]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ide/ide-iops.c
Merge branch 'bjorn-cleanups' into release
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / ide-iops.c
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
4 *
5 */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
24
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29
30 /*
31 * Conventional PIO operations for ATA devices
32 */
33
34 static u8 ide_inb (unsigned long port)
35 {
36 return (u8) inb(port);
37 }
38
39 static void ide_outb (u8 val, unsigned long port)
40 {
41 outb(val, port);
42 }
43
44 /*
45 * MMIO operations, typically used for SATA controllers
46 */
47
48 static u8 ide_mm_inb (unsigned long port)
49 {
50 return (u8) readb((void __iomem *) port);
51 }
52
53 static void ide_mm_outb (u8 value, unsigned long port)
54 {
55 writeb(value, (void __iomem *) port);
56 }
57
58 void SELECT_DRIVE (ide_drive_t *drive)
59 {
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
62 ide_task_t task;
63
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
66
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70 drive->hwif->tp_ops->tf_load(drive, &task);
71 }
72
73 void SELECT_MASK(ide_drive_t *drive, int mask)
74 {
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
79 }
80
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82 {
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 else
86 outb(cmd, hwif->io_ports.command_addr);
87 }
88 EXPORT_SYMBOL_GPL(ide_exec_command);
89
90 u8 ide_read_status(ide_hwif_t *hwif)
91 {
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
94 else
95 return inb(hwif->io_ports.status_addr);
96 }
97 EXPORT_SYMBOL_GPL(ide_read_status);
98
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
100 {
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 else
104 return inb(hwif->io_ports.ctl_addr);
105 }
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108 void ide_set_irq(ide_hwif_t *hwif, int on)
109 {
110 u8 ctl = ATA_DEVCTL_OBS;
111
112 if (on == 4) { /* hack for SRST */
113 ctl |= 4;
114 on &= ~4;
115 }
116
117 ctl |= on ? 0 : 2;
118
119 if (hwif->host_flags & IDE_HFLAG_MMIO)
120 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
121 else
122 outb(ctl, hwif->io_ports.ctl_addr);
123 }
124 EXPORT_SYMBOL_GPL(ide_set_irq);
125
126 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
127 {
128 ide_hwif_t *hwif = drive->hwif;
129 struct ide_io_ports *io_ports = &hwif->io_ports;
130 struct ide_taskfile *tf = &task->tf;
131 void (*tf_outb)(u8 addr, unsigned long port);
132 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
133 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
134
135 if (mmio)
136 tf_outb = ide_mm_outb;
137 else
138 tf_outb = ide_outb;
139
140 if (task->tf_flags & IDE_TFLAG_FLAGGED)
141 HIHI = 0xFF;
142
143 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
144 u16 data = (tf->hob_data << 8) | tf->data;
145
146 if (mmio)
147 writew(data, (void __iomem *)io_ports->data_addr);
148 else
149 outw(data, io_ports->data_addr);
150 }
151
152 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
153 tf_outb(tf->hob_feature, io_ports->feature_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
155 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
156 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
157 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
158 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
159 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
160 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
161 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
162
163 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
164 tf_outb(tf->feature, io_ports->feature_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
166 tf_outb(tf->nsect, io_ports->nsect_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
168 tf_outb(tf->lbal, io_ports->lbal_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
170 tf_outb(tf->lbam, io_ports->lbam_addr);
171 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
172 tf_outb(tf->lbah, io_ports->lbah_addr);
173
174 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
175 tf_outb((tf->device & HIHI) | drive->select,
176 io_ports->device_addr);
177 }
178 EXPORT_SYMBOL_GPL(ide_tf_load);
179
180 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
181 {
