execute_drive_command - issue special drive command
320 * @drive: the drive to issue the command on
321 * @rq: the request structure holding the command
322 *
323 * execute_drive_cmd() issues a special drive command, usually
324 * initiated by ioctl() from the external hdparm program. The
325 * command can be a drive command, drive task or taskfile
326 * operation. Weirdly you can call it with NULL to wait for
327 * all commands to finish. Don't do this as that is due to change
328 */
329
330 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
331 struct request *rq)
332 {
333 ide_hwif_t *hwif = drive->hwif;
334 ide_task_t *task = rq->special;
335
336 if (task) {
337 hwif->data_phase = task->data_phase;
338
339 switch (hwif->data_phase) {
340 case TASKFILE_MULTI_OUT:
341 case TASKFILE_OUT:
342 case TASKFILE_MULTI_IN:
343 case TASKFILE_IN:
344 ide_init_sg_cmd(drive, rq);
345 ide_map_sg(drive, rq);
346 default:
347 break;
348 }
349
350 return do_rw_taskfile(drive, task);
351 }
352
353 /*
354 * NULL is actually a valid way of waiting for
355 * all current requests to be flushed from the queue.
356 */
357 #ifdef DEBUG
358 printk("%s: DRIVE_CMD (null)\n", drive->name);
359 #endif
360 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
361 ide_read_error(drive));
362
363 return ide_stopped;
364 }
365
366 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
367 {
368 u8 cmd = rq->cmd[0];
369
370 switch (cmd) {
371 case REQ_PARK_HEADS:
372 case REQ_UNPARK_HEADS:
373 return ide_do_park_unpark(drive, rq);
374 case REQ_DEVSET_EXEC:
375 return ide_do_devset(drive, rq);
376 case REQ_DRIVE_RESET:
377 return ide_do_reset(drive);
378 default:
379 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
380 ide_end_request(drive, 0, 0);
381 return ide_stopped;
382 }
383 }
384
385 /**
386 * start_request - start of I/O and command issuing for IDE
387 *
388 * start_request() initiates handling of a new I/O request. It
389 * accepts commands and I/O (read/write) requests.
390 *
391 * FIXME: this function needs a rename
392 */
393
394 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
395 {
396 ide_startstop_t startstop;
397
398 BUG_ON(!blk_rq_started(rq));
399
400 #ifdef DEBUG
401 printk("%s: start_request: current=0x%08lx\n",
402 drive->hwif->name, (unsigned long) rq);
403 #endif
404
405 /* bail early if we've exceeded max_failures */
406 if (drive->max_failures && (drive->failures > drive->max_failures)) {
407 rq->cmd_flags |= REQ_FAILED;
408 goto kill_rq;
409 }
410
411 if (blk_pm_request(rq))
412 ide_check_pm_state(drive, rq);
413
414 SELECT_DRIVE(drive);
415 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
416 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
417 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
418 return startstop;
419 }
420 if (!drive->special.all) {
421 struct ide_driver *drv;
422
423 /*
424 * We reset the drive so we need to issue a SETFEATURES.
425 * Do it _after_ do_special() restored device parameters.
426 */
427 if (drive->current_speed == 0xff)
428 ide_config_drive_speed(drive, drive->desired_speed);
429
430 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
431 return execute_drive_cmd(drive, rq);
432 else if (blk_pm_request(rq)) {
433 struct request_pm_state *pm = rq->data;
434 #ifdef DEBUG_PM
435 printk("%s: start_power_step(step: %d)\n",
436 drive->name, pm->pm_step);
437 #endif
438 startstop = ide_start_power_step(drive, rq);
439 if (startstop == ide_stopped &&
440 pm->pm_step == IDE_PM_COMPLETED)
441 ide_complete_pm_request(drive, rq);
442 return startstop;
443 } else if (!rq->rq_disk && blk_special_request(rq))
444 /*
445 * TODO: Once all ULDs have been modified to
446 * check for specific op codes rather than
447 * blindly accepting any special request, the
448 * check for ->rq_disk above may be replaced
449 * by a more suitable mechanism or even
450 * dropped entirely.