182 ide_hwif_t *hwif = drive->hwif;
183 struct ide_io_ports *io_ports = &hwif->io_ports;
184 struct ide_taskfile *tf = &task->tf;
185 void (*tf_outb)(u8 addr, unsigned long port);
186 u8 (*tf_inb)(unsigned long port);
187 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
188
189 if (mmio) {
190 tf_outb = ide_mm_outb;
191 tf_inb = ide_mm_inb;
192 } else {
193 tf_outb = ide_outb;
194 tf_inb = ide_inb;
195 }
196
197 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
198 u16 data;
199
200 if (mmio)
201 data = readw((void __iomem *)io_ports->data_addr);
202 else
203 data = inw(io_ports->data_addr);
204
205 tf->data = data & 0xff;
206 tf->hob_data = (data >> 8) & 0xff;
207 }
208
209 /* be sure we're looking at the low order bits */
210 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
211
212 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
213 tf->feature = tf_inb(io_ports->feature_addr);
214 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
215 tf->nsect = tf_inb(io_ports->nsect_addr);
216 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
217 tf->lbal = tf_inb(io_ports->lbal_addr);
218 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
219 tf->lbam = tf_inb(io_ports->lbam_addr);
220 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
221 tf->lbah = tf_inb(io_ports->lbah_addr);
222 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
223 tf->device = tf_inb(io_ports->device_addr);
224
225 if (task->tf_flags & IDE_TFLAG_LBA48) {
226 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
227
228 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
229 tf->hob_feature = tf_inb(io_ports->feature_addr);
230 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
231 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
232 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
233 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
234 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
235 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
236 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
237 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
238 }
239 }
240 EXPORT_SYMBOL_GPL(ide_tf_read);
241
242 /*
243 * Some localbus EIDE interfaces require a special access sequence
244 * when using 32-bit I/O instructions to transfer data. We call this
245 * the "vlb_sync" sequence, which consists of three successive reads
246 * of the sector count register location, with interrupts disabled
247 * to ensure that the reads all happen together.
248 */
249 static void ata_vlb_sync(unsigned long port)
250 {
251 (void)inb(port);
252 (void)inb(port);
253 (void)inb(port);
254 }
255
256 /*
257 * This is used for most PIO data transfers *from* the IDE interface
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd len is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
264 unsigned int len)
265 {
266 ide_hwif_t *hwif = drive->hwif;
267 struct ide_io_ports *io_ports = &hwif->io_ports;
268 unsigned long data_addr = io_ports->data_addr;
269 u8 io_32bit = drive->io_32bit;
270 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
271
272 len++;
273
274 if (io_32bit) {
275 unsigned long uninitialized_var(flags);
276
277 if ((io_32bit & 2) && !mmio) {
278 local_irq_save(flags);
279 ata_vlb_sync(io_ports->nsect_addr);
280 }
281
282 if (mmio)
283 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
284 else
285 insl(data_addr, buf, len / 4);
286
287 if ((io_32bit & 2) && !mmio)
288 local_irq_restore(flags);
289
290 if ((len & 3) >= 2) {
291 if (mmio)
292 __ide_mm_insw((void __iomem *)data_addr,
293 (u8 *)buf + (len & ~3), 1);
294 else
295 insw(data_addr, (u8 *)buf + (len & ~3), 1);
296 }
297 } else {
298 if (mmio)
299 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
300 else
301 insw(data_addr, buf, len / 2);
302 }
303 }
304 EXPORT_SYMBOL_GPL(ide_input_data);
305
306 /*
307 * This is used for most PIO data transfers *to* the IDE interface
308 */
309 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
310 unsigned int len)
311 {
312 ide_hwif_t *hwif = drive->hwif;
313 struct ide_io_ports *io_ports = &hwif->io_ports;
314 unsigned long data_addr = io_ports->data_addr;
315 u8 io_32bit = drive->io_32bit;
316 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
317
318 len++;
319
320 if (io_32bit) {
321 unsigned long uninitialized_var(flags);
322
323 if ((io_32bit & 2) && !mmio) {
324 local_irq_save(flags);
325 ata_vlb_sync(io_ports->nsect_addr);
326 }
327
328 if (mmio)
329 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
330 else
331 outsl(data_addr, buf, len / 4);
332
333 if ((io_32bit & 2) && !mmio)
334 local_irq_restore(flags);
335
336 if ((len & 3) >= 2) {
337 if (mmio)
338 __ide_mm_outsw((void __iomem *)data_addr,
339 (u8 *)buf + (len & ~3), 1);
340 else
341 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
342 }
343 } else {
344 if (mmio)
345 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
346 else
347 outsw(data_addr, buf, len / 2);
348 }
349 }
350 EXPORT_SYMBOL_GPL(ide_output_data);
351
352 u8 ide_read_error(ide_drive_t *drive)
353 {
354 ide_task_t task;
355
356 memset(&task, 0, sizeof(task));
357 task.tf_flags = IDE_TFLAG_IN_FEATURE;
358
359 drive->hwif->tp_ops->tf_read(drive, &task);
360
361 return task.tf.error;
362 }
363 EXPORT_SYMBOL_GPL(ide_read_error);
364
365 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
366 {
367 ide_task_t task;
368
369 memset(&task, 0, sizeof(task));
370 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
371 IDE_TFLAG_IN_NSECT;
372
373 drive->hwif->tp_ops->tf_read(drive, &task);
374
375 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
376 *ireason = task.tf.nsect & 3;
377 }
378 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
379
380 const struct ide_tp_ops default_tp_ops = {
381 .exec_command = ide_exec_command,
382 .read_status = ide_read_status,
383 .read_altstatus = ide_read_altstatus,
384
385 .set_irq = ide_set_irq,
386
387 .tf_load = ide_tf_load,
388 .tf_read = ide_tf_read,
389
390 .input_data = ide_input_data,
391 .output_data = ide_output_data,
392 };
393
394 void ide_fix_driveid(u16 *id)
395 {
396 #ifndef __LITTLE_ENDIAN
397 # ifdef __BIG_ENDIAN
398 int i;
399
400 for (i = 0; i < 256; i++)
401 id[i] = __le16_to_cpu(id[i]);
402 # else
403 # error "Please fix <asm/byteorder.h>"
404 # endif
405 #endif
406 }
407
408 /*
409 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
410 * removing leading/trailing blanks and compressing internal blanks.
411 * It is primarily used to tidy up the model name/number fields as
412 * returned by the ATA_CMD_ID_ATA[PI] commands.
413 */
414
415 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
416 {
417 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
418
419 if (byteswap) {
420 /* convert from big-endian to host byte order */
421 for (p = s ; p != end ; p += 2)
422 be16_to_cpus((u16 *) p);
423 }
424
425 /* strip leading blanks */
426 p = s;
427 while (s != end && *s == ' ')
428 ++s;
429 /* compress internal blanks and strip trailing blanks */
430 while (s != end && *s) {
431 if (*s++ != ' ' || (s != end && *s && *s != ' '))
432 *p++ = *(s-1);
433 }
434 /* wipe out trailing garbage */
435 while (p != end)
436 *p++ = '\0';
437 }
438
439 EXPORT_SYMBOL(ide_fixstring);
440
441 /*
442 * Needed for PCI irq sharing
443 */
444 int drive_is_ready (ide_drive_t *drive)
445 {
446 ide_hwif_t *hwif = drive->hwif;
447 u8 stat = 0;
448
449 if (drive->waiting_for_dma)
450 return hwif->dma_ops->dma_test_irq(drive);
451
452 /*
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
457 */
458 if (hwif->io_ports.ctl_addr &&
459 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
460 stat = hwif->tp_ops->read_altstatus(hwif);
461 else
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->tp_ops->read_status(hwif);
464
465 if (stat & ATA_BUSY)
466 /* drive busy: definitely not interrupting */
467 return 0;
468
469 /* drive ready: *might* be interrupting */
470 return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0. All other
479 * cases return error -- caller may then invoke ide_error().
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487 {
488 ide_hwif_t *hwif = drive->hwif;
489 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
490 unsigned long flags;
491 int i;
492 u8 stat;
493
494 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
495 stat = tp_ops->read_status(hwif);
496
497 if (stat & ATA_BUSY) {
498 local_save_flags(flags);
499 local_irq_enable_in_hardirq();
500 timeout += jiffies;
501 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
502 if (time_after(jiffies, timeout)) {
503 /*
504 * One last read after the timeout in case
505 * heavy interrupt load made us not make any
506 * progress during the timeout..