451 */
452 return ide_special_rq(drive, rq);
453
454 drv = *(struct ide_driver **)rq->rq_disk->private_data;
455
456 return drv->do_request(drive, rq, rq->sector);
457 }
458 return do_special(drive);
459 kill_rq:
460 ide_kill_rq(drive, rq);
461 return ide_stopped;
462 }
463
464 /**
465 * ide_stall_queue - pause an IDE device
466 * @drive: drive to stall
467 * @timeout: time to stall for (jiffies)
468 *
469 * ide_stall_queue() can be used by a drive to give excess bandwidth back
470 * to the port by sleeping for timeout jiffies.
471 */
472
473 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
474 {
475 if (timeout > WAIT_WORSTCASE)
476 timeout = WAIT_WORSTCASE;
477 drive->sleep = timeout + jiffies;
478 drive->dev_flags |= IDE_DFLAG_SLEEPING;
479 }
480 EXPORT_SYMBOL(ide_stall_queue);
481
482 static inline int ide_lock_port(ide_hwif_t *hwif)
483 {
484 if (hwif->busy)
485 return 1;
486
487 hwif->busy = 1;
488
489 return 0;
490 }
491
492 static inline void ide_unlock_port(ide_hwif_t *hwif)
493 {
494 hwif->busy = 0;
495 }
496
497 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
498 {
499 int rc = 0;
500
501 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
502 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
503 if (rc == 0) {
504 /* for atari only */
505 ide_get_lock(ide_intr, hwif);
506 }
507 }
508 return rc;
509 }
510
511 static inline void ide_unlock_host(struct ide_host *host)
512 {
513 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
514 /* for atari only */
515 ide_release_lock();
516 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
517 }
518 }
519
520 /*
521 * Issue a new request to a device.
522 */
523 void do_ide_request(struct request_queue *q)
524 {
525 ide_drive_t *drive = q->queuedata;
526 ide_hwif_t *hwif = drive->hwif;
527 struct ide_host *host = hwif->host;
528 struct request *rq = NULL;
529 ide_startstop_t startstop;
530
531 /*
532 * drive is doing pre-flush, ordered write, post-flush sequence. even
533 * though that is 3 requests, it must be seen as a single transaction.
534 * we must not preempt this drive until that is complete
535 */
536 if (blk_queue_flushing(q))
537 /*
538 * small race where queue could get replugged during
539 * the 3-request flush cycle, just yank the plug since
540 * we want it to finish asap
541 */
542 blk_remove_plug(q);
543
544 spin_unlock_irq(q->queue_lock);
545
546 if (ide_lock_host(host, hwif))
547 goto plug_device_2;
548
549 spin_lock_irq(&hwif->lock);
550
551 if (!ide_lock_port(hwif)) {
552 ide_hwif_t *prev_port;
553 repeat:
554 prev_port = hwif->host->cur_port;
555 hwif->rq = NULL;
556
557 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
558 if (time_before(drive->sleep, jiffies)) {
559 ide_unlock_port(hwif);
560 goto plug_device;
561 }
562 }
563
564 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
565 hwif != prev_port) {
566 /*
567 * set nIEN for previous port, drives in the
568 * quirk_list may not like intr setups/cleanups
569 */
570 if (prev_port && prev_port->cur_dev->quirk_list == 0)
571 prev_port->tp_ops->set_irq(prev_port, 0);
572
573 hwif->host->cur_port = hwif;
574 }
575 hwif->cur_dev = drive;
576 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
577
578 spin_unlock_irq(&hwif->lock);
579 spin_lock_irq(q->queue_lock);
580 /*
581 * we know that the queue isn't empty, but this can happen
582 * if the q->prep_rq_fn() decides to kill a request
583 */
584 rq = elv_next_request(drive->queue);
585 spin_unlock_irq(q->queue_lock);
586 spin_lock_irq(&hwif->lock);
587
588 if (!rq) {
589 ide_unlock_port(hwif);
590 goto out;
591 }
592
593 /*
594 * Sanity: don't accept a request that isn't a PM request
595 * if we are currently power managed. This is very important as
596 * blk_stop_queue() doesn't prevent the elv_next_request()
597 * above to return us whatever is in the queue. Since we call
598 * ide_do_request() ourselves, we end up taking requests while
599 * the queue is blocked...