507 */
508 stat = tp_ops->read_status(hwif);
509 if ((stat & ATA_BUSY) == 0)
510 break;
511
512 local_irq_restore(flags);
513 *rstat = stat;
514 return -EBUSY;
515 }
516 }
517 local_irq_restore(flags);
518 }
519 /*
520 * Allow status to settle, then read it again.
521 * A few rare drives vastly violate the 400ns spec here,
522 * so we'll wait up to 10usec for a "good" status
523 * rather than expensively fail things immediately.
524 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
525 */
526 for (i = 0; i < 10; i++) {
527 udelay(1);
528 stat = tp_ops->read_status(hwif);
529
530 if (OK_STAT(stat, good, bad)) {
531 *rstat = stat;
532 return 0;
533 }
534 }
535 *rstat = stat;
536 return -EFAULT;
537 }
538
539 /*
540 * In case of error returns error value after doing "*startstop = ide_error()".
541 * The caller should return the updated value of "startstop" in this case,
542 * "startstop" is unchanged when the function returns 0.
543 */
544 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
545 {
546 int err;
547 u8 stat;
548
549 /* bail early if we've exceeded max_failures */
550 if (drive->max_failures && (drive->failures > drive->max_failures)) {
551 *startstop = ide_stopped;
552 return 1;
553 }
554
555 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
556
557 if (err) {
558 char *s = (err == -EBUSY) ? "status timeout" : "status error";
559 *startstop = ide_error(drive, s, stat);
560 }
561
562 return err;
563 }
564
565 EXPORT_SYMBOL(ide_wait_stat);
566
567 /**
568 * ide_in_drive_list - look for drive in black/white list
569 * @id: drive identifier
570 * @table: list to inspect
571 *
572 * Look for a drive in the blacklist and the whitelist tables
573 * Returns 1 if the drive is found in the table.
574 */
575
576 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
577 {
578 for ( ; table->id_model; table++)
579 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
580 (!table->id_firmware ||
581 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
582 return 1;
583 return 0;
584 }
585
586 EXPORT_SYMBOL_GPL(ide_in_drive_list);
587
588 /*
589 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
590 * We list them here and depend on the device side cable detection for them.
591 *
592 * Some optical devices with the buggy firmwares have the same problem.
593 */
594 static const struct drive_list_entry ivb_list[] = {
595 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
596 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
597 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
598 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
599 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
600 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
601 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
602 { "SAMSUNG SP0822N" , "WA100-10" },
603 { NULL , NULL }
604 };
605
606 /*
607 * All hosts that use the 80c ribbon must use!
608 * The name is derived from upper byte of word 93 and the 80c ribbon.
609 */
610 u8 eighty_ninty_three (ide_drive_t *drive)
611 {
612 ide_hwif_t *hwif = drive->hwif;
613 u16 *id = drive->id;
614 int ivb = ide_in_drive_list(id, ivb_list);
615
616 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
617 return 1;
618
619 if (ivb)
620 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
621 drive->name);
622
623 if (ata_id_is_sata(id) && !ivb)
624 return 1;
625
626 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
627 goto no_80w;
628
629 /*
630 * FIXME:
631 * - change master/slave IDENTIFY order
632 * - force bit13 (80c cable present) check also for !ivb devices
633 * (unless the slave device is pre-ATA3)
634 */
635 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
636 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
637 return 1;
638
639 no_80w:
640 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
641 return 0;
642
643 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
644 "limiting max speed to UDMA33\n",
645 drive->name,
646 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
647
648 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
649
650 return 0;
651 }
652
653 int ide_driveid_update(ide_drive_t *drive)
654 {
655 ide_hwif_t *hwif = drive->hwif;
656 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
657 u16 *id;
658 unsigned long flags;
659 u8 stat;
660
661 /*