600 *
601 * We let requests forced at head of queue with ide-preempt
602 * though. I hope that doesn't happen too much, hopefully not
603 * unless the subdriver triggers such a thing in its own PM
604 * state machine.
605 */
606 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
607 blk_pm_request(rq) == 0 &&
608 (rq->cmd_flags & REQ_PREEMPT) == 0) {
609 /* there should be no pending command at this point */
610 ide_unlock_port(hwif);
611 goto plug_device;
612 }
613
614 hwif->rq = rq;
615
616 spin_unlock_irq(&hwif->lock);
617 startstop = start_request(drive, rq);
618 spin_lock_irq(&hwif->lock);
619
620 if (startstop == ide_stopped)
621 goto repeat;
622 } else
623 goto plug_device;
624 out:
625 spin_unlock_irq(&hwif->lock);
626 if (rq == NULL)
627 ide_unlock_host(host);
628 spin_lock_irq(q->queue_lock);
629 return;
630
631 plug_device:
632 spin_unlock_irq(&hwif->lock);
633 ide_unlock_host(host);
634 plug_device_2:
635 spin_lock_irq(q->queue_lock);
636
637 if (!elv_queue_empty(q))
638 blk_plug_device(q);
639 }
640
641 static void ide_plug_device(ide_drive_t *drive)
642 {
643 struct request_queue *q = drive->queue;
644 unsigned long flags;
645
646 spin_lock_irqsave(q->queue_lock, flags);
647 if (!elv_queue_empty(q))
648 blk_plug_device(q);
649 spin_unlock_irqrestore(q->queue_lock, flags);
650 }
651
652 static int drive_is_ready(ide_drive_t *drive)
653 {
654 ide_hwif_t *hwif = drive->hwif;
655 u8 stat = 0;
656
657 if (drive->waiting_for_dma)
658 return hwif->dma_ops->dma_test_irq(drive);
659
660 if (hwif->io_ports.ctl_addr &&
661 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
662 stat = hwif->tp_ops->read_altstatus(hwif);
663 else
664 /* Note: this may clear a pending IRQ!! */
665 stat = hwif->tp_ops->read_status(hwif);
666
667 if (stat & ATA_BUSY)
668 /* drive busy: definitely not interrupting */
669 return 0;
670
671 /* drive ready: *might* be interrupting */
672 return 1;
673 }
674
675 /**
676 * ide_timer_expiry - handle lack of an IDE interrupt
677 * @data: timer callback magic (hwif)
678 *
679 * An IDE command has timed out before the expected drive return
680 * occurred. At this point we attempt to clean up the current
681 * mess. If the current handler includes an expiry handler then
682 * we invoke the expiry handler, and providing it is happy the
683 * work is done. If that fails we apply generic recovery rules
684 * invoking the handler and checking the drive DMA status. We
685 * have an excessively incestuous relationship with the DMA
686 * logic that wants cleaning up.
687 */
688
689 void ide_timer_expiry (unsigned long data)
690 {
691 ide_hwif_t *hwif = (ide_hwif_t *)data;
692 ide_drive_t *uninitialized_var(drive);
693 ide_handler_t *handler;
694 unsigned long flags;
695 int wait = -1;
696 int plug_device = 0;
697
698 spin_lock_irqsave(&hwif->lock, flags);
699
700 handler = hwif->handler;
701
702 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
703 /*
704 * Either a marginal timeout occurred
705 * (got the interrupt just as timer expired),
706 * or we were "sleeping" to give other devices a chance.
707 * Either way, we don't really want to complain about anything.