662 * Re-read drive->id for possible DMA mode
663 * change (copied from ide-probe.c)
664 */
665
666 SELECT_MASK(drive, 1);
667 tp_ops->set_irq(hwif, 0);
668 msleep(50);
669 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
670
671 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
672 SELECT_MASK(drive, 0);
673 return 0;
674 }
675
676 msleep(50); /* wait for IRQ and ATA_DRQ */
677 stat = tp_ops->read_status(hwif);
678
679 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
680 SELECT_MASK(drive, 0);
681 printk("%s: CHECK for good STATUS\n", drive->name);
682 return 0;
683 }
684 local_irq_save(flags);
685 SELECT_MASK(drive, 0);
686 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
687 if (!id) {
688 local_irq_restore(flags);
689 return 0;
690 }
691 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
692 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
693 local_irq_enable();
694 local_irq_restore(flags);
695 ide_fix_driveid(id);
696
697 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
698 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
699 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
700 /* anything more ? */
701
702 kfree(id);
703
704 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
705 ide_dma_off(drive);
706
707 return 1;
708 }
709
710 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
711 {
712 ide_hwif_t *hwif = drive->hwif;
713 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
714 u16 *id = drive->id, i;
715 int error = 0;
716 u8 stat;
717 ide_task_t task;
718
719 #ifdef CONFIG_BLK_DEV_IDEDMA
720 if (hwif->dma_ops) /* check if host supports DMA */
721 hwif->dma_ops->dma_host_set(drive, 0);
722 #endif
723
724 /* Skip setting PIO flow-control modes on pre-EIDE drives */
725 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
726 goto skip;
727
728 /*
729 * Don't use ide_wait_cmd here - it will
730 * attempt to set_geometry and recalibrate,
731 * but for some reason these don't work at
732 * this point (lost interrupt).
733 */
734 /*
735 * Select the drive, and issue the SETFEATURES command
736 */
737 disable_irq_nosync(hwif->irq);
738
739 /*
740 * FIXME: we race against the running IRQ here if
741 * this is called from non IRQ context. If we use
742 * disable_irq() we hang on the error path. Work
743 * is needed.
744 */
745
746 udelay(1);
747 SELECT_DRIVE(drive);
748 SELECT_MASK(drive, 1);
749 udelay(1);
750 tp_ops->set_irq(hwif, 0);
751
752 memset(&task, 0, sizeof(task));
753 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
754 task.tf.feature = SETFEATURES_XFER;
755 task.tf.nsect = speed;
756
757 tp_ops->tf_load(drive, &task);
758
759 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
760
761 if (drive->quirk_list == 2)
762 tp_ops->set_irq(hwif, 1);
763
764 error = __ide_wait_stat(drive, drive->ready_stat,
765 ATA_BUSY | ATA_DRQ | ATA_ERR,
766 WAIT_CMD, &stat);
767
768 SELECT_MASK(drive, 0);
769
770 enable_irq(hwif->irq);
771
772 if (error) {
773 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
774 return error;
775 }
776
777 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
778 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
779 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
780
781 skip:
782 #ifdef CONFIG_BLK_DEV_IDEDMA
783 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
784 hwif->dma_ops->dma_host_set(drive, 1);
785 else if (hwif->dma_ops) /* check if host supports DMA */
786 ide_dma_off_quietly(drive);
787 #endif
788
789 if (speed >= XFER_UDMA_0) {
790 i = 1 << (speed - XFER_UDMA_0);
791 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
792 } else if (speed >= XFER_MW_DMA_0) {
793 i = 1 << (speed - XFER_MW_DMA_0);
794 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
795 } else if (speed >= XFER_SW_DMA_0) {
796 i = 1 << (speed - XFER_SW_DMA_0);
797 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
798 }
799
800 if (!drive->init_speed)
801 drive->init_speed = speed;
802 drive->current_speed = speed;
803 return error;
804 }
805
806 /*
807 * This should get invoked any time we exit the driver to
808 * wait for an interrupt response from a drive. handler() points
809 * at the appropriate code to handle the next interrupt, and a
810 * timer is started to prevent us from waiting forever in case
811 * something goes wrong (see the ide_timer_expiry() handler later on).
812 *
813 * See also ide_execute_command
814 */
815 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
816 unsigned int timeout, ide_expiry_t *expiry)
817 {
818 ide_hwif_t *hwif = drive->hwif;
819
820 BUG_ON(hwif->handler);
821 hwif->handler = handler;
822 hwif->expiry = expiry;
823 hwif->timer.expires = jiffies + timeout;
824 hwif->req_gen_timer = hwif->req_gen;
825 add_timer(&hwif->timer);
826 }
827
828 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
829 unsigned int timeout, ide_expiry_t *expiry)
830 {
831 ide_hwif_t *hwif = drive->hwif;
832 unsigned long flags;
833
834 spin_lock_irqsave(&hwif->lock, flags);
835 __ide_set_handler(drive, handler, timeout, expiry);
836 spin_unlock_irqrestore(&hwif->lock, flags);
837 }
838
839 EXPORT_SYMBOL(ide_set_handler);
840
841 /**
842 * ide_execute_command - execute an IDE command
843 * @drive: IDE drive to issue the command against
844 * @command: command byte to write
845 * @handler: handler for next phase
846 * @timeout: timeout for command
847 * @expiry: handler to run on timeout
848 *
849 * Helper function to issue an IDE command. This handles the
850 * atomicity requirements, command timing and ensures that the
851 * handler and IRQ setup do not race. All IDE command kick off
852 * should go via this function or do equivalent locking.
853 */
854
855 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
856 unsigned timeout, ide_expiry_t *expiry)
857 {
858 ide_hwif_t *hwif = drive->hwif;
859 unsigned long flags;
860
861 spin_lock_irqsave(&hwif->lock, flags);
862 __ide_set_handler(drive, handler, timeout, expiry);
863 hwif->tp_ops->exec_command(hwif, cmd);
864 /*
865 * Drive takes 400nS to respond, we must avoid the IRQ being
866 * serviced before that.
867 *
868 * FIXME: we could skip this delay with care on non shared devices
869 */
870 ndelay(400);
871 spin_unlock_irqrestore(&hwif->lock, flags);
872 }
873 EXPORT_SYMBOL(ide_execute_command);
874
875 void ide_execute_pkt_cmd(ide_drive_t *drive)
876 {
877 ide_hwif_t *hwif = drive->hwif;
878 unsigned long flags;
879
880 spin_lock_irqsave(&hwif->lock, flags);
881 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
882 ndelay(400);
883 spin_unlock_irqrestore(&hwif->lock, flags);
884 }
885 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
886
887 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
888 {
889 struct request *rq = drive->hwif->rq;
890
891 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
892 ide_end_request(drive, err ? err : 1, 0);
893 }
894
895 /* needed below */
896 static ide_startstop_t do_reset1 (ide_drive_t *, int);
897
898 /*
899 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
900 * during an atapi drive reset operation. If the drive has not yet responded,
901 * and we have not yet hit our maximum waiting time, then the timer is restarted
902 * for another 50ms.
903 */
904 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
905 {
906 ide_hwif_t *hwif = drive->hwif;
907 u8 stat;
908
909 SELECT_DRIVE(drive);
910 udelay (10);
911 stat = hwif->tp_ops->read_status(hwif);
912
913 if (OK_STAT(stat, 0, ATA_BUSY))
914 printk("%s: ATAPI reset complete\n", drive->name);
915 else {
916 if (time_before(jiffies, hwif->poll_timeout)) {
917 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
918 /* continue polling */
919 return ide_started;
920 }
921 /* end of polling */
922 hwif->polling = 0;
923 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
924 drive->name, stat);
925 /* do it the old fashioned way */
926 return do_reset1(drive, 1);
927 }
928 /* done polling */
929 hwif->polling = 0;
930 ide_complete_drive_reset(drive, 0);
931 return ide_stopped;
932 }
933
934 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
935 {
936 static const char *err_master_vals[] =
937 { NULL, "passed", "formatter device error",
938 "sector buffer error", "ECC circuitry error",
939 "controlling MPU error" };
940
941 u8 err_master = err & 0x7f;
942
943 printk(KERN_ERR "%s: reset: master: ", hwif->name);
944 if (err_master && err_master < 6)
945 printk(KERN_CONT "%s", err_master_vals[err_master]);
946 else
947 printk(KERN_CONT "error (0x%02x?)", err);
948 if (err & 0x80)
949 printk(KERN_CONT "; slave: failed");
950 printk(KERN_CONT "\n");
951 }
952
953 /*
954 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955 * during an ide reset operation. If the drives have not yet responded,
956 * and we have not yet hit our maximum waiting time, then the timer is restarted
957 * for another 50ms.