708 */
709 } else {
710 ide_expiry_t *expiry = hwif->expiry;
711 ide_startstop_t startstop = ide_stopped;
712
713 drive = hwif->cur_dev;
714
715 if (expiry) {
716 wait = expiry(drive);
717 if (wait > 0) { /* continue */
718 /* reset timer */
719 hwif->timer.expires = jiffies + wait;
720 hwif->req_gen_timer = hwif->req_gen;
721 add_timer(&hwif->timer);
722 spin_unlock_irqrestore(&hwif->lock, flags);
723 return;
724 }
725 }
726 hwif->handler = NULL;
727 /*
728 * We need to simulate a real interrupt when invoking
729 * the handler() function, which means we need to
730 * globally mask the specific IRQ:
731 */
732 spin_unlock(&hwif->lock);
733 /* disable_irq_nosync ?? */
734 disable_irq(hwif->irq);
735 /* local CPU only, as if we were handling an interrupt */
736 local_irq_disable();
737 if (hwif->polling) {
738 startstop = handler(drive);
739 } else if (drive_is_ready(drive)) {
740 if (drive->waiting_for_dma)
741 hwif->dma_ops->dma_lost_irq(drive);
742 if (hwif->ack_intr)
743 hwif->ack_intr(hwif);
744 printk(KERN_WARNING "%s: lost interrupt\n",
745 drive->name);
746 startstop = handler(drive);
747 } else {
748 if (drive->waiting_for_dma)
749 startstop = ide_dma_timeout_retry(drive, wait);
750 else
751 startstop = ide_error(drive, "irq timeout",
752 hwif->tp_ops->read_status(hwif));
753 }
754 spin_lock_irq(&hwif->lock);
755 enable_irq(hwif->irq);
756 if (startstop == ide_stopped) {
757 ide_unlock_port(hwif);
758 plug_device = 1;
759 }
760 }
761 spin_unlock_irqrestore(&hwif->lock, flags);
762
763 if (plug_device) {
764 ide_unlock_host(hwif->host);
765 ide_plug_device(drive);
766 }
767 }
768
769 /**
770 * unexpected_intr - handle an unexpected IDE interrupt
771 * @irq: interrupt line
772 * @hwif: port being processed
773 *
774 * There's nothing really useful we can do with an unexpected interrupt,
775 * other than reading the status register (to clear it), and logging it.
776 * There should be no way that an irq can happen before we're ready for it,
777 * so we needn't worry much about losing an "important" interrupt here.
778 *
779 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
780 * the drive enters "idle", "standby", or "sleep" mode, so if the status
781 * looks "good", we just ignore the interrupt completely.
782 *
783 * This routine assumes __cli() is in effect when called.
784 *
785 * If an unexpected interrupt happens on irq15 while we are handling irq14
786 * and if the two interfaces are "serialized" (CMD640), then it looks like
787 * we could screw up by interfering with a new request being set up for
788 * irq15.
789 *
790 * In reality, this is a non-issue. The new command is not sent unless
791 * the drive is ready to accept one, in which case we know the drive is
792 * not trying to interrupt us. And ide_set_handler() is always invoked
793 * before completing the issuance of any new drive command, so we will not
794 * be accidentally invoked as a result of any valid command completion
795 * interrupt.
796 */
797
798 static void unexpected_intr(int irq, ide_hwif_t *hwif)
799 {
800 u8 stat = hwif->tp_ops->read_status(hwif);
801
802 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
803 /* Try to not flood the console with msgs */
804 static unsigned long last_msgtime, count;
805 ++count;
806
807 if (time_after(jiffies, last_msgtime + HZ)) {
808 last_msgtime = jiffies;
809 printk(KERN_ERR "%s: unexpected interrupt, "
810 "status=0x%02x, count=%ld\n",
811 hwif->name, stat, count);
812 }
813 }
814 }
815
816 /**
817 * ide_intr - default IDE interrupt handler
818 * @irq: interrupt number
819 * @dev_id: hwif
820 * @regs: unused weirdness from the kernel irq layer
821 *
822 * This is the default IRQ handler for the IDE layer. You should
823 * not need to override it. If you do be aware it is subtle in
824 * places
825 *
826 * hwif is the interface in the group currently performing
827 * a command. hwif->cur_dev is the drive and hwif->handler is
828 * the IRQ handler to call. As we issue a command the handlers
829 * step through multiple states, reassigning the handler to the
830 * next step in the process. Unlike a smart SCSI controller IDE
831 * expects the main processor to sequence the various transfer
832 * stages. We also manage a poll timer to catch up with most
833 * timeout situations. There are still a few where the handlers
834 * don't ever decide to give up.
835 *
836 * The handler eventually returns ide_stopped to indicate the
837 * request completed. At this point we issue the next request
838 * on the port and the process begins again.
839 */
840
841 irqreturn_t ide_intr (int irq, void *dev_id)
842 {
843 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
844 ide_drive_t *uninitialized_var(drive);
845 ide_handler_t *handler;
846 unsigned long flags;
847 ide_startstop_t startstop;
848 irqreturn_t irq_ret = IRQ_NONE;
849 int plug_device = 0;
850
851 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
852 if (hwif != hwif->host->cur_port)
853 goto out_early;
854 }
855
856 spin_lock_irqsave(&hwif->lock, flags);
857
858 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
859 goto out;
860
861 handler = hwif->handler;
862
863 if (handler == NULL || hwif->polling) {
864 /*
865 * Not expecting an interrupt from this drive.
866 * That means this could be:
867 * (1) an interrupt from another PCI device
868 * sharing the same PCI INT# as us.
869 * or (2) a drive just entered sleep or standby mode,
870 * and is interrupting to let us know.
871 * or (3) a spurious interrupt of unknown origin.
872 *
873 * For PCI, we cannot tell the difference,
874 * so in that case we just ignore it and hope it goes away.
875 *
876 * FIXME: unexpected_intr should be hwif-> then we can
877 * remove all the ifdef PCI crap
878 */
879 #ifdef CONFIG_BLK_DEV_IDEPCI
880 if (hwif->chipset != ide_pci)
881 #endif /* CONFIG_BLK_DEV_IDEPCI */
882 {
883 /*
884 * Probably not a shared PCI interrupt,
885 * so we can safely try to do something about it:
886 */
887 unexpected_intr(irq, hwif);
888 #ifdef CONFIG_BLK_DEV_IDEPCI
889 } else {
890 /*
891 * Whack the status register, just in case
892 * we have a leftover pending IRQ.
893 */
894 (void)hwif->tp_ops->read_status(hwif);
895 #endif /* CONFIG_BLK_DEV_IDEPCI */
896 }
897 goto out;
898 }
899
900 drive = hwif->cur_dev;
901
902 if (!drive_is_ready(drive))
903 /*
904 * This happens regularly when we share a PCI IRQ with
905 * another device. Unfortunately, it can also happen
906 * with some buggy drives that trigger the IRQ before
907 * their status register is up to date. Hopefully we have
908 * enough advance overhead that the latter isn't a problem.
909 */
910 goto out;
911
912 hwif->handler = NULL;
913 hwif->req_gen++;
914 del_timer(&hwif->timer);
915 spin_unlock(&hwif->lock);
916
917 if (hwif->port_ops && hwif->port_ops->clear_irq)
918 hwif->port_ops->clear_irq(drive);
919
920 if (drive->dev_flags & IDE_DFLAG_UNMASK)
921 local_irq_enable_in_hardirq();
922
923 /* service this interrupt, may set handler for next interrupt */
924 startstop = handler(drive);
925
926 spin_lock_irq(&hwif->lock);
927 /*
928 * Note that handler() may have set things up for another
929 * interrupt to occur soon, but it cannot happen until
930 * we exit from this routine, because it will be the
931 * same irq as is currently being serviced here, and Linux
932 * won't allow another of the same (on any CPU) until we return.
933 */
934 if (startstop == ide_stopped) {
935 BUG_ON(hwif->handler);
936 ide_unlock_port(hwif);
937 plug_device = 1;
938 }
939 irq_ret = IRQ_HANDLED;
940 out:
941 spin_unlock_irqrestore(&hwif->lock, flags);
942 out_early:
943 if (plug_device) {
944 ide_unlock_host(hwif->host);
945 ide_plug_device(drive);
946 }
947
948 return irq_ret;
949 }
950 EXPORT_SYMBOL_GPL(ide_intr);
951
952 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
953 {
954 ide_hwif_t *hwif = drive->hwif;
955 u8 buf[4] = { 0 };
956
957 while (len > 0) {
958 if (write)
959 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
960 else
961 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
962 len -= 4;
963 }
964 }
965 EXPORT_SYMBOL_GPL(ide_pad_transfer);