958 */
959 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
960 {
961 ide_hwif_t *hwif = drive->hwif;
962 const struct ide_port_ops *port_ops = hwif->port_ops;
963 u8 tmp;
964 int err = 0;
965
966 if (port_ops && port_ops->reset_poll) {
967 err = port_ops->reset_poll(drive);
968 if (err) {
969 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
970 hwif->name, drive->name);
971 goto out;
972 }
973 }
974
975 tmp = hwif->tp_ops->read_status(hwif);
976
977 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
978 if (time_before(jiffies, hwif->poll_timeout)) {
979 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
980 /* continue polling */
981 return ide_started;
982 }
983 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
984 drive->failures++;
985 err = -EIO;
986 } else {
987 tmp = ide_read_error(drive);
988
989 if (tmp == 1) {
990 printk(KERN_INFO "%s: reset: success\n", hwif->name);
991 drive->failures = 0;
992 } else {
993 ide_reset_report_error(hwif, tmp);
994 drive->failures++;
995 err = -EIO;
996 }
997 }
998 out:
999 hwif->polling = 0; /* done polling */
1000 ide_complete_drive_reset(drive, err);
1001 return ide_stopped;
1002 }
1003
1004 static void ide_disk_pre_reset(ide_drive_t *drive)
1005 {
1006 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1007
1008 drive->special.all = 0;
1009 drive->special.b.set_geometry = legacy;
1010 drive->special.b.recalibrate = legacy;
1011
1012 drive->mult_count = 0;
1013 drive->dev_flags &= ~IDE_DFLAG_PARKED;
1014
1015 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1016 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1017 drive->mult_req = 0;
1018
1019 if (drive->mult_req != drive->mult_count)
1020 drive->special.b.set_multmode = 1;
1021 }
1022
1023 static void pre_reset(ide_drive_t *drive)
1024 {
1025 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1026
1027 if (drive->media == ide_disk)
1028 ide_disk_pre_reset(drive);
1029 else
1030 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1031
1032 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1033 if (drive->crc_count)
1034 ide_check_dma_crc(drive);
1035 else
1036 ide_dma_off(drive);
1037 }
1038
1039 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1040 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1041 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1042 drive->io_32bit = 0;
1043 }
1044 return;
1045 }
1046
1047 if (port_ops && port_ops->pre_reset)
1048 port_ops->pre_reset(drive);
1049
1050 if (drive->current_speed != 0xff)
1051 drive->desired_speed = drive->current_speed;
1052 drive->current_speed = 0xff;
1053 }
1054
1055 /*
1056 * do_reset1() attempts to recover a confused drive by resetting it.
1057 * Unfortunately, resetting a disk drive actually resets all devices on
1058 * the same interface, so it can really be thought of as resetting the
1059 * interface rather than resetting the drive.
1060 *
1061 * ATAPI devices have their own reset mechanism which allows them to be
1062 * individually reset without clobbering other devices on the same interface.
1063 *
1064 * Unfortunately, the IDE interface does not generate an interrupt to let
1065 * us know when the reset operation has finished, so we must poll for this.
1066 * Equally poor, though, is the fact that this may a very long time to complete,
1067 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1068 * we set a timer to poll at 50ms intervals.
1069 */
1070 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071 {
1072 ide_hwif_t *hwif = drive->hwif;
1073 struct ide_io_ports *io_ports = &hwif->io_ports;
1074 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1075 const struct ide_port_ops *port_ops;
1076 ide_drive_t *tdrive;
1077 unsigned long flags, timeout;
1078 int i;
1079 DEFINE_WAIT(wait);
1080
1081 spin_lock_irqsave(&hwif->lock, flags);
1082
1083 /* We must not reset with running handlers */
1084 BUG_ON(hwif->handler != NULL);
1085
1086 /* For an ATAPI device, first try an ATAPI SRST. */
1087 if (drive->media != ide_disk && !do_not_try_atapi) {
1088 pre_reset(drive);
1089 SELECT_DRIVE(drive);
1090 udelay (20);
1091 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1092 ndelay(400);
1093 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1094 hwif->polling = 1;
1095 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1096 spin_unlock_irqrestore(&hwif->lock, flags);
1097 return ide_started;
1098 }
1099
1100 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1101 do {
1102 unsigned long now;
1103
1104 prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1105 timeout = jiffies;
1106 ide_port_for_each_dev(i, tdrive, hwif) {
1107 if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1108 tdrive->dev_flags & IDE_DFLAG_PARKED &&
1109 time_after(tdrive->sleep, timeout))
1110 timeout = tdrive->sleep;
1111 }
1112
1113 now = jiffies;
1114 if (time_before_eq(timeout, now))
1115 break;
1116
1117 spin_unlock_irqrestore(&hwif->lock, flags);
1118 timeout = schedule_timeout_uninterruptible(timeout - now);
1119 spin_lock_irqsave(&hwif->lock, flags);
1120 } while (timeout);
1121 finish_wait(&ide_park_wq, &wait);
1122
1123 /*
1124 * First, reset any device state data we were maintaining
1125 * for any of the drives on this interface.
1126 */
1127 ide_port_for_each_dev(i, tdrive, hwif)
1128 pre_reset(tdrive);
1129
1130 if (io_ports->ctl_addr == 0) {
1131 spin_unlock_irqrestore(&hwif->lock, flags);
1132 ide_complete_drive_reset(drive, -ENXIO);
1133 return ide_stopped;
1134 }
1135
1136 /*
1137 * Note that we also set nIEN while resetting the device,
1138 * to mask unwanted interrupts from the interface during the reset.
1139 * However, due to the design of PC hardware, this will cause an
1140 * immediate interrupt due to the edge transition it produces.
1141 * This single interrupt gives us a "fast poll" for drives that
1142 * recover from reset very quickly, saving us the first 50ms wait time.
1143 *
1144 * TODO: add ->softreset method and stop abusing ->set_irq
1145 */
1146 /* set SRST and nIEN */
1147 tp_ops->set_irq(hwif, 4);
1148 /* more than enough time */
1149 udelay(10);
1150 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1151 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1152 /* more than enough time */
1153 udelay(10);
1154 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1155 hwif->polling = 1;
1156 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1157
1158 /*
1159 * Some weird controller like resetting themselves to a strange
1160 * state when the disks are reset this way. At least, the Winbond
1161 * 553 documentation says that
1162 */
1163 port_ops = hwif->port_ops;
1164 if (port_ops && port_ops->resetproc)
1165 port_ops->resetproc(drive);
1166
1167 spin_unlock_irqrestore(&hwif->lock, flags);
1168 return ide_started;
1169 }
1170
1171 /*
1172 * ide_do_reset() is the entry point to the drive/interface reset code.
1173 */
1174
1175 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1176 {
1177 return do_reset1(drive, 0);
1178 }
1179
1180 EXPORT_SYMBOL(ide_do_reset);
1181
1182 /*
1183 * ide_wait_not_busy() waits for the currently selected device on the hwif
1184 * to report a non-busy status, see comments in ide_probe_port().
1185 */
1186 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1187 {
1188 u8 stat = 0;
1189
1190 while(timeout--) {
1191 /*
1192 * Turn this into a schedule() sleep once I'm sure
1193 * about locking issues (2.5 work ?).
1194 */
1195 mdelay(1);
1196 stat = hwif->tp_ops->read_status(hwif);
1197 if ((stat & ATA_BUSY) == 0)
1198 return 0;
1199 /*
1200 * Assume a value of 0xff means nothing is connected to
1201 * the interface and it doesn't implement the pull-down
1202 * resistor on D7.
1203 */
1204 if (stat == 0xff)
1205 return -ENODEV;
1206 touch_softlockup_watchdog();
1207 touch_nmi_watchdog();
1208 }
1209 return -EBUSY;
1210 }